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EQUIVARIANT VECTOR BUNDLES OVER THE UPPER
HALF PLANE

INDRANIL BISWAS

Abstract. Holomorphic Hermitian vector bundles over the upper half
plane that admit a lift of the action of SL(2,R) are considered. All such

vector bundles are described and classified up to isomorphism.

1. Introduction

We consider holomorphic Hermitian vector bundles over the upper half H
of the complex plane equipped with a lift of the action of the automorphism
group SL(2,R) of H . The lifted action is required to preserve both the holo-
morphic and the Hermitian structures. A vector bundle equipped with such
an action of SL(2,R) is called an equivariant vector bundle. An equivariant
vector bundle is called irreducible if it is not a direct sum of equivariant vector
bundles of positive ranks. So any equivariant vector bundle is a direct sum of
irreducible vector bundles.

We classify all irreducible bundles (Theorem 3.2). To explain this classifi-
cation, we will first construct a class of equivariant vector bundles.

Consider the holomorphic tangent bundle TH of H equipped with the
Poincaré metric. We recall that the Poincaré metric is |dz|/Im(z) and it
is left invariant by the automorphisms of H . Fix a pair (L , σ), where L is a
C∞ complex line bundle over H and σ a C∞ isomorphism of L⊗2 with TH .
Using σ, the holomorphic and Hermitian structures of TH induce correspond-
ing structures on L making it an equivariant line bundle. This equivariant
line bundle defined by (L , σ) will be denoted by L. (The details of the con-
struction of L are given in Section 3.)

Any equivariant line bundle is isomorphic to some tensor power of L. For
any integer c and positive integer n, consider the direct sum

V(n, c) :=
n−1⊕
i=0

L⊗(c+2i)

Received May 28, 2002; received in final form June 14, 2003.

2000 Mathematics Subject Classification. 53B35, 14F05.

c©2003 University of Illinois

619



620 I. BISWAS

which has an obvious Hermitian structure obtained from the Hermitian struc-
ture of L and admits a natural action of SL(2,R)—defined by the action of
SL(2,R) on L—preserving this Hermitian structure. However, we need to
modify its obvious holomorphic structure.

For any integer j, let ∂L⊗j denote the Dolbeault operator defining the
holomorphic structure on L⊗j induced by the holomorphic structure on L.
Using the isomorphism σ and the Poincaré metric, the line bundle

Ω0,1
H
⊗Hom(L⊗j ,L⊗(j−2))

is identified with the trivial line bundle. For any δ := (δ1, δ2, · · · , δn−1) ∈
C
n−1, consider the differential operator

∂δ =


∂L⊗c δ1 0 · · · 0 0

0 ∂L⊗(c+2) δ2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · ∂L⊗(c+2n−4) δn−1

0 0 0 · · · 0 ∂L⊗(c+2n−2)


where δi is considered as a homomorphism from L⊗(c+2i) to Ω0,1

H
⊗L⊗(c+2i−2).

The above operator ∂δ defines a holomorphic structure on the C∞ vector
bundle V(n, c) and the equivariant vector bundle obtained this way would be
denoted by W(δ, c). In Theorem 3.2 we prove the following:

The equivariant vector bundleW(δ, c) is irreducible if and only if δi 6= 0 for
each i ∈ [1 , n− 1]. The two irreducible vector bundles W(δ, c) and W(δ′, c′)
are isomorphic if and only if c = c′ and |δi| = |δ′i| for each i. Any rank n
irreducible vector bundle is isomorphic to some W(δ, c).

Acknowledgements. The author is thankful to the referee for a very
careful reading of the manuscript.

2. Equivariant bundles

Let
H := {z ∈ C | Im(z) > 0}

be the upper half of the complex plane. The group SL(2,R) acts on H using
the rule (

a b
c d

)
(z) =

az + b

cz + d
.

For any A ∈ SL(2,R), the automorphism of H defined by it will be denoted
by τ(A).

Let V be a holomorphic vector bundle over H equipped with a Hermitian
structure. So there is a unique connection ∇ on V such that ∇ preserves
the Hermitian structure and the (0 , 1)-part of ∇ coincides with the Dolbeault
operator defining the holomorphic structure of V [1, p. 11, Proposition 4.9].
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This unique connection on a holomorphic Hermitian vector bundle is known
as the Chern connection.

