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THE SPECTRUM OF A SUPERSTABLE OPERATOR AND
COANALYTIC FAMILIES OF OPERATORS

M. YAHDI

Abstract. We first show that for an infinite dimensional Banach space

X, the unitary spectrum of any superstable operator is countable. In
connection with descriptive set theory, we show that if X is separable,

then the set of stable operators and the set of power bounded oper-
ators are Borel subsets of L(X) (equipped with the strong operator
topology), while the set S′(X) of superstable operators is coanalytic.

However, S′(X) is a Borel set if X is a superreflexive and hereditarily
indecomposable space. On the other hand, if X is superreflexive and

X has a complemented subspace with unconditional basis or, more gen-

erally, if X has a polynomially bounded and not superstable operator,
then the set S′(X) is non Borel.

1. Introduction

The main part of this work is devoted to some aspects of the relationship
between descriptive set theory and the geometry of Banach spaces. We study
the topological complexity of some natural families of operators in an infinite
dimensional Banach space.

An operator T on a Banach space X is stable if the orbit OT (x) = {Tn(x),
n ∈ N} is relatively compact for every x ∈ X, i.e., if the set {Tn, n ∈ N}
is relatively compact in L(X) for the strong operator topology Sop. This
is the case for any operator T ∈ L(X) such that lim

n→∞
‖Tnx‖ = 0 for every

x ∈ X. For example, the left-shift operator on `p(N), where 1 ≤ p ≤ ∞, has
this property. It follows from the Banach-Steinhaus theorem that every stable
operator is power bounded. However, the converse is false as the example of
the right-shift operator on `2(N) shows.

Arendt and Batty ([AB], [NR]), and independently Lyubich and Phong
([LP], [NR]) have shown that a power bounded operator T on a reflexive
Banach space X is stable if the unitary spectrum of T (denoted by σ1(T )) is
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countable. One can show that the converse is not true and that reflexivity is
necessary.

More recently, Nagel and Räbiger [NR] have introduced the notion of su-
perstability.

Definition 1.1. A bounded operator T on a Banach space X is super-
stable if, for any ultrafilter U on N, the ultrapower TU is stable on the ultra-
power XU where (see [He]):

• XU is the quotient space `∞(X)/CU (X).
• `∞(X) is the Banach space of bounded sequences in X.
• CU (X) is the closed subspace of sequences converging to zero along U .
• For x̄ = (xn)n∈N+CU (X), ‖x̄‖ = U−limn ‖xn‖ and TU (x̄) = (Txn)n∈N

+ CU .

Let T be an operator on a Banach space X and U an ultrafilter on N.
Since T and its ultrapower TU have the same spectrum (see [Sc]) and since the
ultrapower XU is reflexive if X is a superreflexive space, the above-mentioned
results of Arendt and Batty [AB], and Lyubich and Phong [LP] extend to
superstable operators as follows: for a superreflexive Banach space, any power
bounded operator T with countable unitary spectrum σ1(T ) is superstable.
Actually, Nagel and Räbiger showed that the converse is also true.

Theorem 1.2. Let T be a power bounded operator on a superreflexive
Banach space X. Then σ1(T ) is countable if and only if T is superstable.

The superreflexivity of X is necessary in Theorem 1.2. Indeed, take X =
`p(`∞n ) with 1 ≤ p ≤ ∞ and T ((xn)n) = (Tnxn)n, where Tn is the multipli-
cation operator by (α1, . . . , αn) on `∞n and (αn)n an increasing sequence in
]0, 1[. Then σ1(T ) is not superstable (see [NR]). However, the superreflexivity
of X is not necessary for the reverse implication of Theorem 1.2; the following
section is devoted to the proof of this result.

It is clear that, in general, superstability is stronger than stability, even
if X is superreflexive. Indeed, take X = `2(N) and the left-shift operator S.
A natural problem is to determine for which spaces superstability is strictly
stronger. This leads us to study the topological complexity of these opera-
tors and to establish a descriptive set hierarchy of certain naturally occurring
sets stemming from these operators. The interest of results of this type lies
in the fact that a theorem stating that the set of operators belonging to a
certain class is coanalytic and non Borel places a strong restriction on alter-
native characterizations of this class, eliminating, in a single stroke, many
conjectured equivalences. Of course, proving a theorem of this sort generally
requires much greater insight into the class in question than would be required
for the construction of an isolated counterexample.
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Recently, the topological nature of certain examples of families belonging
to various domains of analysis has been considered, and many connections
between descriptive set theory and analysis have been found; for harmonic
analysis, we refer to [KL] (see also [BKL]), and for convex analysis we refer
to [Bo], [BGK], and [DGS].

Let L(X) be the space of bounded operators on a separable Banach space
X. This space is a standard Borel space when equipped with the strong
operator topology Sop (see Proposition 3.1). We show easily that the subset of
stable operators is a Borel set, but the case of the set of superstable operators
S ′(X) requires various notions in descriptive set theory, in particular, the
coanalytic rank properties (see [KL] or [C]) and the entropy tree. We begin
with the characterization of superstable operators in terms of well founded
trees on N whose height defines a coanalytic rank on S ′(X) (so that S ′(X)
is a coanalytic set). For a superreflexive and separable Banach space X, we
use the characterization of superstable operators by the countability of their
unitary spectrum and the Cantor derivation to define another coanalytic rank
on S ′(X). In particular, we show that the map σ1 : T 7→ σ1(T ) is a Sop-Borel
map. This gives classes of separable and superreflexive Banach spaces for
which S ′(X) is a coanalytic non-Borel set, namely spaces with complemented
subspaces having an unconditional basis and, more generally, spaces having
a polynomially bounded and non-superstable operator. Finally, we consider
the hereditarily indecomposable and superreflexive Banach spaces, for which
S ′(X) is a Borel set.

