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OPEN MANIFOLDS WITH ASYMPTOTICALLY
NONNEGATIVE CURVATURE

MAHAMAN BAZANFARÉ

Abstract. In this paper we establish a generalization of Toponogov’s
theorem for manifolds with asymptotically nonnegative sectional cur-

vature, and we give a pinching condition under which asymptotically
nonnegative curved manifolds are diffeomorphic to Rn.

1. Introduction

The main theme in Riemannian geometry is the relationship between the
curvature and the topology of a manifold. Toponogov’s comparison theorem
and the Gromov-Bishop volume comparison theorem play important roles in
this context. Several results have been established which compare the vol-
umes of concentric balls or triangles with those in simply connected manifolds
with constant curvature. It seems natural to try to extend these results by
considering model spaces with non-constant curvature.

U. Abresch [A] established a triangle comparison theorem for manifolds
with asymptotically nonnegative sectional curvature: A complete Riemannian
n-dimensional manifoldM has asymptotically nonnegative sectional curvature
if there exists a point p, called base point, and a monotone decreasing function

λ : [0,+∞)→ [0,+∞)

satisfying

(1)
∫ +∞

0

sλ(s)ds = b0 < +∞,

such that, for all points x ∈M and every plane P of the tangent space TxM
at x, −λ(d(p, x)) ≤ KM (x, P ), where KM (x, P ) is the sectional curvature at
x with respect to P .

Unfortunately, the comparison does not involve the angle at the base point
p. The goal of this paper is to fill this gap. We also prove some pinching
results.
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The volume comparison theorem proved in [Zh], and more generally in
[B], says that the function r → volB(p, r)/ volB(p, r) is monotone decreas-
ing, where B(p, r) denotes the open geodesic ball in the simply connected
noncompact manifold M with sectional curvature −λ (d(p, x)) at the point x.

Set

αp = lim
r→+∞

volB(p, r)
volB(p, r)

and α(M) = inf
p∈M

αp.

We say that (M, g) has large volume growth if α(M) > 0.
Let Σ be a closed subset of the unit tangent sphere UpM at p and BΣ(p, r)

the set of points x ∈ B(x, r) such that there is a minimizing geodesic γ from
p to x with γ′(0) ∈ Σ. For all r let Σ(r) be the set of all vectors v in Σ such
that the geodesic γ(t) = expp tv is minimizing at least on [0, r].

2. Main results

Theorem 2.1. Let ∆ = (p0, p1, p2) be a geodesic triangle in M with ver-
tices p0, p1, p2, corresponding edges γ0, γ1, γ2, and angles α0, α1, α2. As-
sume that γ0, γ1, γ2 are minimal geodesics. Let ∆ = (p0, p1, p2) be a geodesic
triangle in M2(−λ) with length(γi) = length(γi) for i = 0, 1, 2. Then

α0 ≤ α0, α1 ≤ α0, α2 ≤ α2,

where M2(−λ) is a simply connected surface of revolution with curvature
−λ (d(p0, .)).

Set dp(x) = d(p, x). This defines a smooth function on M\{p∪Cp}, where
Cp is the cut locus of p.

Grove and Shiohama [GS] observed that in the presence of a lower curvature
bound Toponogov’s theorem can be used to derive geometric information from
the existence of critical points. A point x 6= p is a critical point of dp if for
any v in the tangent space TxM there is a minimal geodesic γ from x to p
forming an angle ∠(v, γ′(0)) ≤ π/2 with γ′(0).

By the Isotopy Lemma, the absence of critical points (other than p) implies
that the manifold is diffeomorphic to Rn. Marenich and Toponogov [MT]
proved that an n-dimensional complete manifold with nonnegative sectional
curvature and large volume growth is diffeomorphic to Rn. For manifolds with
nonnegative Ricci curvature and large volume growth Z. Shen [S] showed that
if

volB(p, r)
ωnrn

= α(M) + o

(
1

rn−1

)
,

then M has finite topological type provided that either the conjugate radius
satisfies conjM > c > 0 or the sectional curvature satisfies KM ≥ −k. Cheeger
and Colding [CC] proved that there exists a constant δ(n) > 0, depending on
n, such that if α(M) > 1− δ(n), then M is diffeomorphic to Rn. C. Xia [X1]
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showed that if, in addition, M has radial sectional curvature bounded from
below by a constant −k and if

volB(p, r)
ωnrn

< α(M)

[
1 + 2−n

(
1

8
√
kr

ln(
2

1 + e−2
√
kr

)
)n−1

]
,

then M is diffeomorphic to Rn. Xia also studied manifolds with sectional
curvature bounded below by a negative constant −k and large volume growth;
see [X2], [X3], [X4], etc.

