
Illinois Journal of Mathematics
Volume 45, Number 1, Spring 2001, Pages 123–137
S 0019-2082

SEPARABLE LIFTING PROPERTY AND EXTENSIONS OF
LOCAL REFLEXIVITY

WILLIAM B. JOHNSON AND TIMUR OIKHBERG

Abstract. A Banach space X is said to have the separable lifting prop-

erty if for every subspace Y of X∗∗ containing X and such that Y/X is
separable there exists a bounded linear lifting from Y/X to Y . We show

that if a sequence of Banach spaces E1, E2, . . . has the joint uniform ap-
proximation property and En is c-complemented in E∗∗n for every n
(with c fixed), then

(∑
n En

)
0

has the separable lifting property. In

particular, if En is a Lpn,λ-space for every n (1 < pn <∞, λ indepen-

dent of n), an L∞ or an L1 space, then
(∑

n En
)
0

has the separable
lifting property. We also show that there exists a Banach space X

which is not extendably locally reflexive; moreover, for every n there
exists an n-dimensional subspace E ↪→ X∗∗ such that if u : X∗∗ → X∗∗

is an operator (= bounded linear operator) such that u(E) ⊂ X, then
||(u|E)−1|| · ||u|| ≥ c

√
n, where c is a numerical constant.

1. Introduction

At the root of this investigation lies the principle of local reflexivity, for-
mulated by J. Lindenstrauss and H. Rosenthal in [15] (see also Theorem 8.16
of [4]). It states:

Theorem 1.1. If E and F are finite dimensional subspaces of X∗∗ and
X∗, respectively, and ε is a positive number, then there exists an operator
T : E → X such that ||T ||, ||T−1|| < 1 + ε, T |E∩X = IE∩X and f(ue) = f(e)
for any e ∈ E and f ∈ F .

If S is a closed subspace of a Banach space X, we say that S is comple-
mented (resp. c-complemented) in X if there exists a projection (= idempotent
operator) from X onto S (resp. a projection whose norm does not exceed c).
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Suppose X and Z are Banach spaces, S is a closed subspace of X, q :
X → X/S is the quotient map and u : Z → X/S is a linear operator. Then
ũ : Z → X is called a lifting of u if u = q ◦ ũ. Note that if Z = X/S,
u = IX/S (the identity on X/S) and ũ is a lifting of u, then P = ũ ◦ q is a
projection on X such that kerP = S and ||P || = ||ũ||. Conversely, if such a
projection P exists, then there exists a lifting ũ of the identity on X/S such
that ||ũ|| ≤ ||P ||. Clearly, the identity on X/S lifts to X if and only if S is
complemented in X.

If X is a Banach space, the identity on X∗∗/X need not lift to X∗∗.
However, by [6], the principle of local reflexivity implies that the identity
on X∗∗/X “locally lifts”.

Theorem 1.2. Suppose X and Y are Banach spaces such that Y is a
subspace of X∗∗ containing X and dimY/X < ∞. Let q : Y → Y/X be the
quotient map. Then for every ε > 0 there exists a lifting T : Y/X → Y of
the identity map on Y/X such that ||T || < 2 + ε. Consequently, there exists a
projection P from Y onto X with norm not exceeding 3 + ε.

In this paper we consider two problems:
(1) Suppose X ↪→ Y ↪→ X∗∗ and Y/X is separable. Under what conditions

does there exist a lifting of IY/X to Y ? In other words, under what conditions
can Theorem 1.2 be generalized to the case of Y/X separable? This is the
subject of Section 2. We show, in particular, that such a lifting exists if
X = (

∑
k Ek)0, where either supk dimEk < ∞ or Ek is an Lp space with

1 < p <∞ (Proposition 2.2). Here and below,
(∑

kXk

)
p

(resp.
(∑

kXk

)
0
)

denotes the `p (resp. c0) direct sum of Banach spaces Xk.
(2) Is it possible to strengthen the principle of local reflexivity? This ques-

tion will be treated in Sections 3 and 4. We show that if Y is a subspace
of X∗∗ containing X as a subspace of finite codimension, F is a finite di-
mensional subspace of Y ∗ and ε > 0, then there exists a projection P from
Y onto X such that ||P || < 5 + ε and f(Py) = f(y) for every y ∈ Y and
f ∈ F (Proposition 4.1). We also show that the operators T mentioned in the
statement of Theorem 1.1 cannot, in general, be extended to the whole of X∗∗

(Theorem 3.1, Corollary 3.2). Moreover, there exists a Banach space X and
a numerical constant c such that for every positive integer n there exists an
n-dimensional subspace E ↪→ X∗∗ such that if u : X∗∗ → X∗∗ is an operator
and u(E) ⊂ X, then ||(u|E)−1|| · ||u|| ≥ c