2. The spectrum of a superstable operator

In this section we prove that Theorem 1.2 extends to any Banach space.

Theorem 2.1. The unitary spectrum of any superstable operator on an
infinite dimensional Banach space is countable.

The first part of the proof is similar to the argument given in [NR]. However,
the remainder of the proof is different from that of [NR], since we observe that
the identification of the dual (XU )∗ of an ultrapower with the ultrapower
(X∗)U , valid when X is superreflexive, can more generally be replaced by the
canonical embedding of the latter space in the former.

The proof depends on the following crucial proposition which shows, in
particular, that for a diffuse probability measure µ on the unit circle, the set
{fn : λ 7→ λn, n ∈ N} ⊂ L1(T, µ) cannot be covered by a finite number of
balls with diameter less than 1.

Proposition 2.2. Let µ be a diffuse probability measure on the unit circle
T. For every n ∈ Z, consider on T the function fn(λ) = λn. Then the set
{fn, n ∈ N} is not relatively compact in L1(T, µ).
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Proof. Assume that the set {fn, n ∈ N} is relatively compact in L1(µ). By
considering the conjugate, it follows that the set {fn, n ∈ Z} is also relatively
compact in L1(µ). Let 0 < ε < 1 fixed. Then there exists N ∈ N∗ and a
subdivision (Ij)1≤j≤N of Z such that

∀j ∈ {1, ..., N}, diam{fn, n ∈ Ij} < ε.

Recall that the upper density d∗(I) of a subset I of Z is defined by

d∗(I) = lim sup
m→+∞

1
2m+ 1

card
(
I ∩ [−m,m]

)
.

Since (Ij)1≤j≤N is a subdivision of Z, it follows that there exists j0 ∈ {1, ..., N}
such that d∗(Ij0) = ρ > 0. For two distinct elements p, q ∈ Ij0 we have

ε > ‖fp − fq‖L1(µ) =< µ, |fp − fq| >
=< µ, |fq| |fp−q − 1| >
=< µ, |fp−q − 1| >
≥ |< µ, fp−q > − < µ, 1 >|
= |µ̂(p− q)− 1| .

Thus, setting I = Ij0 − q, we get that |µ̂(n)| > 1 − ε for all n ∈ I, and
d∗(I) = ρ. It follows that

1
2m+ 1

m∑
−m
|µ̂(n)|2 ≥ 1

2m+ 1

∑
n∈[−m,m]∩I

|µ̂(n)|2

>
(1− ε)2

2m+ 1
card ([−m,m] ∩ I) .

Hence,

lim sup
n→∞

1
2m+ 1

m∑
−m
|µ̂(n)|2 ≥ ρ(1− ε)2 > 0.

This yields a contradiction to Wiener’s theorem (see [Ka, p. 42] or [Kr, p.
96]), according to which limn→∞(1/(2m+1))

∑m
−m |µ̂(n)|2 = 0 if µ is a diffuse

probability measure on the unit circle T. Hence we have proved Proposition
2.2. �

Proof of Theorem 2.1. Let X be a Banach space and T a power bounded
operator on X such that its unitary spectrum σ1(T ) is uncountable. (If T
is not bounded then by the Banach-Steinhaus theorem it is clear that T can
not be superstable.) We want to show that T is not superstable. First, by
using the equivalent norm ‖|x|‖ := supn∈N ‖Tnx‖, we can assume that T is
a contraction. Moreover, since the unitary spectrum of any ultrapower TU of
the operator T contains only eigenvalues of TU (see [Sc] or [NR, Proposition
2.2]), we can also assume (by taking TU instead of T and noting that the
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superstability of T is equivalent to the superstability of TU ) that σ1(T ) is
composed entirely of eigenvalues.

Nagel and Räbiger [NR] showed that there exists a dense sequence {λn}n∈N
∈ σ1(T ) such that the problem is equivalent to the non-superstability of an
isometric multiplicator operator M , corresponding to the values {λn}n∈N, on
a Banach sequence lattice Z. Then take a diffuse probability measure on T
supported on σ1(M) = {λk : k ∈ N} (see [Se, 19.7.6] and [Se, 8.5.5]) which,
by the weak∗-density of the atomic measures, we can write as

µ = w∗ − lim
n→∞

n∑
k=0

αn,kδλk ,

where
∑n
k=0 αn,k = 1, αn,k ≥ 0, and δλk is the Dirac measure at λk. By using

the decomposition of probability vectors (see [TJ] or [NR, Lemma 3.4]), Nagel
and Räbiger constructed the points of norm 1

zn =
n∑
k=1

βn,kek ∈ Z and φn =
n∑
k=1

γn,ke
∗
k ∈ Z∗,

where βn,k, γn,k ∈ R+ are such that αn,k = βn,kγn,k, {ek}k∈N is the canonical
basis of Z, and {e∗k}k∈N its dual basis. In order to show that M is not
superstable, we consider an ultrafilter U on N and the points

z = (zn)n∈N + CU (Z) ∈ ZU and φ = (φn)n∈N + CU (Z∗) ∈ (Z∗)U

of norm 1. Even if Z is not superreflexive, we still have φ ∈ (ZU )∗ since
(Z∗)U ⊆ (ZU )∗. From the definitions of M , Z and µ, we get that, for any
integers p and q,

< φ, |Mp
U (z)−Mq

U (z)| > = U − lim
n

n∑
k=0

αn,k |λpk − λ
q
k|

= U − lim
n
< µn, |fp − fq| >

=< µ, |fp − fq| >,

where fn is the map defined on T by fn(λ) = λn. Hence

‖Mp
U (z)−Mq

U (z)‖ ≥ ‖fp − fq‖L1(µ) .

Since the set {fn, n ∈ N} is not relatively compact in L1(µ) (see Proposition
2.2), it follows from this last inequality that the orbit OMU (z) is not relatively
compact in the ultrapower ZU . HenceM , and therefore T , are not superstable.

