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INFINITE PRODUCT IDENTITIES FOR L-FUNCTIONS

KIRTI JOSHI AND RAVI RAGHUNATHAN

Abstract. We establish certain infinite product identities for Dirich-

let series twisted by Dirichlet characters and give examples where the
products have meromorphic continuation to the whole complex plane.

1. Introduction

The purpose of this note is to extend in scope product identities for Dirich-
let L-series considered in [12] and [3]. We observe that the product identities
are essentially local and hold for arbitrary Dirichlet series with Euler products.
We will show that the two sides of the formulæ have natural interpretations
in the contexts of Hasse-Weil L-functions and the L-functions of automorphic
forms (see 3.1 and 3.2 below). This will allow us to deduce meromorphic
continuation for the products in our identities in these cases. We will also
prove a variant of our main formula which will allow us to obtain relations
between values of L-functions at odd and even integers. Although the proofs
are elementary, none of these observations seem to have been recorded in the
literature. The authors are indebted to Professor J.-P. Serre for his numerous
comments and corrections. This note was written while the first author was
visiting the Tata Institute of Fundamental Research which he wishes to thank
for its hospitality.

2. The main results

Let L(s, π) be a Dirichlet series with an Euler product of the form

L(s, π) :=
∏
p

Lp(s, πp) :=
∏
p

mp∏
j=1

(1− αj(p)p−s)−1,

where Lp(s, πp) denotes the local Euler factor at the prime p, the αj(p) are
complex numbers satisfying |αj(p)| < pδ, for some δ > 0, and p runs over the
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set of rational primes. We will assume that there is a fixed m0 ∈ N such that
mp < m0 for all primes p. We define the twisted Dirichlet series

L(s, π × χ) :=
∏
p

Lp(s, πp × χp) :=
∏
p

mp∏
j=1

(1− χ(p)αj(p)p−s)−1,

for any Dirichlet character χ. Here χp is the local character at p associated to
χ and Lp(s, πp × χp) denotes the twisted local Euler factor at p. We denote
by XN the set of all Dirichlet characters modulo N , and by EN the subset of
XN of Dirichlet characters such that χ(−1) = 1. Recall that for all χ ∈ XN ,
χ(n) = 0 if (n,N) > 1 (even if χ = 1, the trivial character).

Theorem 2.1. With notation as above we have∏
N≥1

∏
χ∈XN

L(s+ 1, π × χ) =
L(s, π)

L(s+ 1, π)
(2.1)

and ∏
N≥1

∏
χ∈EN

L(s+ 1, π × χ) =
(

L(s, π)
L2(s+ 1, π2)L(s+ 1, π)

)1/2

,(2.2)

for Re(s) > 1 + δ.

Remark 2.2. The double product above is not absolutely convergent for
any value of s. However, the outer product, that is, the product over N ≥ 1
is absolutely convergent for Re(s) > 1 + δ.

Remark 2.3. Analogues of the identities in Theorem 2.1 can be proved for
Dirichlet series over number fields twisted by finite order ideal class characters.
For simplicity of exposition, we restrict our attention to Dirichlet characters
in this note.

The real content of (2.1) and (2.2) rests on purely local identities for indi-
vidual Euler factors. We work in the ring of formal power series C[[T ]]. For
any prime p we define

Lp(T,N) =
∏

χ∈XN

(1− χ(p)T )−1 and L0
p(T,N) =

∏
χ∈EN

(1− χ(p)T )−1.

Note that Lp(T,N) = 1 and L0
p(T,N) = 1, if (N, p) > 1. We set

Mp(T ) =
∏
N≥1

Lp(T,N) and M0
p (T ) =

∏
N≥1

L0
p(T,N).

It is not a priori clear that the products above converge even in C[[T ]] but we
will show that this is the case below. We extract the following lemma from
the proof of the theorem in [3] but give a slightly shorter proof.
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Lemma 2.4. In the ring C[[T ]] we have for any prime p

(2.3) logMp(T ) = log
(

1− T
1− pT

)
,

and

(2.4) logM0
p (T ) =

{
1
2 log

(
1−T
1−pT

)
for p > 2,

− 1
2 log(1− 2T ) for p = 2,

Moreover, Mp(T ) and M0
p (T ) converge in a circle of radius p−1 about the

origin in C.