From Theorem 2.1 we deduce:

Theorem 2.2. Let M be a Riemannian manifold with asymptotically non-
negative sectional curvature with base point p. For all c ≥ ω0, if

(2) vol (B(p, r)) ≥ crn ∀r > 0,

then M is diffeomorphic to Rn, where

ω0 =
1
2
ωn

(
1 +

2b0eb0

1 + b0eb0

)
e(n−1)b0 ,

and ωn is the volume of the n-dimensional unit Euclidian ball.

Let Rp denotes the set of all rays issuing from p. For r > 0, let S(p, r) be
the geodesic sphere of radius r with center p. Set

H(p, r) = max
x∈S(p,r)

d(x,Rp).

In [X4] Xia proved the following result:

Theorem (Lemma 3.1, [X4]). For any r0 > 0 and integer n ≥ 2 there
exists a positive constant δ, depending on r0 and n, such that any complete
Riemannian n-manifold M with sectional curvature KM ≥ −1, RicM ≥ 0,
critical radius at some point p critp ≥ r0, and H(p, r) ≤ δr1/n for all r ≥ r0,
is diffeomorphic to Rn.

Xia also proved that, for any r0 > 0 and n ≥ 2 there exists a constant
ε(n, r0), depending on r0 and n, such that if RicM ≥ 0, KM ≥ −1, critp ≥ r0,
αM > 0 and

volB(p, r) ≤ ωnαM
(

1 + εr−(n−1)2/n
)
rn

for some p, then M is diffeomorphic to Rn (Theorem 3.2 in [X4]).
For manifolds with asymptotically nonnegative sectional curvature we have:

Theorem 2.3. Let M be a complete open n-dimensional Riemannian
manifold with asymptotically nonnegative sectional curvature. There exists
a positive constant ε0 = ε0(b0, n) depending on b0 and n such that if

0 < αp = lim
r→+∞

volB(p, r)
volB(p, r)

,
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and

(3) vol (B(p, r)) < αp (1 + ε0) volB(p, r) ∀r > 0,

then M is diffeomorphic to Rn.

3. Proofs

Proof of Theorem 2.1. Notice that, for z ∈ M and x a fixed point in M ,
we have by triangle inequality

KM (z, P ) ≥ −λ(d(p, z)) ≥ −λ (|d(p, x)− d(x, z)|) .
Set d(p, x) = r, d(x, z) = t and λr(t) = λ (|r − t|). Let y be the solution of
the system {

y′′(t) = λr(t) · y(t),
y(0) = 0, y′(0) = 1.

Let M(−λr) be the open simply connected manifold such that there exists a
point p in M such that for all z ∈M we have KM (z, ) = −λr(d(p, z)).

To prove his triangle comparison theorem, Abresch [A] used models with
non-positive curvature. For any continuous function k : [0,∞)→ [0,∞) there
exists a unique simply connected surface of revolution M2(−k) with curvature
−k(d(., p0). Abresch considered some approximating functions kε : [0,∞) →
[0,∞) and proved following two lemmas:

Lemma 3.1. Given the triangles ∆ = (p0, p1, p2) in M2(−k) and ∆ε =
((pε0, p

ε
1, p

ε
2) in M2(−kε), let γi (respectively γεi ) be the geodesic joining pi+1

and pi+2 (respectively pεi+1 and pεi+2) (i = j modulo 3) with lengths lεi = li,
i = 0, 1, 2. Then their angles depend continuously on ε, i.e.,

lim
ε→0
∠ pεi = ∠ pi.