√
n (Theorem 3.3). Other possible

strengthenings of the principle of local reflexivity are discussed in Section 4.
Throughout the paper we shall use standard Banach space terminology

which can be found, for instance, in [4] and [16]. We make some peripheral
remarks about operator spaces; see [23] or [27] for an introduction to that
subject. We say that a Banach space X has the λ-approximation property
(λ-AP) if for every finite dimensional space E ↪→ X and ε > 0 there exists
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a finite rank map u : X → X such that u|E = IE and ||u|| ≤ λ + ε. If X
has the λ-AP for some λ, we say X has the bounded approximation property
(BAP). The space X is said to have the λ-uniform approximation property
(λ-UAP in short) if there exists a function f : N → N (called a uniformity
function) such that for every n-dimensional subspace E ↪→ X there exists
an operator u : X → X such that u|E = IE , ||u|| ≤ λ, and ranku ≤ f(n).
A collection of Banach spaces (Xi)i∈I is said to have the λ-joint UAP (λ-
JUAP) if these spaces have the λ-UAP with the same uniformity function. A
Banach space X or a collection of Banach spaces (Xi)i∈I is said to have the
λ+UAP (λ+JUAP) if it has the (λ+ ε)-UAP (resp. (λ+ ε)-JUAP) for every
ε > 0. Clearly, the λ+UAP implies the λ-AP. It is known (see [7] or [19])
that a Banach space X has λ-UAP if and only if X∗ does. Moreover, if f is
a uniformity function for X, then it is also a uniformity function for X∗∗.

We say that an increasing sequence (En) of finite dimensional spaces is a
paving of a Banach space X if X = ∪kEk. A family F of finite dimensional
spaces paves X if for any ε > 0 and for any finite dimensional subspace
E ↪→ X there exist a subspace G of X containing E and F ∈ F such that
d(F,G) < 1 + ε. (Here d(·, ·) denotes the Banach-Mazur distance.)

2. The separable lifting property

We say that a Banach space X has the λ-separable lifting property (λ-SLP
in short) if for every subspace Y of X∗∗ containing X and such that Y/X is
separable there exists a linear lifting of the identity on Y/X to Y , with norm
not exceeding λ. It is known (see [6]) that if Y/X is finite dimensional, then
for every ε > 0 there exists such a lifting whose norm does not exceed 2 + ε.
The space X is said to have the SLP if it has the λ-SLP for some λ.

The main result of this section is as follows.

Theorem 2.1. Suppose E1, E2, . . . is a sequence of Banach spaces having
the λ+joint uniform approximation property and Y is a subspace of

(∑
nEn

)
∞

containing
(∑

nEn
)

0
and such that Y/

(∑
nEn

)
0

is separable. Then there ex-
ists a projection P : Y → Y such that kerP =

(∑
nEn

)
0

and ||P || ≤ λ.

Below we will use the notion of M-ideal. A closed subspace J of a Banach
space X is called an L-summand (resp. M-summand) in X if X = J ⊕1 J

′

(resp. X = J ⊕∞ J ′) for some subspace J ′ ↪→ X. We say J as above is an
M-ideal if its annihilator J⊥ is an L-summand in X∗. We refer the reader to
[9] for a detailed investigation of M-ideals.

Apparently, the first paper where the properties of M-ideals are used to
solve lifting problems is [2]. There T. Andersen proved that if B is a C∗-
algebra, I a closed two-sided ideal in it such that the C∗-algebra B/I has the
positive unital approximation property (that is, the identity of of B/I can be
approximated by positive unital finite rank maps) and B/I is separable, then
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there exists a positive unital (and therefore contractive) lifting T : B/I → B
such that Q ◦ T = IB/I . (Here Q : B → B/I is the quotient map.) This
result was later extended to n-positive maps by G. Robertson and R. Smith
(see [28]).

Theorem 2.1 implies the following result.

Proposition 2.2. Suppose E1, E2, . . . is a sequence of reflexive Banach
spaces having the λ+uniform approximation property. Then

(∑
nEn

)
0

has
the λ-separable lifting property. Consequently:

(1) If supn dimEn <∞, then
(∑

nEn
)

0
has the 1-separable lifting prop-

erty.
(2) If En is a Lpn,λ+ε-space for every n and every ε > 0 (with 1 < pn <
∞), then

(∑
nEn

)
0

has the λ-separable lifting property.

Corollary 2.3. Suppose E1, E2, . . . is a sequence of Banach spaces with
the λ+joint uniform approximation property and such that En is c-comple-
mented in E∗∗n for every n. Suppose Y is a separable subspace of

(∑
nEn

)∗∗
0

containing
(∑

nEn
)

0
. Then there exists a projection from Y onto

(∑
nEn

)
0

of norm not exceeding c(λ+ 1).

Remark. A. Sobczyk [30] proved that c0 is 2-complemented in every sep-
arable Banach space containing it. (For a modern proof of this fact see [32]
or Theorem 2.f.5 in [16].) One should also note the remarkable result of
M. Zippin [33] that a separable Banach space which is complemented in every
separable space containing it must be isomorphic to c0. Proposition 2.2 is a
generalization of Sobczyk’s theorem.