�
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3. Introduction to the topological complexity of some operator
families

In the following sections we use classical definitions and results from de-
scriptive set theory (see [C], [Ke], [KL]). We denote by X an infinite dimen-
sional Banach space, and we equip the space L(X) of bounded operators on
X with the strong operator topology Sop. In this section we study the posi-
tion of the operator sets introduced in the previous sections in the descriptive
set hierarchy. The case of superstable operators is more complex and will be
investigated in the remaining sections. We first show that the strong operator
topology on L(X) is adequate for this purpose.

To establish a hierarchy from a topological point of view, it is natural to
work in a Polish space, i.e., a space homeomorphic to a separable metrizable
complete space. However, it is also possible to work in a standard Borel space,
i.e., a space Borel-isomorphic to a Borel set of a Polish space. (Hence all the
notions and properties in a Polish space can be transferred to the standard
Borel space.) The space L(X) equipped with the strong operator topology is
not a Polish space (since it is not a Baire space). However, if X is a separable
Banach space,

(
L(X), Sop

)
can be shown to be Borel-isomorph to a Borel set

of the Polish space XN equipped with the norm product topology, via the map

ϕ :
(
L(X), Sop

)
−→

(
XN,P

)
T 7−→ (Tzn)n∈N,

where {zn, n ∈ N} is a dense Q-vector space in X. Hence we have the following
result.

Proposition 3.1. For every separable Banach space X,
(
L(X), Sop

)
is a

standard Borel space.

The following lemma yields, in particular, the continuity of the map : T →
Tn on the bounded subsets of the power bounded operator space endowed
with the topology Sop, and provides a collection of open and closed sets in(
L(X), Sop

)
.

Lemma 3.2. Let X be a Banach space. The multiplication map on L(X),
i.e., the map (R, T ) ∈ L(X)× L(X) 7−→ R · T ∈ L(X), is jointly continuous
for the strong operator topology on bounded subsets of L(X).

Proof. The result is immediate from the inequality

‖(RT −R0T0)x‖ ≤ ‖R‖ . ‖(T − T0)x‖+ ‖(R−R0)(T0x)‖ ,
where R0, T0, R, T ∈ L(X) and x ∈ X. �

Notations. We denote by Lpb(X), S(X), and S ′(X), respectively, the
sets of power bounded, stable, and superstable operators on X. By B(x, ε)
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and B(x, ε) we denote, respectively, the open and the closed balls of center x
and radius ε.

Proposition 3.3. Let X be a separable infinite-dimensional Banach space.
Then the set Lpb(X) of all power bounded operators and the set S(X) of all
stable operators on X are Borel subsets of

(
L(X), Sop

)
.

Proof. Let {xn}n∈N be a dense subset in the closed unit ball of X. It is
obvious that the set Lpb(X) is a Borel set since this set can be written as
countable intersection and union of closed sets.

Let T be an operator on X. The operator T is stable if and only if T ∈
Lpb(X) and

(1) ∀n ∈ N, the orbit OT (xn) is ‖.‖ -relatively compact in X.

Observe that condition (1) is equivalent to

∀n ∈ N ∀m ∈ N∗ ∃N(n,m) ∈ N : OT (xn) ⊆
N(n,m)⋃
j=0

B(T jxn,
1
m

),

or, in other words,

T ∈
⋂
n∈N

⋂
m∈N∗

⋃
N∈N

⋂
k∈N

{
T ∈ L(X) : T kxn ∈

N⋃
j=0

B(T jxn,
1
m

)
}

=
⋂
n∈N

⋂
m∈N∗

⋃
N∈N

⋂
k∈N

⋃
0≤j≤N

{
T ∈ L(X) :

∥∥T kxn − T jxn∥∥ < 1
m

}
.

Hence condition (1) is Borel, and so is the set S(X). �

4. Coanalytic ranks on the set of superstable operators

In this section we focus on the set S ′(X) of superstable operators. To study
the complexity of this set, we use several different methods which require
many tools from descriptive set theory and some Banach space results. We
introduce several coanalytic ranks for the family of superstable operators and
exhibit spaces X on which this family is Borel and other spaces on which it
is not Borel. Let us recall notations, properties and methods of construction
of coanalytic ranks (see [KL] and [Z]).

Notations. We denote by Pf (J), P∞(N), N<N and T , respectively, the
set of finite subsets of J , the set of infinite subsets of N, the set of finite se-
quences in N, and the set of trees on N. We denote by ω1 the first uncountable
ordinal.

Properties 4.1. Let δ be a coanalytic rank on a coanalytic subset C of
a Polish space P . Then we have:
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(a) For all α < ω1, Bα := {x ∈ C : δ(x) ≤ α} is a Borel set.
(b) If A ⊆ C is an analytic set, then there exists α < ω1 such that A ⊆ Bα.

In particular, C is Borel if and only if δ is bounded on C by a countable
ordinal.

Proposition 4.2. Let δ be a coanalytic rank on the coanalytic subset C
of a Polish space P . Let P ′ be another Polish space, and let ψ : P ′ −→ P be
a Borel map. Then δ ◦ ψ is a coanalytic rank on ψ−1(C).

Since the height (denoted by h) of the trees is a coanalytic rank, we deduce
from the topology of the set T of trees on N the following result.

Proposition 4.3. Let P be a Polish space and let ψ be a map from P into
the set T of trees on N. If, for every s ∈ N<N, the set s̄ = {x ∈ P : s ∈ ψ(x)}
is Borel, then C = {x ∈ P : ψ(x) is well founded} is a coanalytic subset with
h ◦ ψ as a coanalytic rank.

4.1. Rank derived from the entropy trees. Our next lemma is the
key to describing the topological nature of the set of superstable operators for
any separable Banach space (see Theorem 4.6).