Lemma 3.2. Let ∆ = (p0, p1, p2) be a triangle in a Riemannian manifold
M . Suppose that the edges γ1 and γ2 are minimal geodesics and γ0 is a
geodesic. If M is of sectional curvature bounded below by −k(d(x, p0)) ≤ 0
for all x in M , and if li = li for all i, then ∠ p1 ≤ ∠ p1 and ∠ p2 ≤ ∠ p2. If
li = li for i = 0, 1 and ∠ p2 ≤ ∠ p2, then l2 ≤ l2.

To prove Theorem 2.1 it suffices to establish the first inequality.
Consider the model space M2(−λr), λr(t) = λ (|r − t|) = λr(d(p1, .) (r =

d(p, p1)) and a triangle ∆̃ = (p̃1, p̃2, p̃0) in M2(−λr) with length li = L(γ̃i) =
L(γi) for i = 0, 1, 2, where γ̃i and γi are geodesics in M2(−λr) and M , re-
spectively. Denote by α̃ri its angle at pi. From Lemma 3.2 we conclude that

α̃r0 ≤ α0, α̃r2 ≤ α2.

Fix δ > 0 small enough and let 0 < r′ ≤ l2 − δ. By the parallel transport
of γ′0(0) along the geodesic γ−2 , the inverse of γ2 in M , we define a minimal
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geodesic θr′ from γ−2 (r′) to a point p2,r′ of γ1. Thus (γ−2 (r′), θr′(sr′), p0) is
a geodesic triangle in M . In the same way as above, we have a triangle in
M2(−λr) (r = l2 − r′) and deduce that the angle α̃0,r′ at p̃0,r′ of the triangle
(γ̃−2 (r′), θ̃r′(s), p̃0) is less than or equal to α0.

Since λr converges to λ(d(p0, .)−δ) when r′ converges to l2−δ, we conclude
by Lemma 3.1 that α̃0,r′ converges to αδ0, the angle at pδ0. Hence for all δ > 0,
αδ0 ≤ α0, and the conclusion follows. �

Proof of Theorem 2.2. In [B] (Theorem 1) we showed the following result:

Lemma 3.3. For all x 6= p in M such that d(p, x) = r we have

t ≤ y(t) ≤

{
eb0 · t if t ≤ r,
e2b0 (1 + 2λ1(0)r) · t if t > r.

For x = p we have

(4) t ≤ y(t) ≤ eb0t,
where

λ1(0) =
∫ +∞

0

λ(t)dt.

Let J(t) be the exponential Jacobian in polar coordinates. Then the func-
tion J/y is nonincreasing (see [B] for all x ∈ M or [Zh] for the base point),
and using the fact that the space of curvature −λr and dimension n, M(−λr),
is a complete simply connected manifold with nonpositive sectional curvature
we have:

Lemma 3.4. Let M be an n-dimensional Riemannian manifold with asymp-
totically nonnegative (sectional or Ricci) curvature.Then for all x ∈ M and
all numbers R, R′ such that 0 < R′ ≤ R we have

vol (B(x,R))
vol (B(x,R′))

≤ vol (B(x,R))
vol (B(x,R′))

≤


e(n−1)b0

(
R

R′

)n
if 0 < R < r,

e(n−1)b0

(
R+ r

R′

)n
if R ≥ r,

where B(x, s) is the ball in M(−λr) with center x and radius s.

Let Rp,t be the set of unit initial tangent vectors to the geodesics starting
from p which are minimized at least to t, and let Rcp,t be the complement of
this set. Then

lim
t→+∞

Rp,t = Rp.

We have the following lemma:
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Lemma 3.5. Let M be a complete Riemannian manifold with asymptoti-
cally nonnegative sectional curvature and base point p. If for some c > 0

(5) vol (B(p, r)) ≥ crn ∀r > 0,

then

(6) vol(Rp) ≥
nc

e(n−1)b0
.

Proof. Let t > 0. Then for r > t we have

volB(p, r) =
∫
Sn−1/Rcp,t

∫ min[cut(θ),r]

0

J(s)dsdθ

+
∫
Rcp,t

∫ min[cut(θ),r]

0

J(s)dsdθ

≤
∫
Sn−1/Rcp,t

∫ min[cut(θ),r]

0

e(n−1)b0sn−1dsdθ

+ e(n−1)b0

∫
Rcp,t

∫ min[cut(θ),r]

0

sn−1dsdθ

≤ e(n−1)b0
1
n

[
rn vol

(
Sn−1/Rcp,t

)
+ tn vol(Rcp,t)

]
.