Proof of Proposition 2.2. The first statement follows directly from Theo-
rem 2.1. By [24], any set of Lp,λ-spaces (λ fixed, 1 ≤ p ≤ ∞) has the λ+JUAP,
and Lp,λ-spaces are reflexive if 1 < p <∞. This implies the statement of part
(2) of the proposition. �

However, for some sequences E1, E2, . . . of finite dimensional spaces,(∑
nEn

)
0

does not have the SLP.

Proposition 2.4. Suppose X is a separable Banach space failing the
bounded approximation property and E1 ↪→ E2 ↪→ . . . is an increasing se-
quence of finite dimensional subspaces of X such that X = ∪nEn. Then there
exists a separable subspace Y ↪→

(∑
nEn

)
∞ containing

(∑
nEn

)
0

and such
that there is no bounded projection from Y onto

(∑
nEn

)
0
.

Proof. Proposition 2.4 follows from Lusky’s construction in [18]. Let Y
be the subspace of

(∑
nEn

)
∞ consisting of sequences (e1, e2, . . .) for which

limn→∞ en exists in X. Note that Y has the BAP. Indeed, for every positive
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integer n we define a contractive finite rank projection Pn : Y → Y by setting
Pn(e1, e2, . . .) = (e1, e2, . . . , en−1, en, en, . . .). The sequence (Pn) converges to
IY uniformly on compact sets. Note also that X = Y/

(∑
nEn

)
0
. Therefore

Y is separable and
(∑

nEn
)

0
is not complemented in Y . (Otherwise, X

would have the BAP.) �

Remark 1. Lusky [18] was interested in a sort of converse to Proposi-
tion 2.4: if X is a separable Banach space with the BAP and (En) is an
increasing sequence of finite dimensional subspaces of X such that X = ∪En
and Y is defined as in the proof of Proposition 2.4, then X is complemented in
Y and Y is isomorphic to X⊕

(∑
nEn

)
0
. Indeed, then there exist finite rank

operators Tn on X with TnX ⊂ En and Tn → IX strongly. Define S : X → Y
by setting Sx = (Tnx)n. Then S is a lifting of the quotient map q : Y → X.

Remark 2. Note that if X, Y and (En) are as in the proof of Propo-
sition 2.4 and Q : Y → X is the quotient map, then Q∗ : X∗ → Y ∗ is an
isometric isomorphism from X∗ onto a 1-complemented subspace of Y ∗. This
follows from Proposition 1 in [10] (see also Corollary 1.4 of [11]).

Combining Proposition 2.4 and Remark 2 with known facts, we obtain the
following observation made, but not published, by G. Schechtman and the
first author in 1996:

Corollary JS. There is a subspace Y1 of c0 which has a basis such that
Y ∗1 fails the approximation property.

Proof. Let X be a subspace of c0 which fails the approximation property
([16], Theorem 2.d.6), let E1 ↪→ E2 ↪→ . . . be an increasing sequence of
finite dimensional subspaces of X such that X = ∪nEn, and define Y as in
Proposition 2.4. The space Y embeds into c0; indeed, it is an old observation
of Lindenstrauss that if a Banach space Y has a subspace Y0 so that Y0 and
Y/Y0 both embed into c0, then so does Y . (Use the fact that any embedding
from Y0 into c0 extends to an operator from Y into c0 to see that Y embeds into
c0 ⊕ c0.) By Remark 2, Y ∗ contains a complemented copy of X∗ and hence
fails the approximation property. Since the projections Pn defined in the
proof of Proposition 2.4 commute, Y has a finite dimensional decomposition.
It then follows from Theorem 1.e.13 in [16] that there is a sequence G1, G2, . . .
of finite dimensional spaces so that Y1 := Y ⊕ (

∑
Gn)0 has a basis, and Y1

embeds into c0 because both of its summands do. �

To prove Theorem 2.1, we need two lemmas. The first of these is essentially
contained in [7].
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Lemma 2.5. A sequence of Banach spaces E1, E2, . . . has the λ+joint uni-
form approximation property if and only if

(∑
nEn

)
∞ has the λ+uniform

approximation property.

The following lemma is a known piece of Banach space lore; we include the
proof for the sake of completeness.

Lemma 2.6. Suppose Z is a Banach space with the λ+uniform approx-
imation property and Y0 is a separable subspace of Z. Then there exists a
separable subspace Y ↪→ Z containing Y0 and having the λ+uniform approxi-
mation property.