Proof. We first prove (2.3). The product giving Lp(T,N) is finite, so we
may take logarithms, expand in power series, differentiate and change the
order of summation to obtain
d

dT
logLp(T,N) =

∑
χ (mod N)

∑
m≥1

(χ(p))mTm−1 =
∑
m≥1

pm≡1 (mod N)

φ(N)Tm−1,

We note that all the coefficients occurring in the last power series above are
non-negative so we may change the order of summation freely below. Sum-
ming over N we get

(2.5)
d

dT
logMp(T ) =

∑
N≥1

∑
m≥1

pm≡1 (mod N)

φ(N)Tm−1 =
∑
l≥1

blT
l−1,

where bl =
∑
N |pl−1 φ(N) = pl − 1. This already gives the convergence in

C[[T ]] since the l-th term is blT l and l tends to (plus) infinity. The radius of
convergence can also easily be seen to be p−1 about the origin. From (2.5) we
obtain

d

dT
logMp(T ) =

p

1− pT
− 1

1− T
,

and (2.3) follows immediately upon integration. The proof of (2.4) is almost
identical. We use only the additional fact that the number of even Dirichlet
characters modulo N is φ(N)/2 if N > 2. This proves the lemma. �

Recall that αj(p) is a complex number such that |αj(p)| < pδ. If T =
αj(p)p−(s+1) for s in C, the condition |T | < p−1 is satisfied if Re(s) > δ.
Substituting this value of T for j = 1, 2, . . . ,mp and taking the product over
j we obtain:

Proposition 2.5. With notation as above we have

(2.6)
∏
N≥1

∏
χ∈XN

Lp(s+ 1, πp × χp) =
Lp(s, πp)

Lp(s+ 1, πp)
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for Re(s) > δ and for all p, and

(2.7)
∏
N≥1

∏
χ∈EN

Lp(s+ 1, πp × χp) =


(

Lp(s,πp)
Lp(s+1,πp)

)1/2

for p > 2,

L2(s, π2)1/2 for p = 2,

for Re(s) > δ.

We may view the right hand sides of (2.6) and (2.7) as giving meromorphic
continuations to the whole plane for the infinite products on the left hand
sides. From the proposition above we can deduce (2.1) and (2.2) immediately
by taking the product over all primes p. It can be easily checked (see [3]) that
the order in which the products are taken over χ and p can be switched for
Re(s) > 1 + δ. This completes the proof of Theorem 2.1.

3. Examples

The formulations in (2.6) and (2.1) lend themselves easily to L-functions in
the different contexts in which they arise such as Hasse-Weil zeta functions,
automorphic L-functions, Galois representations, and l-adic representations.
The purely local nature of the formulæ allows us to treat both local and
global L-functions. We give one example in each case where the quotients of
L-functions appearing in (2.6) and (2.1) have natural interpretations.

Example 3.1 (Hasse-Weil L-functions). Let X be a scheme of finite type
over Z. We recall that at each prime p we have the associated Hasse-Weil zeta
function Lp(s,X) (if we wish to consider the zeta function only at a single
prime p then it is enough to consider schemes of finite type over Fp). Here
we only wish to note that Lp(s,X) consists of a finite product of quotients
of functions of the form (1 − α(p)p−s), and hence, (2.6) is applicable in this
context. We can verify easily that

Lp(s+ 1, X ×Gm) =
Lp(s,X)

Lp(s+ 1, X)
,

where Gm is the multiplicative group. Thus, (2.6) gives an infinite product
identity for Lp(s + 1, X × Gm) in terms of the twists of the original zeta
function by Dirichlet characters. We will denote by Lp(s, χ,X) the twist of
the Hasse-Weil L-function by a character χ.

Following a suggestion of J.-P. Serre it is natural to view the above situation
as follows. We view S = Gm as a scheme over Z. For N ≥ 1, we define the
family of subschemes S(N) by

S(N) = Spec(Z[T, 1/N ]/(ΦN (T ))),

where ΦN (T ) is the N -th cyclotomic polynomial. For any scheme Y of finite
type over Z we denote by Ỹ its atomization, that is, the set of closed points of
Y viewed as a discrete topological space and equipped with the sheaf of fields



INFINITE PRODUCT IDENTITIES FOR L-FUNCTIONS 889

k(y), where k(y) denotes the residue field at the point y. With this notation
it is easy to see that

S̃ =
∞⊔
N≥1

˜S(N).

As a consequence (see p. 85 of [9]) we can check that

(3.1) Lp(s,X ×Gm) =
∞∏
N=1

Lp(s,X × S(N)),

with absolute convergence for Re(s) > dimX, where dimX is the dimension
of X (recall that Re(s) > dimX is the domain of convergence of Lp(s,X)
viewed as a Dirichlet series).

We further note that (Z/NZ)∗ acts freely on S(N), and hence on X×S(N).
This may be viewed as a special case of a finite group G acting on a scheme Y
such that the quotient Y/G exists. In this case the L-function of Y naturally
factors into the L-functions of Y/G twisted by the irreducible characters of
G. In our case the group is G = (Z/NZ)∗, so its character group is XN . We
thus have the formula (see equation (13), p. 88 of [9])

(3.2) Lp(s,X × S(N)) =
∏

χ∈XN

Lp(s, χ,X).