Lemma 4.4. Let X be a Banach space, and let T ∈ L(X). The following
assertions are equivalent:

(i) T is not a superstable operator.
(ii) There exists ε > 0 and J ∈ P∞(N) such that for all F ∈ Pf (J) there

exists xF ∈ BX so that the set {T j(xF ) : j ∈ F} is ε-separated.

Proof. Let T ∈ L(X). By definition, T is not superstable if and only if
there exists an ultrafilter U on N and x̄ ∈ XU with ‖x̄‖ ≤ 1 such that the
orbitOTU (x̄) := {TnU : n ∈ N} is not relatively compact. The non-compactness
of OTU (x̄) is equivalent to

∃ε > 0 : ∀I ∈ Pf (N) ∃n /∈ I : TnU (x̄) /∈
⋃
i∈I

B
(
T iU (x̄), ε

)
or

(2) ∃ε > 0 : ∀k ∈ N ∃mk > k : TmkU (x̄) /∈
k⋃
i=0

B
(
T iU (x̄), ε

)
.

Using this last assertion, we construct a strictly increasing sequence {nk, k ∈
N} as follows: For k = 0, we let n0 be the integer m0 given by (2), and
for k ≥ 1, we define nk inductively by setting nk = mnk−1 . Thus (with
J = {nk, k ∈ N}), (2) implies the existence of ε > 0 and J ∈ P∞(N) such that

(3) {T jU (x̄) : j ∈ J} is ε-separated.
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For any (xn)n∈N in the class x̄, chosen in the unit ball BX of X, (3) becomes

∀i, j ∈ J with i 6= j : U − lim
n

∥∥T jxn − T ixn∥∥ > ε,

which is equivalent to

∀i, j ∈ J with i 6= j ∃A ∈ U : ∀n ∈ A,
∥∥T jxn − T ixn∥∥ > ε,

or

∀F ∈ J<N∃AF ∈ U : ∀n ∈ AF , {T j(xn) : j ∈ F} is ε-separated.

In particular,

∀F ∈ J<N, ∃xF ∈ BX : {T j(xF ) : j ∈ F} is ε-separated.

For the proof of the converse, let ε > 0 and J ∈ P∞(N) such that

∀F ∈ Pf (J) ∃xF ∈ BX : {T j(xF ) : j ∈ F} is 2ε-separated.

We put J = {ji : i ∈ N} (where the ji are in strictly increasing order) and

Fn = {j0, j1, ..., jn}, En = J \ Fn.

Let U be an ultrafilter on N containing the subsets En. We have

∀n ∈ N ∃xn ∈ BX : {T j(xn) : j ∈ Fn} is 2ε-separated.

Let x̄ be the class of (xn)n∈N in XU . We claim that the set {T jU (x̄) : j ∈ J}
is ε-separated (so that T is not superstable).

Let jp, jq ∈ J with p < q. Then jp, jq ∈ Fn for all n ≥ q. It follows from
the definition of xn that∥∥T jpxn − T jqxn∥∥ > 2ε, ∀n ≥ q.

Hence, U − limn

∥∥T jpxn − T jqxn∥∥ > ε, i.e.,
∥∥∥T jpU x̄− T jqU x̄∥∥∥ > ε. �

For an operator T and any real number ε > 0, we consider the “entropy
tree”

A(T, ε) =
{
F ∈ Pf (N) : |F | ≤ 1 or ∃ x ∈ BX : {T jx : j ∈ F} is ε-separated

}
.

It follows from Lemma 4.4 that an operator T is not superstable if and only
if there exists an ε > 0 such that the tree A(T, ε) has an infinite branch J or,
equivalently, that the tree A(T, ε) is not well founded.

Proposition 4.5. Let X be a Banach space and let T be a bounded op-
erator on X. The following assertions are equivalent:

(a) T is superstable.
(b) For all ε > 0, the entropy tree A(T, ε) is well founded.
(c) We have η(T ) := sup

ε>0
h
(
A(T, ε)

)
< ω1.
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Proof. It only remains to check the equivalence of (b) and (c). However,
this is clear since (b) is equivalent to the assertion that for all n ∈ N

∗,
A(T, 1/n) is well founded. �

We now extend the index η, defined above on L(X) by η(T ) = ω1, to the
case when T is not superstable.

Theorem 4.6. Let X be a separable Banach space. We consider L(X)
equipped with the strong operator topology Sop. Let η be the index on L(X)
defined above. Then we have:

(a) The set S ′(X) of superstable operators on X is a coanalytic subset.
(b) η is a coanalytic rank on S ′(X).
(c) T ∈ S ′(X) if and only if η(T ) < ω1.
(d) S ′(X) is a Borel subset of

(
L(X), Sop

)
if and only if η(X) :=

supT∈S′(X) η(T ) < ω1.

Proof. Assertion (c) is part of Proposition 4.5. Let T be a bounded operator
on X. We have

η(T ) = sup
n∈N∗

h
(
A(T,

1
n

)
)
.

We define the natural tree A(T ) on N containing all the trees A(T, 1
n ), n ∈ N∗,

as the set of all σ ∈ Pf (N) such that

|σ| = 0 or σ = (p, F ) with p ∈ N∗ and F ∈ A(T, 1/p).

It is not difficult to show that the map A : T ∈ Lpb(X) 7−→ A(T ) satisfies the
assumptions of Proposition 4.3. Then the set

C :=
{
T ∈ Lpb(X) : A(T ) is well founded

}
=
{
T ∈ Lpb(X) : A(T,

1
n

) is well founded for all n ∈ N∗
}

is Sop–coanalytic in Lpb(X), and has h◦A as a coanalytic rank, where h◦A(T )
is the height of the tree A(T ). It follows from the Proposition 4.5 that

C = S ′(X) ∩ Lpb(X) = S ′(X).