Proof. By the definition of the λ+UAP, for every k ∈ N there exists a
function fk : N→ N such that for every n-dimensional subspace F of Z there
exists an operator u : Z → Z such that u|F = IF , ||u|| ≤ λ+2−k and ranku ≤
fk(n). Let (Ei)∞i=1 be a sequence of finite dimensional subspaces of Y0 such
that for any ε > 0 and any finite dimensional E ↪→ Y0 there exists i such that
the Hausdorff distance dH(BE , BEi) < ε. (Here BF stands for the unit ball
of F , viewed as a subset of Y0.) Let Y1 = span[uik(Ei)], where uik : Z → Z
is such that uik|Ei = IEi , ||uik|| ≤ λ+ 2−k and rankuik ≤ fk(dimEi). Then
Y1 is separable and for every finite dimensional subspace E of Y0 and every
positive integer k there exists an operator u : Z → Y1 such that u|E = IE ,
||u|| ≤ λ+ 2−(k−1) and ranku ≤ fk(dimE).

Similarly, we construct a separable Y2 ↪→ Z containing Y1 and such that for
every finite dimensional subspace E of Y1 and every positive integer k there
exists an operator u : Z → Y2 such that u|E = IE , ||u|| ≤ λ + 2−(k−1) and
ranku ≤ fk(dimE). In the same manner we find Y3, Y4, etc. Let Y = ∪kYk.
Then Y is a separable subspace of Z and for every finite dimensional E ↪→ Y
there exists an operator u : Y → Y such that u|E = IE , ranku ≤ fk(dimE)
and ||u|| ≤ λ+ 2−(k−2). �

Proof of Theorem 2.1. For notational simplicity let W0 =
(∑

nEn
)

0
and

W∞ =
(∑

nEn
)
∞. Then W∞ has the λ+UAP by Lemma 2.5, and hence so

does W ∗∗∞ . It follows from Theorem I.2.2 of [9] that W0 is an M-ideal in W∞.
By duality, there exists a subspace W ↪→W ∗∗∞ such that W ∗∗∞ = W ∗∗0 ⊕∞W .
Thus, W =

(
W∞/W0

)∗∗ has the λ+UAP, and therefore W∞/W0 has the
λ+UAP. Since Y/W0 is a subspace of W∞/W0, Lemma 2.6 implies that there
exists a separable Banach space Z with the λ+UAP and such that Y/W0 ↪→
Z ↪→ W∞/W0. Note that Z = Y1/W0, where Y1 is a subspace of W∞. By
Theorem II.2.1 of [9], there exists an operator T : Y1/X → Y1 such that
QT = IY1/X (where Q : Y1 → Y1/X is the quotient map) and ||T || ≤ λ.
Clearly, T maps Y/X into Y . �

The space C([0, 1]) is an example of a separable Banach spaces with the
1+UAP which fails the SLP. Indeed, there exists a separable Banach space Z
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containing C([0, 1]) and such that there is no bounded projection from Z onto
C([0, 1]) (see [1]). Let j be the natural embedding of C([0, 1]) into C([0, 1])∗∗.
Since C([0, 1])∗∗ is 1-injective (see [12] or [14]), j has a contractive extension
j̃ : Z → C([0, 1])∗∗. Let Y = j̃Z. Then Y is a separable subspace of C([0, 1])∗∗

containing C([0, 1]) and there is no bounded projection from Y onto C([0, 1]).
(Otherwise there would have existed a projection from Z onto C([0, 1]).)

Suppose E1, E2, . . . are Banach spaces and Y is a subspace of
(∑

nEn
)
∞

which contains
(∑

nEn
)

0
as a subspace of finite codimension. By Theo-

rem 1.2, for every ε > 0 there exists a projection P : Y → Y such that
||P || < 2 + ε and kerP =

(∑
nEn

)
0
. However, in this case a modification of

a technique of Sobczyk [30] yields a sharper result:

Proposition 2.7. Suppose E1, E2, . . . are Banach spaces and Y is a sub-
space of

(∑
nEn

)
∞ which contains X :=

(∑
nEn

)
0

as a subspace of finite
codimension. Then there exists a projection P : Y → Y such that ||P || = 1
and kerP = X.

Proof. Let m = dimY/X and find y1, . . . , ym ∈ Y (yk = (e1k, e2k, . . .)) so
that Y = span[X, y1, . . . , ym]. For every positive integer n find Nn such that
for every i > Nn and all scalars a1, . . . , am

||
m∑
k=1

akeik|| ≤ (1− 2−n)−1 lim sup
j
||

m∑
k=1

akejk||.

We can assume without loss of generality that Nn < Nn+1 for every n. For
1 ≤ k ≤ m, let ỹk = (α1e1k, α2e2k, . . .), where αi = 1− 2−n if Nn < i ≤ Nn+1

and αi = 0 if i ≤ N1. Clearly, Y = span[
(∑

nEn
)

0
, ỹ1, . . . , ỹm]. Let P

be the projection satisfying P |X = 0 and P ỹk = ỹk for 1 ≤ k ≤ m. Then
||P || = 1. �

Remark. The starting point of this investigation was a question of Kirch-
berg: if K is the space of compact operators acting on `2 (with its natural
operator space structure) and Y is a separable operator space containing K,
does there exist a bounded projection from Y onto K? It is known that a
completely bounded projection from Y onto K need not exist. By the Stine-
spring extension theorem (see, e.g., Theorem 7.3 of [23] or Theorem 3.6 of
[26]) this question is equivalent to the following: if Y is a separable sub-
space of B(`2) containing K, does there exist a projection from Y onto K?
By writing Y = span[K, y1, y2, . . .] and cutting off the “off-diagonal” parts
of y1, y2, . . . we can reformulate the problem as follows: if Y is a separable
subspace of

(∑
nMn

)
∞ containing

(∑
nMn

)
0
, does there exist a bounded

projection from Y onto
(∑

nMn

)
0
? Here, Mn = B(`n2 ) is the space of n× n

matrices.
The question of Kirchberg is discussed in more detail in [21] and [29].
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By Proposition 2.3, if there exists a separable Banach space X without the
approximation property paved by the family (Mn)∞n=1, then the answer to the
last question is negative.

We know that B(`2) fails the approximation property (see [31]), and thus
has separable subspaces without the approximation property. This leads to
another open question: does the family (Mn)∞n=1 pave B(`2)? More generally,
if X = ∪Ei is a paving of X, does the family (Ei)∞i=1 pave X∗∗? Note that the
positive answer to the first question will imply that the answer to Kirchberg’s
question is negative.

3. Extendable local reflexivity

Following [21], we say that a Banach space X is C-extendably locally re-
flexive (C-ELR) if for every finite dimensional E ↪→ X∗∗ and F ↪→ X∗ and
for every ε > 0 there exists an operator u : X∗∗ → X∗∗ such that u(E) ⊂ X,
||u|| ≤ C + ε and f(e) = f(ue) for every e ∈ E and f ∈ F . Note that given
any ε > 0, we can guarantee that ||(u|E)−1|| < 1+ε by choosing F to be large
enough. We say that X is extendably locally reflexive (ELR) if it is C-ELR
for some C.

Rosenthal asked whether every Banach space is ELR. Below we give a
negative answer to this question.

Theorem 3.1. Suppose X is a Banach space with the bounded approxi-
mation property. Then X is extendably locally reflexive if and only if X∗ has
the bounded approximation property. More precisely:

(1) If X has the C1-approximation property and is C2-extendably locally
reflexive, then X∗ has the C1C2-approximation property.

(2) If X∗ has the C-approximation property, then X is C-extendably lo-
cally reflexive (and has the C-approximation property).

Remark. It is a well known consequence of the local reflexivity principle
that if X∗ has the C-AP, then so does X. Part (2) was proved by Rosenthal.

Corollary 3.2. The space T of trace class operators on `2 is not ex-
tendably locally reflexive.

Proof. If T is ELR, then, by Theorem 3.1, T ∗ = B(`2) has the BAP, which
contradicts [31]. �

Theorem 3.3. There exists a separable Banach space X with the fol-
lowing property: for any n ∈ N there exists an n-dimensional subspace E
of X∗∗ such that if u : X∗∗ → X∗∗ is an operator and u(E) ⊂ X, then
||(u|E)−1|| · ||u|| ≥ c

√
n, where c is a numerical constant.

Proof of Theorem 3.1. (1) Pick ε > 0 and finite dimensional spaces E ↪→
X∗∗ and F ↪→ X∗. Since X is C1-ELR, there exists an operator v : X∗∗ →
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X∗∗ such that v(E) ⊂ X, ||v|| < C1 +ε, and f(ve) = f(e) for all e ∈ E, f ∈ F .
Since X has the C2-AP, there exists a finite rank operator S : X → X
such that ||S|| < C2 + ε and S|v(E) = Iv(E). Consider the finite rank map
u = S∗∗v : X∗∗ → X. Note that ||u|| < (C1 + ε)(C2 + ε) and f(ue) = f(e) for
all e ∈ E, f ∈ F .

Let G = u∗(X∗) ↪→ X∗∗∗. By local reflexivity, there exists T : G → X∗

such that (Tg)(e) = g(e) for all e ∈ E, g ∈ G, and ||T || < 1 + ε. Consider
w = Tu∗ : X∗ → X∗. Then ||w|| < (1+ε)(C1 +ε)(C2 +ε) and (wf)(e) = f(e)
for all e ∈ E, f ∈ F .

Let I be a set of all triples (E,F, ε), where ε > 0 and E and F are finite
dimensional subspaces of X∗∗ and X∗, respectively. We say that (E,F, ε) ≺
(E′, F ′, ε′) if E ↪→ E′, F ↪→ F ′, and ε′ < ε. The relation ≺ defines a partial
order on I. By the reasoning above, there exists a net of finite rank operators
wi : X∗ → X∗ (i ∈ I) such that limi ||wi|| ≤ C1C2 and wi −→ IX∗ in the
point-weak topology. By Mazur’s theorem, there exists a net of finite rank
operators w̃j : X∗ → X∗ such that limj ||w̃j || ≤ C1C2 and wj −→ IX∗ in
the point-norm topology. (In fact, the w̃j ’s are convex combinations of wi’s.)
This shows that X∗ has the C1C2-AP.

