DIVISIBILITY OF IDEALS AND BLOWING UP

JOHN ATWELL MOODY

Abstract

Let R be a Noetherian integral domain, let $V=\operatorname{Spec}(R)$, and let I, J be nonzero ideals of R. Clearly, if J is either a divisor of I or a power of I there is a map $B l_{I}(V) \rightarrow B l_{J}(V)$ of schemes over V. The purpose of this note is to prove, conversely, that if such a map exists, then J must be a fractional ideal divisor of some power of I.

Let R be a Noetherian integral domain and let $J, I \subset R$ be ideals. Let $V=\operatorname{Spec}(R)$. It is often useful to know when there is a map $B l_{I}(V) \rightarrow B l_{J}(V)$ making the diagram

commute. Such a map is called a map of schemes over V. There is at most one such map, and such a map exists if and only if J pulls back to a locally principal sheaf of ideals on $B l_{I}(V)$. (These are elementary results which follow from [1, Capter II, Section 2] by setting $\left.B l_{I}(V)=\operatorname{Proj}\left(R \oplus I \oplus I^{2} \ldots\right)\right)$. The ideal I itself pulls back to $O(-E)$, the structure sheaf of $B l_{I}(V)$ twisted by the exceptional divisor E.

Let us make two observations. Firstly, if J is equal to a power I^{α} of I, then J does pull back to the locally principal sheaf $O(-\alpha E)$. Secondly, if J is equal to a divisor of I then J pulls back to a divisor of $O(-E)$, which is again locally principal. The aim of this note is to prove that combining these two trivial cases accounts for every possibility.

Theorem. The ideal J pulls back to a locally principal sheaf of ideals on $B l_{I}(V)$ if and only if, as a fractional ideal, J is a divisor of I^{α} for some number α.

The following corollaries are immediate.

[^0]2000 Mathematics Subject Classification. Primary 14E05.

Corollary 1. There is a map $B l_{I}(V) \rightarrow B l_{J}(V)$ of schemes over V if and only if there is a number α and a fractional ideal K such that $J K=I^{\alpha}$.

Corollary 2. There is an isomorphism $B l_{I}(V) \cong B l_{J}(V)$ of schemes over V if and only if there exist positive integers α and γ and fractional ideals K and L such that $J K=I^{\alpha}$ and $I L=J^{\gamma}$.

Proof of Theorem. Let $\left(f_{1}, \ldots, f_{n}\right)$ be a generating sequence for I. Suppose J is a divisor of I^{α} for some α. This means there is a fractional ideal L of R so that $J L=I^{\alpha}$. Cover $B l_{I}(V)$ by coordinate charts $U_{i}=\operatorname{Spec}\left(A_{i}\right)$ where $A_{i}=\bigcup_{j=0}^{\infty}\left(I / f_{i}\right)^{j}$. Since $J L$ contains f_{i}^{α}, the ideal $J \cdot\left(L / f_{i}^{\alpha}\right) \cdot A_{i} \subset A_{i}$ contains 1. This implies that the ideal $A_{i} J$ is invertible, i.e., locally free.

It remains to prove the converse. Suppose $A_{i} J$ is locally free for each i. Let K be the fraction field of R. Recall that a fractional ideal of R is by definition any finitely-generated R-submodule of K. Given two such fractional ideals A and B we may form a new fractional ideal $[B: A]=\{x \in K: x A \subset B\}$. Note that for any fractional ideals A, B, C we have $A[B: C] \subset[A B: C]$. Suppose we succeed in proving that for each number i between 1 and n there is a number β_{i} such that

$$
f_{i}^{\beta_{i}} \in J\left[I^{\beta_{i}}: J\right]
$$

Then taking $\beta=\max \left(\beta_{1}, \ldots, \beta_{n}\right)$ and multiplying both sides of the equation by $I^{\beta-\beta_{i}}$ gives

$$
f_{i}^{\beta} \in J I^{\beta-\beta_{i}}\left[I^{\beta_{i}}: J\right] \subset J\left[I^{\beta}: J\right] .
$$