Hence the set S ′(X) of superstable operators onX is Sop–coanalytic in Lpb(X),
and therefore also in L(X), since Lpb(X) is a Sop-Borel subset of L(X). The
index η is a coanalytic rank on S ′(X) since η = h ◦ A. Assertion (d) follows
immediately from Properties 4.1 of the coanalytic ranks. �

One cannot decide whether the set S ′ of superstable operators is a true
coanalytic set or only a Borel set. In the sequel we give natural classes of
Banach spaces where S ′(X) is a true coanalytic set, and a class where this set
is Borel.
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4.2. Rank derived from the Cantor derivation. We now apply the
characterization of a superstable operator in spectral terms (see Section 1).
Consider the natural map

σ1 : L(X) −→ K(T)
T 7−→ σ1(T ),

which associates to an operator its unitary spectrum, where K(T) denotes the
set of compact subsets of the torus T. It is well known that K(T), endowed
with the Hausdorff topology, is a compact metric space, where the Borel
structure is generated by the family{

{K ∈ K(T) : K ∩ V 6= ∅} : V open in T
}
.

We first show that this map is rather regular.

Proposition 4.7. For any separable Banach space X, the map σ1 : L(X)
−→ K(T), which to an operator associates its unit spectrum, is Borel when
L(X) is equipped with the strong operator topology.

Proof. Since K(T) is endowed with the Hausdorff topology, it is enough
to show that, for all open V in the torus T, the subset EV = {T ∈ L(X) :
σ1(T ) ∩ V 6= ∅} is Borel in

(
L(X), Sop

)
. Since V ⊂ T, we have

EV =
{
T ∈ L(X) : σ(T ) ∩ V 6= ∅

}
= PL(X)(Ω),

where Ω =
{

(T, λ) ∈ L(X)×V : λ ∈ σ(T )
}

and PL(X) denotes the canonical
projection from L(X) × T to L(X). By [SR], EV is Borel if Ω is a Borel set
with Kσ sections. For T ∈ L(X), the vertical section of the set Ω ⊆ L(X)×T
over T is

Ω(T ) =
{
λ ∈ T : (T, λ) ∈ Ω

}
=
{
λ ∈ T : λ ∈ V ∩ σ(T )

}
= σ(T ) ∩ V.

Thus, Ω(T ) is a Kσ subset of T. To prove that Ω is a Borel set, we consider

∆ =
{

(T, λ) ∈ L(X)× T : λ ∈ σ(T )
}
.

Since Ω = ∆ ∩ L(X)× V , to complete the proof it is enough to show that
∆ is a Borel subset of L(X)× T. We have ∆ = A ∪B with

A =
{

(T, λ) ∈ L(X)× T : T − λI is not an isomorphism onto its range
}
,

B =
{

(T, λ) ∈ L(X)× T : (T − λI)(X) is not dense in X
}
.

Indeed, if T − λI is an isomorphism onto its range, then (T − λI)(X) is a
closed subspace and necessarily strict, since λ ∈ σ(T ). We now show that A
and B are Borel sets.

Since X is separable, there exists a countable and dense subset D of the
sphere SX of X, and there exists a dense sequence {xn}n∈N in X. An element
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(T, λ) ∈ L(X)× T is in A if and only if

∃(zn)n∈N ⊆ SX : lim
n→∞

‖(T − λI)zn‖ = 0,

that is to say

∃(zn)n∈N ⊆ D, ∀k ≥ 1 ∃Nk ∈ N ∀n ≥ Nk : ‖(T − λI)zn‖ <
1
k
.

By taking the sequence (zNk)k∈N, this, in turn, is equivalent to

∃(zn)n∈N ⊆ D, ∀k ≥ 1 ∃Nk ∈ N : ‖(T − λI)zNk‖ <
1
k
,

or simply

∀k ≥ 1, ∃x ∈ D : ‖Tx− λx‖ < 1
k
.

Hence
A =

⋂
k≥1

⋃
x∈D

{
(T, λ) ∈ L(X)× T : ‖Tx− λx‖ < 1

k

}
.

The set A is thus a Gδ set for the strong operator topology. We have

B =
{

(T, λ) ∈ L(X)× T/ (T − λI)(X) is not dense in X
}

=
⋃
y∈SX

⋃
k∈N∗

{
(T, λ) ∈ L(X)× T : ‖y − (T − λI)x‖ ≥ 1

k
for all x ∈ X

}
=
⋃
y∈D

⋃
k∈N∗

{
(T, λ) ∈ L(X)× T : ‖y − (T − λI)xn‖ ≥

1
k

for all n ∈ N
}

=
⋃
y∈D

⋃
k∈N∗

⋂
n∈N

{
(T, λ) ∈ L(X)× T : ‖y − (T − λI)xn‖ ≥

1
k

}
.

Hence B is an Fσ set for the strong operator topology. �

Consider now the Cantor derivation on K(T) which, to each K ∈ K(T)
associates the set K ′ := K \ {isolated points of K}. By transfinite induction
the derivative K(α) is well-defined for every ordinal α. We then consider the
ordinal index δc on K(T) defined from the Cantor derivation by

δc(K) =

{
inf{α ordinal : K(α) = ∅} if the infimum exists,
ω1 otherwise.

It is well known that δc is a coanalytic rank on the true coanalytic set D(T)
of countable compact subsets of T (see [Ke]).

Proposition 4.8. Let X be a separable and superreflexive Banach space.
Consider on L(X) the index δ derived from the Cantor derivation defined by

δ(T ) := δc[σ1(T )] =

{
inf{α ordinal : [σ1(T )](α) = ∅} if the infimum exists,
ω1 otherwise.
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If L(X) is equipped with the strong operator topology, then we have:
(a) The set S ′(X) of superstable operators is coanalytic.
(b) δ is a coanalytic rank on S ′(X).
(c) T is superstable if and only if δ(T ) < ω1 and T ∈ Lpb(X).
(d) S ′(X) is Borel set if and only if δ(X) := supT∈S′(X) δ(T ) < ω1.