(2) Suppose X∗ has the C-AP. It is well known that X also has the C-
AP. To show that X is C-ELR, pick ε > 0 and E and F as in the definition
of extendable local reflexivity. Then there exists a finite rank operator u :
X∗ → X∗ such that u|F = IF and ||u|| < C + ε. Let G = u∗(X∗∗). By
the principle of local reflexivity, there exists an operator T : G → X such
that ||T || < 1 + ε and f(Tg) = f(g) for every f ∈ F and g ∈ G. Then
Tu∗ : X∗∗ → X is a finite rank map, f(Tue) = f(e) for every e ∈ E and
f ∈ F and ||Tu|| < (1 + ε)(C + ε). Since ε can be chosen to be arbitrarily
small, we conclude that X is C-ELR. �

To prove Theorem 3.3 we follow Pisier’s construction in Chapter 10 of [25].

Lemma 3.4. There exists a constant c > 0 and a separable Banach space
Z such that

(1) π2(u) ≤ c||u|| for every finite rank operator u : Z → Z;
(2) if E1, E2, . . . , En are finite dimensional subspaces of Z, then for every

ε > 0
(∑n

k=1Ek
)

1
is (1 + ε)-isomorphic to a subspace of Z.

Proof. By Theorem 10.4 of [25], there exist a numerical constant c satis-
fying the following property: if Y is a separable Banach space with c2(Y ) ≤
c, then there exists a separable Banach space Ỹ containing Y such that
c2(Ỹ ) ≤ c and π2(u) ≤ c||u|| for every finite rank operator u : Ỹ → Ỹ . Here
c2(Y ) is the infimum of all real numbers λ such that

(∑n
k=1 ||yk||2

)1/2 ≤
λ · Ave±||

∑n
k=1±yk|| for every y1, . . . , yn ∈ Y . By the Khintchine-Kahane

inequality (see, e.g., Theorem 11.1 in [4] or Theorem 1.e.13 in [17]), c2(Y ) is
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equivalent to the cotype 2 constant of Y . Since the one-dimensional space
satisfies the conditions imposed on Y , there exists a separable infinite dimen-
sional Banach space X0 satisfying the following properties: π2(u) ≤ c||u|| for
every finite rank operator u : X0 → X0 and c2(X0) ≤ c.

By the definition of c2(·) and by the Minkowski Inequality (Theorem 25
in [8]), c2(`1(X0)) = c2(X0) ≤ c. By Theorem 10.4 of [25], there exists
a separable Banach space X1 containing `1(X0) such that c2(X1) ≤ c and
π2(u) ≤ c||u|| for every finite rank operator u : X1 → X1. Similarly, find
a separable Banach space X2 containing `1(X1) such that c2(X2) ≤ c and
π2(u) ≤ c||u|| for every finite rank operator u : X2 → X2. Proceed further
in the same manner. Let Z = ∪Xk. Clearly the space Z has the properties
required by the lemma. �

Proof of Theorem 3.3. Let Z be as in the statement of Lemma 3.3. Find an
increasing sequence of subspaces E1 ↪→ E2 ↪→ . . . ↪→ Z such that dimEk = k
and Z = ∪kEk. Let X =

(∑∞
k=1Ek

)
1
. Then X∗ =

(∑∞
k=1E

∗
k

)
∞. Let J be

the isometric embedding of Z∗ into X∗ defined by Jf = (f |E1 , f |E2 , . . .). Pick
a free ultrafilter U on N and define a contractive projection P on X∗ with
PX∗ = JZ∗ by setting P ((f1, f2, . . .)) = J limU fi (fi ∈ Ei). The functional
f = limU fi is defined by letting f(x) = limU fi(x) for x ∈ ∪Ei and extending
it by continuity to an element of X∗. We can thus identify Z∗ with JZ∗ and
Z with a subspace of Z∗∗ ' P ∗X∗∗.

Suppose u : X∗∗ → X∗∗ is an operator such that u(En) ⊂ X. Let λ =
||(u|E)−1||. We will show that ||u|| ≥

√
n/(cλ). By a small perturbation

argument we can assume without loss of generality that u(En) ⊂
(∑m

k=1Ek
)

1
.

Let T :
(∑m

k=1Ek
)

1
→ Z be an operator such that ||T || < 1+ε and ||T−1|| <

1 + ε. Then ||(Tu|En)−1|| < λ(1 + ε). Therefore

π2(Tu) ≥ π2(Tu|En) ≥ 1
λ(1 + ε)

π2(IEn) =
√
n

λ(1 + ε)
.

Thus,

||u|| ≥ ||u|En || ≥
1
||T ||
||Tu|En || ≥

1
c(1 + ε)

π2(Tu) ≥
√
n

cλ(1 + ε)2
.