Since this holds for all i we have

$$
\left(f_{1}^{\beta}, \ldots, f_{n}^{\beta}\right) \subset J\left[I^{\beta}: J\right] \subset I^{\beta}
$$

Now consider the ideal $I^{n \beta}$, generated by all monomials of degree $n \beta$ in the f_{i}. An easy counting argument shows that each such monomial is divisible by f_{i}^{β} for some i. Therefore

$$
I^{n \beta}=\left(f_{1}^{\beta}, \ldots, f_{n}^{\beta}\right) I^{(n-1) \beta}
$$

Multiplying both sides of the previous display by $I^{(n-1) \beta}$ therefore gives

$$
I^{n \beta}=\left(f_{1}^{\beta}, \ldots, f_{n}^{\beta}\right) I^{(n-1) \beta} \subset J\left[I^{\beta}: J\right] I^{(n-1) \beta} \subset I^{\beta} I^{(n-1) \beta}=I^{n \beta}
$$

proving $J L=I^{\alpha}$ for $\alpha=n \beta, L=\left[I^{\beta}: J\right] I^{(n-1) \beta}$, as desired.
It remains to produce the promised numbers β_{i} with $f_{i}^{\beta_{i}} \in J\left[I^{\beta_{i}}: J\right]$. Fix i. By hypothesis there is a fractional ideal H_{i} of A_{i}, so $A_{i} J H_{i}=A_{i}$. It follows that the evaluation homomorphism

$$
e v: A_{i} J \otimes_{R} \operatorname{Hom}_{A_{i}}\left(A_{i} J, A_{i}\right) \rightarrow A_{i}
$$

is surjective. There is a natural isomorphism $\operatorname{Hom}_{A_{i}}\left(A_{i} J, A_{i}\right) \cong \operatorname{Hom}_{R}\left(J, A_{i}\right)$ and so our evaluation homomorphism gives rise to a homomorphism

$$
A_{i} J \otimes_{R} \operatorname{Hom}_{R}\left(J, A_{i}\right) \rightarrow A_{i}
$$

Denote the image of this R-module homomorphism by $A_{i} J \bullet \operatorname{Hom}_{R}\left(J, A_{i}\right)$, and if $X \subset A_{i} J$ and $Y \subset \operatorname{Hom}_{R}\left(J, A_{i}\right)$ are R-submodules, denote by $X \bullet Y$ the image of the tensor product $X \otimes_{R} Y$. We have

$$
A_{i} J=\bigcup_{j=0}^{\infty}\left(I / f_{i}\right)^{j} J
$$

and since J is a finitely-generated R-module we have

$$
\operatorname{Hom}_{R}\left(J, A_{i}\right)=\bigcup_{j=0}^{\infty} \operatorname{Hom}_{R}\left(J,\left(I / f_{i}\right)^{j}\right)
$$

Therefore

$$
\begin{aligned}
1 \in A_{i} J \bullet \operatorname{Hom}_{R}\left(J, A_{i}\right) & =\bigcup_{j=0}^{\infty} \bigcup_{k=0}^{\infty}\left(\left(I / f_{i}\right)^{j} J\right) \bullet \operatorname{Hom}_{R}\left(J,\left(I / f_{i}\right)^{k}\right) \\
& =\bigcup_{j=0}^{\infty} \bigcup_{k=0}^{\infty}\left(I / f_{i}\right)^{j} J\left[\left(I / f_{i}\right)^{k}: J\right]
\end{aligned}
$$

It follows that for some fixed j and k we have

$$
1 \in\left(I / f_{i}\right)^{j} J\left[\left(I / f_{i}\right)^{k}: J\right] \subset J\left[\left(I / f_{i}\right)^{j+k}: J\right]
$$

Taking $\beta_{i}=j+k$ we have $f_{i}^{\beta_{i}} \in J\left[I^{\beta_{i}}: J\right]$ as needed.

References

[1] A. Grothendieck, Élements de géometrie algébrique. II, Inst. Hautes Études Sci. Publ. Math. 8 (1961).

Dept. of Mathematics, Univ. of Warwick, Coventry, England
E-mail address: moody@maths.warwick.ac.uk

[^0]: Received July 27, 1999; received in final form October 21, 1999.