Proof. Consider the Borel map σ1 defined in Proposition 4.7. Denote by
σ̃1 the restriction of σ1 to the set Lpb(X) of power bounded operators on
X. The map σ̃1 is a Borel map and

(
Lpb(X), Sop

)
is a standard Borel space,

since Lpb(X) is a Sop-Borel subset of L(X). Since δc is a coanalytic rank on
D(X), it follows from Proposition 4.2 that δc ◦ σ̃1 is a coanalytic rank on the
coanalytic set σ̃1

−1(D(T)
)
. Now observe that on Lpb(X), δc ◦ σ̃1 = δ and that

Ψ̃−1
(
D(T)

)
= S ′(X), since every power bounded operator on X is superstable

if and only if its unit spectrum is countable (see Theorem 1.2). This proves
assertions (a) and (b). Assertions (c) and (d) follow from classic properties of
the coanalytic rank (see Properties 4.1). �

The next corollary follows from Proposition 4.8, Properties 4.1, and Propo-
sition 3.3.

Corollary 4.9. Let X be a separable and superreflexive Banach space.
Then either there exists a stable but not superstable operator on X, or there
is an ordinal α < ω1 such that [σ1(T )](α) = ∅ for every stable operator T .

Theorem 4.6 and Proposition 4.8 imply, in particular, that for a separa-
ble and superreflexive Banach space there is an equivalence between δ(T ) <
ω1 and η(T ) < ω1, for every superstable operator T on X. In fact, more is
known about the relation between these two ranks (see [KL] or [Z]).

Corollary 4.10. For a separable and superreflexive Banach space X,
there exist two maps Γ1 and Γ2 on the set ω1 of countable ordinals such that,
for every superstable operator T on X,

η(T ) ≤ α =⇒ δ(T ) ≤ Γ1(α),

δ(T ) ≤ α =⇒ η(T ) ≤ Γ2(α).

4.3. Using the classical entropy index. Consider now the well-known
entropy index ρ which characterizes relative compactness. Given a Banach
space X, a subset E of X and ε > 0, we have

ρ(E, ε) := inf
{
n ∈ N : ∃(xi)1≤i≤n ⊂ E such that E ⊆

n⋃
i=1

B(xi, ε)
}
.

Hence an operator T on X is stable if and only if

∀ε > 0,∀x ∈ BX : ρ(OT (x), ε) < +∞.
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Consider then the following uniform version of this condition:

∀ε > 0, ρε(T ) := sup
x∈BX

ρ
(
OT (x), ε

)
< +∞.

Proposition 4.11. Let X be a separable Banach space. If T is a bounded
operator on X such that

(4) ∀ε > 0, ρε(T ) < +∞,
then T is superstable. Moreover, the set of operators with the above condition
is Sop-Borel in L(X).

Proof. Let T be a non-superstable operator on X. Then, by Lemma 4.4,
there exists ε > 0 and J ∈ P∞(N) such that, for all finite subsets F of J , the
set {T j(xF ) : j ∈ F} is ε-separated for a certain xF ∈ BX . In particular,

∃ε > 0 ∃J ∈ P∞(N) such that ∀F ∈ Pf (J) : ρε(T ) ≥ |F | .
Since F is arbitrarily large, it follows that with ε as above, ρε(T ) = +∞.

To prove the second assertion, take a dense sequence {xn}n∈N in BX . Ob-
serve that the set of operators satisfying (4) coincides with the set of power
bounded operators T such that

∀ε > 0 ∃N ∈ N : ∀n ∈ N, ρ
(
OT (xn), ε

)
< N.

This is a Borel condition. Indeed, ρ
(
OT (xn), ε

)
< N is equivalent to the

existence of a subset J in N with |J | < N such that

(5) OT (xn) ⊆
⋃
j∈J

B(T jxn, ε).

Condition (5) is Sop-Borel since it says that for all k ∈ N there exists j ∈ J
such that

∥∥T kxn − T jxn∥∥ < ε, and since T ∈ Lpb(X). �

Remarks. The set of operators satisfying (4) is, in general, different from
the set of superstable operators, since the latter set can be non-Borel (see the
next section). From Theorem 4.6 and Propositions 4.8 and 4.11 we find:

• For a separable Banach space X and T ∈ Lpb(X),

ρ(T, ε) < +∞, ∀ε > 0 =⇒ η(T ) < ω1.

• If, moreover, X is superreflexive, then

ρ(T, ε) < +∞, ∀ε > 0 =⇒ δ(T ) < ω1.

5. Spaces where S ′ is a non-Borel set

We now know that the set S ′ of superstable operators is Sop–coanalytic
and the Borel character of this set depends on the coanalytic ranks introduced
previously. In this section, we will exhibit classes of Banach spaces where S ′
is not Borel, and hence different from the set S, and such that the introduced
indices δ and η are arbitrarily large.



SPECTRUM OF A SUPERSTABLE OPERATOR 105

5.1. Superreflexive spaces with unconditional basis.

Theorem 5.1. Let X be a superreflexive Banach space with an uncondi-
tional basis. Then the set of superstable operators is a coanalytic non-Borel
subset of

(
L(X), Sop

)
.

Proof. Let {en}n∈N be an unconditional basis of X. Since |‖
∑
anen‖| :=

sup|εn|=1 ‖
∑
anεnen‖ yields an equivalent norm on X (see [LT]), we may

assume that {en}n∈N is 1-unconditional. Let us take again the Sop-Borel map
(see Proposition 4.7)

σ̃1 : Lpb(X) −→ K(T)
T 7−→ σ1(T ).

Since X is superreflexive (and separable), it follows from Theorem 1.2 that
σ̃1

(
S ′(X)

)
⊆ D(T). We now show that σ̃1

(
S ′(X)

)
= D(T).