Since ε can be chosen to be arbitrarily small, ||u|| ≥
√
n/(cλ). �

4. Other strengthenings of local reflexivity

First we combine Theorems 1.1 and 1.2 into one.

Proposition 4.1. Suppose X is a Banach space, Y a subspace of X∗∗

containing X as a subspace of finite codimension, F a finite dimensional
subspace of X∗, E a finite dimensional subspace of Y , and 0 < ε < 1/2.
Then there exists a projection P from Y onto X such that ||P || < 5 + ε,
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||P |E || < 1 + ε, ||(P |E)−1|| < 1 + ε, and f(y) = f(Py) for every y ∈ Y and
f ∈ F .

Proof. By Theorem 1.2, there exists a projection Q : Y → Y such that
||Q|| < 2 + ε/5 and kerQ = X. Let G = QY . Then there exists a finite
dimensional subspace H of X such that E ↪→ G + H. By the principle of
local reflexivity, there exists an operator u : G + H → K (where K is a
finite dimensional subspace of X) such that ||u|| < 1 + ε/5, ||u−1|| < 1 + ε/5,
u|H = IH and f(y) = f(uy) for every y ∈ G + H and f ∈ F . Define P as
follows: P |X = IX , P |G = u|G. Then P is a projection onto X, ||P || < 5 + ε,
P |E = u|E , and f(y) = f(Py) for every y ∈ Y and f ∈ F . �

Remark. Theorem 1.2 implies that for every finite dimensional E ↪→ X∗∗

and ε > 0 there exists a finite dimensional E1 ↪→ X∗∗ containing E and a
projection from E1 onto E1 ∩ X of norm not exceeding 3 + ε. However,
extending E is necessary: for every C > 0 there exists a finite dimensional
subspace E ↪→ `∞ such that any projection from E onto E ∩ c0 has norm
exceeding C. Indeed, pick any n and let F be a (1 + ε)-isomorphic copy of
`n2 in c0. Clearly, we can find a (1 + ε)-isomorphic copy of `N∞ (call it Ẽ)
containing F . Then Ẽ = F + G̃, where F ∩ G̃ = {0}. By pushing G̃ out of c0
(and deforming it slightly) we obtain G ↪→ `∞ such that G∩ c0 = {0} and the
Hausdorff distance between the unit balls of G and G̃ does not exceed ε/N .
Let E = F +G. Then E is (1 + 3ε)-isomorphic to `N∞ and, by Grothendieck’s
theorem (see Theorem 5.4 of [25]), every projection from E onto F has norm
at least

√
2/π
√
n/(1 + ε)4.

Proposition 4.1 shows that the operator T from Theorem 1.1 can be “ex-
tended” from E to span[E,X] (with its norm increasing from 1 + ε to 5 + ε).
Can T be extended further? More precisely, we ask four questions:

(1) Does there exist a constant C with the following property: if X is a
Banach space and E a finite dimensional subspace of X∗∗, then there
exists an operator T : X∗∗ → X∗∗ such that TE ⊂ X, ||T || ≤ C and
T |E∩X = IE∩X? Note that we do not require that the action of any
functionals be preserved, or that T |E be an isomorphism.

(2) Same as (1), with the additional condition TX ⊂ X.
(3) Same as (1), with the additional condition T |X = IX .
(4) Same as (1), with the additional condition TX∗∗ ⊂ X.

We shall show that the answers to questions (3) and (4) are negative (Propo-
sitions 4.2 and 4.3, respectively). The questions (1) and (2) are open.

Remark. Questions (1)–(4) above are motivated by some operator space
problems. Recall that an operator space X is called locally reflexive if there
exists a constant λ > 0 such that for every finite dimensional E ↪→ X and F ↪→
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X∗ there exists an operator u : E → X such that ||u||cb < λ, u|E∩X = IE∩X ,
and f(e) = f(ue) for every e ∈ E and f ∈ F . This notion was introduced
in [5], where it was shown that the full C∗-algebra of a free group with two
generators C∗(F2) is not locally reflexive. We say that an operator space
X has the local extension property (LEP) if there exists a constant λ > 0
such that for every finite dimensional E ↪→ X∗∗ there exists an operator
u : E → X such that ||u||cb < λ and u|E∩X = IE∩X . It is not known whether
every maximal operator space is locally reflexive, or even has the LEP (see
[20] and [22] for further discussion on this topic). However, if the answer to
(1) is positive, then every maximal operator space has the LEP.

Proposition 4.2. Suppose Z is a Banach space such that Z∗∗ has the
bounded approximation property and Z∗∗/Z fails the bounded approximation
property. Then for every C > 0 there exists a finite dimensional subspace
E ↪→ Z∗∗ with the following property: if T : Z∗∗ → Z∗∗ is an operator,
TE ⊂ Z and T |Z = IZ , then ||T || ≥ C.

Remark. It was shown in [13] (see also Theorem 1.d.3 in [16]) that if X
is a separable Banach space, then there exists a Banach space Z such that
Z∗∗ is separable, has a monotone basis, and X = Z∗∗/Z.