Using the inequality (5) and dividing by rn, we obtain

c ≤ e(n−1)b0

n

(
vol(Sn−1)− vol(Rcp,t)

)
+

tn

nrn
vol(Rcp,t).

Let r → +∞. Then for all t > 0 we get

nc ≤ e(n−1)b0
(
vol(Sn−1)− vol(Rcp,t)

)
.

Hence

lim
t→+∞

vol(Rcp,t) = vol(Rcp) ≤ vol(Sn−1)− nc

e(n−1)b0
,

which implies

vol(Rp) ≥
nc

e(n−1)b0
. �

Let p1 be a point in M , p1 6= p0. Consider a triangle ∆ = (p0, p1, p2) as in
Theorem 2.3 and let ∆ = (p0, p1, p2) be the corresponding triangle in M(−λ).
We have the following lemma:

Lemma 3.6. Let ∆ = (p0, p1, p2) be a triangle in M2(−λ) such that
L(γi) = L(γi) for all i. Then

α0 + α1 + α2 − π ≥ −α0b0e
b0 .
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Proof. By the Gauss-Bonnet Theorem we have

α0 + α1 + α2 − π ≥
∫

∆

KM2dΩ ≥
∫
∠p0

KM2dΩ

≥ −α0

∫ +∞

0

λ(t)y(t)dt.

Hence by inequality (4) we have

α0 + α1 + α2 − π ≥ −α0b0e
b0 . �

Let x be a point in M and γ be a geodesic joining x and p. By inequality
(6) there exists a ray γ1 issuing from p such that

α0 = ∠(γ′1(0),−γ′(r)) ≤ π
(

1− c

ωne(n−1)b0

)
.

Hence by Theorem 2.1 we have

α0 ≤ α0 ≤ π
(

1− c

ωne(n−1)b0

)
.

Let γ2 be a geodesic joining x to a point γ1(t0) of γ1. Then

α1 ≥ π − α0(1 + b0e
b0)− α2

≥ π − π
(

1− c

ωne(n−1)b0

)
(1 + b0e

b0)− α2

≥ π

2

(
1 +

b0e
b0

1 + b0eb0

)
− α2.

Take t0 sufficiently large so that α2 is small enough. We deduce

α1 ≥ α1 >
π

2
and the conclusion follows. �

Proof of Theorem 2.3. First, we establish some lemmas.

Lemma 3.7. Let M be an n-dimensional Riemannian open manifold with
asymptotically nonnegative sectional curvature. There exists a positive con-
stant δ0 = δ0(b0) depending on b0 such that if

H(p, r) < δ0r ∀r > 0,

then M is diffeomorphic to Rn.

Proof. It suffices to prove that dp has no critical point x 6= p. Let x be a
point in M , x 6= p. Set r = d(p, x). Since M is asymptotically nonnegative
curved, there exists a positive, nonincreasing function λ such that KM (x) ≥
−λ(d(p, x)). It is easy to see that λ(t) ≤ 2b0/t2 for all t > 0, where b0 is defined
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as in (1). Set s = d(x,Rp). We have s ≤ r. Since Rp is closed, there exists a
ray γ issuing from p and a point m on γ such that s = d(x, γ) = d(x,m).

Set q = γ(t0), t0 ≥ 2r. Let σ1 be a minimal geodesic joining x to p, and
let σ be a minimal geodesic from x to q. Let X0 be the positive solution of
the equation

(7) cosh2 2X − cosh 3X = 0.

Take δ small enough. Set p̃ = σ1(δr) and q̃ = σ(δr). The triangle (p̃, q̃, x) is
contained in M\B(p, r(1− 3δ). For all y in M\B(p, r(1− 3δ) we have

KM (y) ≥ −2b0
r2(1− 3δ)2

.