Let K = {λn : n ∈ N} be a countable and compact subset of T. Consider
the operator T on X defined by Ten = λnen for all n ∈ N. Then T is a power
bounded operator since ‖T‖ ≤ 1 (see [LT]), and it is clear that K ⊆ σ(T )∩T.
Conversely, consider λ ∈ T \K and let ε = dist(λ,K) > 0. For n ∈ N define

Ren :=
1

(λ− λn)
en.

Since {en}n∈N is an unconditional basis and the set {1/(λ− λn) : n ∈ N} is
bounded by 1/ε, R is a bounded operator on X (see [LT]). Moreover,

R(λI − T ) = (λI − T )R = I.

Thus, λ /∈ σ1(T ), and therefore K = σ1(T ) = σ̃1(T ). Hence σ̃1

(
S ′(X)

)
=

D(T).
On the other hand, it is well known that the set D(T) is coanalytic non-

Borel, and hence, by Lustin’s separation theorem, not analytic. It follows
then that S ′(X) is a non-Borel set, since the image by a Borel map of a Borel
set is analytic. �

Corollary 5.2. Let X be a separable and superreflexive Banach space
having a complemented subspace with unconditional basis. Then the set of
superstable operators is coanalytic non-Borel in

(
L(X), Sop

)
.

Proof. In view of the above proof, we only need to show that, for any
K ∈ D(T), there exists T̃ ∈ L(X) such that K = σ̃1(T̃ ). We put X = Y ⊕Z,
where Y is a complemented subspace with unconditional basis. By the proof
of Theorem 5.1, there exists T ∈ L(Y ) such that σ1(T ) = K. It is clear that
the operator T̃ := T ⊕ 1

2IdZ on X has the desired property. �
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5.2. Spaces with polynomially bounded operators. Polynomially
bounded operators might exhibit more properties than simple power bounded
operators. In particular, we will use such operators to give an interesting cat-
egory of Banach spaces in which the set of superstable operators is non-Borel.
We first recall some definitions and establish some preliminary results.

Definition 5.3. An operator T on a Banach space is polynomially boun-
ded whenever there exists a constant C such that, for every polynomial P , we
have

‖P (T )‖ ≤ C ‖P‖∞ ,

where ‖P‖∞ = sup{|P (z)| : z ∈ T}.

In particular, any contraction on a Hilbert space has this property. Let
A[D] be the disc algebra, i.e., the space of functions that are holomorphic on
the unit open disc D \ T and continuous on D, equipped with the norm

‖f‖∞ := sup
|z|≤1

|f(z)| = sup
|z|=1

|f(z)| .

Since the polynomials are ‖.‖∞–dense in A[D], the operator f(T ) is well
defined for every C-polynomially bounded operator T on a Banach space and
for every f ∈ A[D], and we have ‖f(T )‖L(X) ≤ C ‖f‖∞ .

The following lemma extends the classical spectral theorem (for holomor-
phic functions) to all functions in the disc algebra.

Lemma 5.4. Let T be a polynomially bounded operator on a Banach space.
Then, for every function f in the disc algebra, we have

σ
(
f(T )

)
= f

(
σ(T )

)
.

Proof. Note first that the spectral radius of T is at most 1 since T is, in
particular, power bounded. Hence the spectrum σ(T ) is contained in D. Fix
f ∈ A[D] and, for r ∈ [0, 1[, put fr(z) = f(rz). Then fr is a holomorphic
function on the neighborhood of D, and so on the neighborhood of σ(T ). It
follows from the spectral theorem that

(6) σ
(
fr(T )

)
= fr

(
σ(T )

)
.

Note also that

(7) lim
r→1
‖fr − f‖∞ = 0 and lim

r→1
‖fr(T )− f(T )‖ = 0,

since f is uniformly continuous on the compact set D, and since T is a C-
polynomially bounded operator.

Consider the space K(C) of compact subsets of C endowed with the Haus-
dorff distance d; i.e., for any compact sets K1 and K2 in C we have

d
(
K1,K2

)
= max

{
sup
z∈K2

dist(z,K1) ; sup
z∈K1

dist(z,K2)
}
.
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In particular,

d
(
f
(
σ(T )

)
, fr
(
σ(T )

))
≤ max
λ∈σ(T )

|f(λ)− fr(λ)| ≤ ‖f − fr‖∞ .

Hence in the space
(
K(C), d

)
,

(8) lim
r→1

fr
(
σ(T )

)
= f

(
σ(T )

)
.

On the other hand, we have

(9) lim
r→1

σ
(
fr(T )

)
= σ

(
f(T )

)
.

Indeed, this follows from (7) and from Aupetit’s theorem (see [Au, p. 48]) on
the continuity in an abelian subalgebra of the map that associates to an op-
erator its spectrum, by considering the abelian subalgebra AT := {g(T ) : g ∈
A[D]} of L(X).

The lemma follows immediately from (6), (8) and (9). �

Before stating the main theorem of this section, we recall the following
theorem of Fatou (see [Ho, p. 80]).

Theorem 5.5. Let K be a compact subset of the torus T with Lebesgue
measure zero. Then there exists a function ϕ in the disc algebra A[D] such
that

K ={z ∈ D : ϕ(z) = 0},
<ϕ(z) < 0, ∀z ∈ D \K.

Theorem 5.6. Let X be a separable and superreflexive Banach space. If
there exists a polynomially bounded operator on X which is not superstable,
then the set S ′(X) of superstable operators on X is a coanalytic non-Borel
subset of

(
L(X), Sop

)
.