Proof. Suppose Z∗∗ has the λ-AP. Let q : Z∗∗ → Z∗∗/Z = X be the
quotient map. Suppose, for the sake of contradiction, that there exists C > 0
such that for every E ↪→ Z∗∗ there exists T : Z∗∗ → Z∗∗ such that TE ⊂ Z,
T |Z = IZ , and ||T || ≤ C. Let F be a finite dimensional subspace of X. Then
there exists an operator u : F → Z∗∗ such that qu = IF . By assumption,
there exists T : Z∗∗ → Z∗∗ such that TuF ⊂ Z, T |Z = IZ and ||T || ≤ C. Let
S = IZ∗∗ − T and consider the operator S̃ : X → Z∗∗ which maps z∗∗ + Z
into Sz∗∗. Clearly S̃ is well-defined and ||S̃|| = ||S|| ≤ C + 1. Moreover,
qS̃|F = IF . Indeed, if x ∈ F , then S̃x = Sux ∈ ux + Z, and therefore
qS̃ = qux = x.

Now fix ε > 0. Then there exists a finite rank operator v : Z∗∗ → Z∗∗ such
that ||v|| < λ + ε and ||(I − v)|S̃F || < ε. Then qvS̃ : X → X is a finite rank
map, ||qvS̃|| ≤ (C + 1)(λ + ε) and ||qvS̃|F − IF || ≤ ε. This contradicts our
assumption that X fails the BAP. �

Remark. If Z∗∗ satisfies the assumptions of Proposition 4.2, there does
not exist a net of finite rank linear operators ui : Z∗∗ → Z∗∗ such that
||ui|| < C for every i, ui → I strongly and uiZ ⊂ Z. For then (ui) would
induce finite rank operators on Z∗∗/Z which tend to the identity.

A Banach space X is said to have the compact approximation property
(CAP) if IX can be approximated by compact operators in the topology
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of uniform convergence on compact subsets of X. We say that X has the
(weakly) compact bounded approximation property ((W)CBAP) if for every
finite dimensional subspace E ↪→ X and every ε there exists a (weakly) com-
pact map u : X → X such that ||u|E − IE || < ε and ||u|| < λ (for some λ
independent of E).

The CBAP and the WCBAP are equivalent for subspaces of c0. This fol-
lows from the fact that every weakly null normalized sequence in c0 contains
a subsequence which is equivalent to the unit vector basis for c0 ([16], Propo-
sitions 1.a.12 and 2.a.1). This property of c0 implies that an operator whose
domain is a subspace of c0 is compact iff it is weakly compact iff it is strictly
singular.

By the discussion on page 94 of [16] (see also [3]), there exists a subspace
of c0 which fails the CAP (and, therefore, also fails the (W)CBAP). Thus, the
negative answer to the question (4) follows from the proposition below.

Proposition 4.3. Let X be an infinite dimensional subspace of c0. Then
the following are equivalent:

(1) X fails the weakly compact bounded approximation property.
(2) For every C > 0 there exists a finite dimensional subspace E ↪→ X

such that if T : X∗∗ → X is an operator and T |E = IE, then ||T || > C.

Proof. (1) ⇒ (2): We show first that every operator from X∗∗ to X is
strictly singular. Indeed, otherwise there will exist an operator T : X∗∗ → X
and infinite dimensional subspaces Y and Z of X∗∗ and X, respectively, such
that TY = Z and T |Y is an isomorphism. Since every infinite dimensional
subspace of c0 contains an isomorphic copy of c0 (see Theorem 2.a.2 in [16]), we
can assume that both Y and Z are isomorphic to c0. By Sobczyk’s theorem
(see [30] or Proposition 2.2), there exists a projection P from X onto Z.
Then P̃ = (T |Y )−1PT is a projection from X∗∗ onto Y . Let u : c0 → Z be
an isomorphism. Consider u∗∗ : `∞ → X(4) and the contractive projection
Q : X(4) → X∗∗. Then u−1P̃Qu∗∗ : `∞ → c0 is a projection. This is, however,
impossible (see Theorem 2.a.7 of [16]).

Thus, every operator from T : X∗∗ → X is strictly singular. A fortiori, T |X
is strictly singular and hence compact since X is a subspace of c0. However,
since X fails the WCBAP, for every C > 0 there exists a finite dimensional
subspace E ↪→ X such that if u : X → X is compact and u|E = IE , then
||u|| > C. By the reasoning above, if T : X∗∗ → X is such that T |E = IE ,
then ||T || > C.

(2) ⇒ (1): This implication is true for all Banach spaces X, not only
for subspaces of c0. Suppose X has the WCBAP. Then there exists λ > 0
such that for every finite dimensional E ↪→ X there exists a weakly compact
operator T : X → X so that T |E = IE and ||T || < λ. Since T is weakly
compact, T ∗∗X∗∗ ⊂ X. �
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