Let V be a C∞ vector bundle over H . A SL(2,R)-linearization of V is a
C∞ action of SL(2,R) on the total space of V such that the action of any
A ∈ SL(2,R) is a vector bundle isomorphism of V with τ(A)∗V .

Definition 2.1. A holomorphic Hermitian vector bundle V will be called
equivariant if it admits a SL(2,R)-linearization such that the action of any
element of SL(2,R) on V preserves both the holomorphic and the Hermitian
structures. An equivariant vector bundle V will be called irreducible if there is
no proper subbundle of V of positive rank preserved by the Chern connection
∇ on V .

Lemma 2.2. Let F be a complex subbundle of an equivariant vector bundle
V preserved by the Chern connection on V . Then F is left invariant by the
action of SL(2,R) on V .

Proof. Let G denote the group of all automorphisms of V preserving its
Chern connection. So G is the group of all holomorphic automorphisms of V
preserving the Hermitian structure. Note that G is a compact group. Indeed,
for any point z ∈ H, the evaluation map G −→ Iso(Ez) makes G into a
closed subgroup of Iso(Ez), the group of all unitary automorphisms of the
fiber Ez.

Now, SL(2,R) acts on the group G through automorphisms as follows:
(g , T ) 7−→ gTg−1, where g ∈ SL(2,R) and T ∈ G. The group of all auto-
morphisms of G connected to the identity automorphisms of G is identified
with

G′ := G/center(G)
and the action of G′ on G is the conjugation action.

Therefore, the above defined action of SL(2,R) on G defines a homomor-
phism

ρ : SL(2,R) −→ G′ .

Now note that SL(2,R) does not have any nonconstant homomorphism to a
compact group. Indeed, a homomorphism to a compact group must take the
unipotent elements (for example, upper triangular matrices in SL(2,R) with 1
on the diagonal) to the identity element (as there are no nontrivial unipotent
elements in a compact group). Since SL(2,R) is simple, such a homomorphism
must be the trivial homomorphism. Therefore, the above homomorphism ρ is
the trivial homomorphism.

Consider the automorphism

T := c1IdF ⊕ c2IdF⊥ ∈ G

where c1 and c2 are distinct complex numbers with |c1| = 1 = |c2|, and
F⊥ ⊂ V is the orthogonal complement of F . Since ρ coincides with the
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trivial homomorphism, the automorphism T commutes with the action of
SL(2,R). Therefore, F is left invariant by the action of SL(2,R), and the
proof is complete. �

If F is a complex subbundle of an equivariant vector bundle V preserved by
the Chern connection ∇ on V and also left invariant by the action of SL(2,R)
on V , then F has an induced structure of an equivariant vector bundle. Note
that F⊥ is also preserved by ∇, and the action of SL(2,R) leaves F⊥ invari-
ant. The equivariant vector bundle V is isomorphic (as an equivariant vector
bundle) to the direct sum F ⊕ F⊥ of the two equivariant vector bundles.
Therefore, in view of Lemma 2.2, an equivariant vector bundle is irreducible
if and only if it is not holomorphically isometric (as an equivariant vector
bundle) to a direct sum of equivariant vector bundles of positive ranks.

Lemma 2.3. Let E be a holomorphic Hermitian vector bundle over H (no
linearization on E is assumed) such that every automorphism of E preserving
both the holomorphic and the Hermitian structures is a scalar multiplication.
Then the number of possible equivariant structures on E is at most one.

Proof. The condition on E implies that any two actions of SL(2,R) on
E differ by a homomorphism from SL(2,R) to U(1). But there are no such
nontrivial homomorphisms. �

Take any point x ∈ H. The isotropy subgroup Hx ⊂ SL(2,R) for the point
x is canonically identified with U(1). With this identification, the action of
exp(
√
−1θ) ∈ Hx on the holomorphic tangent space TxH is multiplication by

exp(2
√
−1θ). Since the action of SL(2,R) is transitive, the isotropy subgroups

for any two points are conjugate. The isotropy subgroup for the point
√
−1

is

SO(2,R) =
(

a b
−b a

)
with a, b ∈ R and a2 + b2 = 1.