Combining equations (3.1) and (3.2) we see that we get a natural interpreta-
tion for the product in equation (2.6) in this case. The outer product (i.e.,
the product over N) simply corresponds to the decomposition of X̃× S̃ as the
disjoint union given in (3.1), while the inner products (i.e., the products over
the χ ∈ XN ) arise from the actions of the groups (Z/NZ)∗ on S(N).

More generally, let P → X be a principal bundle for a torus T over Z (or
again over Fp if we are interested only in a single prime p) and let Lp(s, P )
be its Hasse-Weil zeta function. Then Lp(s, P ) can be expressed as a product
of factors of the form Lp(s,X)/Lp(s+ 1, X). For the case of abelian varieties
with complex multiplication see [12].

We note that since Lp(s,X) is known to be a rational function of p−s it
can be meromorphically continued to the whole complex plane. We may thus
view (2.6) as giving the meromorphic continuation of the infinite product to
the whole complex plane.

Example 3.2 (Automorphic L-functions). We describe the case of auto-
morphic representations in some detail. For simplicity and to illustrate our
point clearly we specialise to the following situation. We consider the group
Gp = SL2(Qp). We let T be the maximal torus, B the subgroup of upper
triangular matrices and N its unipotent radical and N− the unipotent radical
of the lower triangular subgroup. Let χp be an unramified character of T
and view it as a representation of B by extending it trivially on N . For any
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complex number s we define πp = I(χp| |s) = IndGTN (χp| |s δB1/2), where δB
is the modular character on B. The local L-factor of πp is given by

Lp(s, πp) = (1− χ(p)p−(s+1/2))−1(1− χ(p)−1
p−(s−1/2))−1.

Note that χp is given by a complex number s0. If w is the Weyl group element
of order 2, then w(χp| |s) corresponds to the parameter −s0 − s. Let f be a
spherical function in I(χp| |s) and f̃ a spherical function in I(w(χp| |s)). It
can be checked that

A(w,χp)f =
∫
N−

f(nw−1g)dn : I(χp| |s)→ I(w(χp| |s))

acts on f by the formula A(w,χp)f = λf̃ , where λ = Lp(s, πp)/Lp(s+ 1, πp).
We see that λ is exactly the quotient that appears in the right hand side of
(2.6).

Globally, let π = ⊗′pπp be a cuspidal automorphic representation of SL2/Q
and let S be a finite set of places containing the archimedean places and all
the finite ramified places (it is known that we may take δ = 1/9 in this case;
see [5]). Applying (2.1) in this setting we see that the right hand side of this
equation is nothing but LS(s, π)/LS(s+1, π), where LS(π) =

∏
p/∈S Lp(s, πp).

This last quotient arises in the constant term of an Eisenstein series associated
to π and can thus be shown to be meromorphic on the whole complex plane
(see pp. 37–45 of [7]).

The above ideas work in great generality. If π = ⊗′pπp is a cuspidal auto-
morphic representation of a quasi-split reductive group G over Q, the local
L-factors are products of factors of the form (1 − α(p)p−s)−1. The local
quotients in the right hand side of (2.1) can be interpreted in terms of inter-
twining operators, while the global quotients occur in the constant term of
an Eisenstein series. Using the Langlands-Shahidi method one can show the
meromorphy (on the whole complex plane) of the global quotients for the fol-
lowing cuspidal automorphic representations: those of GLn, GLm×G′, where
G′ is a split classical group, and the symmetric square, cube and fourth power
lifts of cuspidal automorphic representations on GL2 (see [2], [10], [11], [8],
[1], [6], [4]). In fact, in most of the above cases it is known that the L-function
L(s, π) is itself actually entire.

4. Relations between odd and even L-values

Let ON denote the set of odd Dirichlet characters in XN . Rewriting (2.2)
and combining it with (2.1) we obtain the following equations:

L(s, π)1/2 = L2(s+ 1, π2)1/2
L(s+ 1, π)1/2

∏
N≥1

∏
χ∈EN

L(s+ 1, π × χ)(4.1)

and

L(s, π)1/2 = L2(s+ 1, π2)−1/2
L(s+ 1, π)1/2

∏
N≥1

∏
χ∈ON

L(s+ 1, π × χ),(4.2)
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for Re(s) > 1 + δ. Note that the equations above allow us to express odd
(resp. even) L-values in terms of products of even (resp. odd) L-values. For
instance, when π is the trivial character and for s = 2m + 1, m ≥ 1, (4.1)
yields

ζ(2m+ 1)1/2 = (1− 2−2m−2)1/2ζ(2m+ 2)1/2
∏
N≥1

∏
χ∈EN

L(2m+ 2, χ).

We thus obtain a formula for the odd values of the Riemann ζ-function in
terms of the values at even integers of L-functions of even characters. Note
that these last values can be explicitly computed in terms of Bernoulli num-
bers, so they are well understood. The formulæ above generate such relations
for all L-functions of automorphic forms on any of the groups described in
the previous section, in particular, for those on GLn/Q.
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