Proof. Let T be a C-polynomially bounded and non-superstable operator
on X. In particular, the spectrum σ1(T ) is compact metrizable and uncount-
able (see Theorem 1.2). Since σ1(T ) contains a copy of the Cantor set, it
follows that σ1(T ) contains scattered compact subsets with arbitrarily large
index (derived from the Cantor derivation) (see [Se, §.8]), i.e.,

∀α < ω1,∃Fα ⊆ σ1(T ) ∩ D(T) : F (α)
α 6= ∅.

Then Fatou’s theorem (Theorem 5.5) implies that

∀α < ω1, ∃ϕα ∈ A[D] :

{
Fα = {z ∈ D : ϕα(z) = 0},
<ϕα(z) < 0, ∀z ∈ D \K.
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If we set fα(z) = z exp
(
ϕα(z)

)
for every z ∈ D, then fα belongs to the disc

algebra and

fα(z) = z, ∀z ∈ Fα,
|fα(z)| < |z| , ∀z ∈ D \ Fα.

Consider Tα = fα(T ) ∈ L(X). The operator Tα is also C-polynomially
bounded. Indeed, since fα(D) ⊆ D the function fnα is in the disc algebra
for every n ∈ N, and hence Tnα is well defined with

‖Tnα ‖ = ‖fnα (T )‖ ≤ C · ‖fnα‖∞ ≤ C.

Moreover, σ1(Tα) = Fα for every countable ordinal α. Indeed, by the defini-
tions of Fα and fα we have

Fα = fα
(
Fα
)
⊆ fα

(
σ(T )

)
,

Fα ⊆ T,
fα(D) ∩ T = Fα,

σ(T ) ⊆ D.

It follows that fα(σ(T ))∩T = Fα . Since σ
(
Tα
)

= σ
(
fα(T )

)
= fα

(
σ(T )

)
(see

Lemma 5.4), we obtain

σ1(Tα) = σ(Tα) ∩ T = fα(σ(T )) ∩ T = Fα ∩ T = Fα.

The properties of the sets Fα imply

∀α < ω1,

{
σ1(Tα) is countable,
[σ1(Tα)](α) 6= ∅.

Since X is superreflexive and Tα is a power bounded operator, it follows from
Theorem 1.2 and the definition of the coanalytic rank δ (see Proposition 4.8)
that

∀α < ω1,

{
Tα is superstable,
δ(Tα) ≥ α.

Hence,
δ(X) := sup

R∈S′(X)

δ(R) ≥ sup
α<ω1

δ(Tα) = ω1.

In view of Proposition 4.8, this proves that the set S ′(X) of superstable
operators on X is non-Borel in

(
L(X), Sop

)
. �

Remarks. Corollary 5.2 is a particular case of Theorem 5.6, since every
superreflexive Banach space X having a complemented subspace with uncon-
ditional basis admits a polynomially bounded and non-superstable operator.

Indeed, let X = Y ⊕ Z, where Y is a subspace having an unconditional
basis {ek}k∈N. Let {λk}k∈N be a sequence in the torus T such that the closure
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{λk : k ∈ N} is not countable. Consider the multiplication operator M on Y
defined by

M
(∑
k∈N

akek
)

=
∑
k∈N

λkakek

for all
∑
k∈N akek ∈ Y . For any polynomial P , it is clear that

P (M)
(∑
k∈N

akek
)

=
∑
k∈N

P (λk)akek.

for all
∑
k∈N akek ∈ Y . Since {ek}k∈N is an unconditional basis, it follows

that ∥∥∥∥∥P (M)
(∑
k∈N

akek
)∥∥∥∥∥ =

∥∥∥∥∥∑
k∈N

P (λk)akek

∥∥∥∥∥
=

∥∥∥∥∥∑
k∈N

|P (λk)ak| ek

∥∥∥∥∥
≤ ‖P‖∞

∥∥∥∥∥∑
k∈N

|ak| ek

∥∥∥∥∥
= ‖P‖∞

∥∥∥∥∥∑
k∈N

akek

∥∥∥∥∥ .
Hence ‖P (M)‖ ≤ ‖P‖∞ , i.e., M is a polynomially bounded operator. More-
over, it is not difficult to check that σ1(M) = σ(M) = {λk : k ∈ N}, and that
this set is not countable. Hence M is not superstable. It is easy to check that
T := M ⊕ 1

2IdZ is a polynomially bounded operator on X and that it is not
superstable.

6. The case of hereditarily indecomposable spaces

We now exhibit a class of Banach spaces for which the set of superstable
operators is Borel. We take a family of Banach spaces that is at the opposite
end of the family of spaces having complemented subspaces with an uncondi-
tional basis, namely the family of hereditarily indecomposable Banach spaces,
introduced by Gowers and Maurey (see [GM]).

Definition 6.1. A Banach space is hereditarily indecomposable (H.I.), if
it does not have a decomposable subspace. A Banach space is decomposable
if it can be written as a topological direct sum of two infinite-dimensional
subspaces.

We have the following important theorem (see [GM]).

Theorem 6.2. If X is a complex H.I. Banach space then every bounded
operator T on X can be written as T = λI + S, where λ ∈ C and S is a
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strictly singular operator (as defined in [GM]). Moreover, the spectrum of T
is finite or consists of a sequence (λn)n∈N converging to λ.

The following result is a consequence of Theorem 6.2 and Theorem 1.2.

Proposition 6.3. Let X be a complex H.I. Banach space, and let T be a
bounded operator on X. If X is superreflexive, then the following assertions
are equivalent:

(a) T is power bounded.
(b) T is stable.
(c) T is superstable.

The existence of such H.I. and superreflexive Banach spaces is shown in
[Fe]. The following corollary is obvious.

Corollary 6.4. Let X be a complex H.I. and superreflexive Banach
space. Then the set S ′(X) of superstable operators on X is Sop-Borel in
L(X).

Spaces of this type are examples of Banach spaces in which the heights
of the entropy trees of superstable operators are uniformly bounded by a
countable ordinal. It is an open question whether this holds for an arbitrary
H.I. Banach space.
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