Imitating the definition of SL(2,R)-linearization, we will define Hx-linea-
rization. Let V be a vector bundle over H . A Hx-linearization of V is an
action of Hx on the total space of V such that the action of any A ∈ Hx on
V is a vector bundle isomorphism of V with τ(A)∗V .

Lemma 2.4. Let E be a holomorphic Hermitian vector bundle over H
satisfying the condition in Lemma 2.3 such that for each A ∈ SL(2,R), there
is an isomorphism of τ(A)∗E with E that preserves both the holomorphic
and the Hermitian structures. Assume that there is a point x ∈ H and a
Hx-linearization of E that preserves both the holomorphic and the Hermitian
structures of E. Then there is a unique equivariant structure on E.
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Proof. Let f be an action of Hx on the vector bundle E that defines a
holomorphic and Hermitian structure preserving Hx-linearization. Given any
A ∈ SL(2,R), fix an isomorphism

(2.1) f(A) : E −→ τ(A)∗E

with f(1) = IdE and f(B) = f(B) for every B ∈ Hx. So for any pair
A,B ∈ SL(2,R), the composition

(2.2) F (A ,B) := f(A) ◦ f(B) ◦ f(AB)−1

is an automorphism of E, and hence is an element of U(1). From this it
follows that
(2.3)
F (B ,C)F (A ,BC)F (A ,B)−1F (AB ,C)−1 = 1 = F (1 , A) = F (A , 1)

for all triples A,B,C ∈ SL(2,R). Indeed, F (A ,B) commutes with any au-
tomorphism of E. In particular, F (A ,B) = f(B) ◦ f(AB)−1 ◦ f(A) =
f(AB)−1 ◦f(A)◦f(B). Now the proof of (2.3) is straight-forward. Therefore,
F in (2.2) defines a cohomology class

(2.4) β ∈ H2(SL(2,R), U(1))

for the trivial action of SL(2,R) on U(1) [2, p. 116].
The assertion that E is equivariant is equivalent to the condition that the

cohomology class β in (2.4) vanishes. Indeed, if β = 0 then F is a coboundary
which means that there is a map

φ : SL(2,R) −→ U(1)

such that F (A ,B) = φ(A)φ(B)φ(AB)−1. This immediately implies that
sending any A ∈ SL(2,R) to f(A)/φ(A) we have an action of SL(2,R) on E
that makes E an equivariant bundle.

So to complete the proof of the lemma it suffices to show that β = 0. The
inclusion map ι : Hx ↪→ SL(2,R) defines a homomorphism

p : H2(SL(2,R), U(1)) −→ H2(Hx, U(1)) .

Now, p is an isomorphism. In fact, both the cohomology groups are identified
with U(1) and p is the identity map of U(1). This follows from the fact that
the map ι is a homotopy equivalence.

For any pair A,B ∈ Hx, the automorphism F (A ,B) of E defined in (2.2)
has the property that its evaluation at the point x is the identity automor-
phism of Ex. Since E is irreducible, such an automorphism must coincide
with the identity map of E. Therefore, the restriction of the cocycle F to Hx

takes the constant value IdE . Consequently, we have p(β) = 0. Since p is
injective, this completes the proof of the lemma. �

Take any point x ∈ H. For an equivariant vector bundle E over H, consider
the action of the isotropy subgroup Hx on the fiber Ex. Since Hx (= U(1))
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is abelian, there are distinct characters, say λ1, λ2, · · · , λn, of Hx such that
the eigenvalues for the action of any g ∈ Hx on Ex are λi(g), i ∈ [1 , n]. Let

Ex =
n⊕
i=1

V xi

be the decomposition into eigenspaces, where V xi corresponds to the character
λi. This decomposition of Ex is evidently orthogonal. Since Hx is naturally
identified with U(1), we may consider each λi as a character of U(1). As
SL(2,R) acts transitively on H, the set of characters {λ1, λ2, · · · , λn} of U(1)
is independent of x. Consequently, we have an orthogonal decomposition

(2.5) E =
n⊕
i=1

Vi

into eigenbundles where the fiber of the subbundle Vi over any point y is the
eigenspace V yi defined above. It may be noted that the subbundles Vi need
not be holomorphic. However, clearly each of them is left invariant by the
action of SL(2,R) on E.