Applying Toponogov’s theorem to the triangle (p̃, q̃, x), we obtain

(8) cosh
(2b0)1/2

r(1− 3δ)
d(p̃, q̃) ≤ cosh2 (2b0)1/2

1− 3δ
δ − sinh2 (2b0)1/2

1− 3δ
δ cos θ,

where θ is the angle at x of the triangle (p̃, q̃, x).
By triangle inequality we have

d((p̃, q̃) ≥ d(p, q)− d((p, p̃)− d(q, q̃)

≥ d(p, q)− (d(p, x)− d(x, p̃))− (d(q, x)− d(x, q̃))

≥ d(p,m) + d(m, q) + d(p̃, x) + d(x, q̃)− d(p, x)− d(x, q)

≥ 2δr + d(p,m) + d(m, q)− d(p,m)− d(m,x)− d(q,m)− d(m,x)

≥ 2δr − 2d(x,m).

Suppose that d(x,m) < δr/4. Then from (8) we get

sinh2 (2b0)1/2

(1− 3δ)
δ cos θ < cosh2 (2b0)1/2

1− 3δ
δ − cosh

(2b0)1/2

1− 3δ
3
2
δ.

We take δ such that
(2b0)1/2

1− 3δ
δ = 2X0,

and let

δ0 =
X0

(b0/2)1/2 + 3X0
.

Then θ > π/2. Therefore x is not a critical point of dp and the conclusion
follows from the Isotopy Lemma. �

The following lemma is a generalized comparison theorem for manifolds
with asymptotically nonnegative Ricci curvature proved in [B] or [Zh].
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Lemma 3.8. Let M be a complete dimensional Riemannian manifold with
RicM ≥ −(n − 1)λ (d(p, x)). Let Σ ⊂ UpM be a closed subset. Then the
function

r → vol (BΣ(p, r))
volB(p, r)

is monotone decreasing.

Thus we have the following result:

Lemma 3.9. Let (M, g) be a complete n-dimensional manifold with
RicM (x) ≥ −(n− 1)λ (d(p, x)). Then the function

r →
vol
(
BΣ(r)(p, r)

)
volB(p, r)

is monotone decreasing.

Proof. For 0 < r1 ≤ r2 we have Rp,r2 ⊂ Rp,r1 , and by Lemma 3.8 we have

volBRp,r2 (p, r2)
volB(p, r2

≤
volBRp,r2 (p, r1)

volB(p, r1)
≤

volBRp,r1 (p, r1)
volB(p, r1)

. �

Lemma 3.10. Let (M, g) be a complete n-dimensional manifold with
RicM (x) ≥ −(n− 1)λ (d(p, x)). Then

vol
(
BRp,r (p, r)

)
volB(p, r)

≥ αp.

Proof. By Lemma 3.9 we have

volBRp,r (p, 2r) ≤
volB(p, 2r)
volB(p, r)

volBRp,r (p, r).

In addition, we have

B(p, 2r)\B(p, r) ⊂ BRp,r (p, 2r)\BRp,r (p, r).

Hence

volB(p, 2r)− volB(p, r) ≤ volBRp,r (p, 2r)− volBRp,r (p, r)

≤
(

volB(p, 2r)
volB(p, r)

− 1
)

volBRp,r (p, r)

and therefore

volB(p, 2r)− volB(p, r)
volB(p, 2r)− volB(p, r)

≤
volBRp,r (p, r)

volB(p, r)
.(9)
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Notice that

αp = lim
r→+∞

volB(p, 2r)
volB(p, 2r)

= lim
r→+∞

[(
αp −

volB(p, r)
volB(p, r)

)
.

volB(p, r)
volB(p, 2r)

]
+ lim
r→+∞

volB(p, 2r)
volB(p, 2r)

.

Thus

αp = lim
r→+∞

[
αp volB(p, r)− volB(p, r) + volB(p, 2r)

volB(p, 2r)

]
.

Hence, for all ε > 0 and r large enough we have

αp(volB(p, 2r)− volB(p, r))− volB(p, 2r) + volB(p, r) < ε · volB(p, 2r),

that is,

αp ≤
volB(p, 2r)− volB(p, r)
volB(p, 2r)− volB(p, r)

+ ε · volB(p, 2r)
volB(p, 2r)− volB(p, r)

.