The proof of the following proposition is straight-forward and we omit it.

Proposition 2.5. If E is irreducible of (complex) rank at least two, then
the number of characters—that is n—is at least two.

Let ci be the (unique) integer such that the character λi of Hx = U(1)
coincides with the one defined by z 7−→ zci . We arrange {ci} in ascending
order. In other words,

(2.6) c1 < c2 < c3 < · · · < cn−1 < cn

(recall that the characters are distinct). For j ∈ [1 , n], set

(2.7) Ṽj :=
j⊕
i=1

Vi ⊂ E

where Vi is the eigenbundle for the character z 7−→ zci of U(1).
We omit the proof of the following proposition since it is straight-forward.

Proposition 2.6. Let E be an irreducible vector bundle and F a SL(2,R)
invariant subbundle of V1. Then F is a holomorphic subbundle of E. Also,
each Ṽj defined in (2.7) is a holomorphic subbundle of E.

Let ∇ denote the Chern connection on the irreducible vector bundle E.
Consider the differential operator

∇1,0 : E −→ Ω1,0
H
⊗ E
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defined by the (1 , 0) part of ∇. For any C∞ subbundle F of E, the Leibniz
identity for ∇ ensures that the composition

F ↪→ E
∇1,0

−→ Ω1,0
H
⊗ E−→Ω1,0

H
⊗ (E/F )

defines a vector bundle homomorphism

(2.8) S′(F ) ∈ Hom(F ,Ω1,0
H
⊗ (E/F )) .

The following theorem is derived using the properties of this homomorphism.

Theorem 2.7. Let E as before be an irreducible vector bundle. For any
2 ≤ i ≤ n, we have ci = ci−1 + 2, where cj are as in (2.6). Furthermore,
for each j ∈ [1 , n] the rank of Vj is one.

Proof. Let V e (respectively, V o) be the direct sum of all Vi such that i is
an odd integer (respectively, even integer). We want to show that both V e

and V o of E are left invariant by the Chern connection ∇ on E.
Let

Sd(F ) ∈ Hom(F , (E/F )⊗ Ω0,1
H

)

be the second fundamental form of F for the Dolbeault operator and

S(F ) : F −→ (TCH)∗ ⊗ F⊥

the second fundamental form of F for the connection. Clearly we have

(2.9) S(F ) = Sd(F ) + S′(F ),

where S′(F ) is defined in (2.8). Let F be the subbundle V e.
Take γ = exp(

√
−1θ) ∈ Hx. The action of γ on the line (Ω1,0

H
)x (respec-

tively, (Ω0,1
H

)x) is multiplication by γ−2 ((respectively, γ2). This immediately
implies that there is no Hx equivariant homomorphism from (V e)x to (V o)x⊗
(Ω1,0
H
⊕Ω0,1

H
)x. Indeed, the eigenvalues for the action of γ on (V e)x are of the

form γeven and the eigenvalues for the action of γ on (V o)x ⊗ (Ω1,0
H
⊕ Ω0,1

H
)x

are of the form γodd.
Therefore, from (2.9) it follows that S(V e) = 0. In other words, V e is left

invariant by the connection ∇ on E. For exactly the same reason V o is also
left invariant by the connection ∇. Since E is irreducible, we conclude that
either V e = 0 or V o = 0. This implies that ci ≥ ci−1 + 2 for all i ∈ [2 , n].