Therefore

αp ≤
volB(p, 2r)− volB(p, r)
volB(p, 2r)− volB(p, r)

+
ε

1− volB(p,r)
volB(p,2r)

.

We claim that

volB(p, 2r)− volB(p, r) ≥ volB(p, 2r)
2e(n−1)b0

.

Indeed, let y(t) be the function given by the Jacobi equation

y′′(t) = λ(t)y(t)

in the space M with sectional curvature K(x) = −λ (d(p, x)) at a point x.
We have by Lemma 3.3

(10) t ≤ y(t) ≤ eb0 · t.
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Hence

volB(p, 2r)− volB(p, r) =
∫
Sn−1

∫ min(cut(u),2r)

0

J(t) dt du

−
∫
Sn−1

∫ min(cut(u),r)

0

J(t) dt du

=
∫
Sn−1

∫ 2r

0

J(t) dt du−
∫
Sn−1

∫ r

0

J(t) dt du

=
∫
Sn−1

∫ 2r

r

yn−1(t) dt du

≥
∫
Sn−1

∫ 2r

r

tn−1 dt du

≥ vol(Sn−1)
n

(2n − 1)rn ≥ ωn2n−1rn

≥ volB(p, 2r)
2e(n−1)b0

,

where ωn denotes the volume of the unit Euclidian ball and Sn−1 the unit
Euclidian sphere. This proves the above claim.

Thus

1− volB(p, r)
volB(p, 2r)

≥ 1
2e(n−1)b0

.

Therefore

αp ≤
volB(p, 2r)− volB(p, r)
volB(p, 2r)− volB(p, r)

+ ε′,

and the conclusion follows from (9). �

Next, we prove Theorem 2.3. Notice that

lim
r→+∞

volBRp(p, r)
volB(p, r)

= lim
r→+∞

volBRp,r (p, r)
volB(p, r)

≥ αp.

Hence by Lemma 3.8 we deduce

(11) volBRp(p, r) ≥ αp volB(p, r).

Now, let x ∈ S(p, r) and set s = d(x,Rp). Note that s ≤ r. Thus we have a
disjoint union

B(x, s) ∪BRp(p, 2r) ⊂ B(p, 2r).

This implies

(12) volB(x, s) + volBRp(p, 2r) ≤ volB(p, 2r).

Applying the volume comparison theorem (Lemma 3.4) and the fact that

B(p, r) ⊂ B(x, r + s),
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we obtain
volB(p, r)
volB(x, s)

≤ volB(x, r + s)
volB(x, s)

≤ volB(x, r + s)
volB(x, s)

≤ e(n−1)b0

(
2r + s

s

)n
≤ e(n−1)b03n

(r
s

)n
.

Hence

(13) volB(x, s) ≥ volB(p, r)
3ne(n−1)b0rn

· sn.

It follows from (10) that

(14) ωnr
n ≤ volB(p, r) ≤ ωne(n−1)b0rn

Substituting (14) in (13), we obtain

volB(x, s) ≥ ωn
3ne(n−1)b0

.
volB(p, r)
volB(p, r)

· sn(15)

≥ ωn
3n
e−(n−1)b0 .αp · sn.

From (11), (12) and (15) we deduce
ωn
3n
e−(n−1)b0 .αp · sn + αp volB(p, 2r) ≤ volB(p, 2r).

Thus

sn ≤ 3ne(n−1)b0

αpωn

[
volB(p, 2r)
volB(p, 2r)

− αp
]

volB(p, 2r).

Hence using the inequalities (14) and the above relation we obtain

sn ≤ 6ne2(n−1)b0

αp

[
volB(p, 2r)
volB(p, 2r)

− αp
]
rn.

Taking in the relation (3)

ε(n, b0) =
(
δ0
6

)n
· e−2(n−1)b0 ,

the conclusion follows from the Lemma 3.7. �

Acknowledgement. I would like to thank the referee for his/her helpful
comments.

References

[A] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology,

Ann. Sci. École Norm. Sup. (4) 18 (1985), 651–670. MR 839689 (87j:53058)
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