Assume that ci > ci−1 + 2 with i ∈ [2 , n]. Set W1 :=
⊕

j≤i−1 Vj and
W2 :=

⊕
j≥i Vj . We want to show that both the subbundles W1 and W2 of

E are left invariant by the connection ∇.
The subbundle W1 coincides with Ṽi−1 defined in (2.7) and in Proposition

2.6 we saw that Ṽi−1 is a holomorphic subbundle of E. In view of (2.9), to
prove that W1 is left invariant by ∇ it suffices to show that S′(W1) = 0,
where S′(W ) is defined in (2.8).
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As before, take any γ = exp(
√
−1θ) ∈ Hx. Since E ∼= W1 ⊕W2 as C∞

bundles, the quotient vector bundle E/W1 is naturally identified with W2 in
a SL(2,R) equivariant fashion. The action of γ on the fiber (Ω1,0

H
⊗W2)x has

eigenvalues of the form γcj−2, where cj ≥ ci. On the other hand, the action
of γ on the fiber (W1)x has eigenvalues of the form γcj , where cj ≤ ci−1.
Since ci > ci−1 + 2, there is no common eigen–character for the actions of
Hx on (Ω1,0

H
⊗W2)x and (W1)x. This immediately implies that S′(W1) = 0.

Consequently, W1 is left invariant by the connection ∇.
Since W1 is left invariant by ∇ and E is irreducible, we conclude that

W1 = E. This contradicts the fact that Vi 6= 0 (as i ∈ [2 , n]). Therefore,
we have ci = ci−1 + 2 for all 2 ≤ i ≤ n.

We will now show that each Vj is of rank one.
Let F 1

x ⊂ (V1)x be a linear subspace of dimension one. Using the action
of SL(2,R), the line F 1

x generates a line subbundle F 1 of V1. From Propo-
sition 2.6 we know that F 1 is a holomorphic subbundle of E. Consider the
homomorphism

S′(F 1) : F 1 −→ Ω1,0
H
⊗ (E/F 1)

constructed in (2.8). Since any λ ∈ Hx = U(1) acts on Ω1,0
H

as multiplication
by λ−2, the image S′(F 1)(F1) is contained in the subbundle

Ω1,0
H
⊗ (Ṽ2/F

1) ⊂ Ω1,0
H
⊗ (E/F 1)

where Ṽ2 is defined in (2.7).
If the homomorphism S′(F 1) is identically zero, then F 1 is left invariant

by the Chern connection ∇. In that case we have F 1 = E as E is irreducible.
If S′(F 1) 6= 0, let F 2 denote the (unique) line subbundle of V2 such that

S′(F 1)(F1) ⊂ Ω1,0
H
⊗ ((F 1 ⊕ F 2)/F 1) ⊂ Ω1,0

H
⊗ (Ṽ2/F

1) .

Now set G2 = F 1 ⊕ F 2. From the construction G2 it is easy to see that G2

is a holomorphic subbundle of E. Let F in (2.8) be G2. Clearly S′(G2)(G2)
is contained in Ω1,0

H
⊗ (Ṽ3/G

2). Let F 3 be the line subbundle of V3 such that
the image S′(G2)(G2) is contained in the subbundle

Ω1,0
H
⊗ ((G2 ⊕ F 3)/G2) ⊂ Ω1,0

H
⊗ (Ṽ3/G

2) .

Now set G3 = G2 ⊕ F 3 and proceed inductively. More precisely, let Gi+1 =
Gi ⊕ F i+1, where F i+1 is the line subbundle of Vi+1 such that S′(Gi)(Gi)
is contained in Ω1,0

H
⊗ ((Gi ⊕ F i+1)/Gi). Note that from the construction it

follows that Gi+1 is a holomorphic subbundle of E.
The subbundle Gn of E is clearly left invariant by the Chern connection.

Since E is irreducible, Gn must coincide with E. But this immediately implies
that the rank of Vj is one for each j ∈ [1 , n]. This completes the proof of the
theorem. �
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In the next section we will show existence of irreducible vector bundles of
a given type and will classify them.

3. Construction of irreducible bundles

Take any integer c ∈ Z. We will first show that there is exactly one
equivariant line bundle with c1 = c, where c1 is defined in (2.6).

Let V be a complex vector space of dimension two; fix a nonzero vector
ω ∈

∧2
V . Let OP(V )(1) be the tautological line bundle on the projective

line P(V ) parametrizing all one–dimensional quotients of V . Using ω, the
holomorphic tangent bundle TP(V ) gets identified with

OP(V )(2) := OP(V )(1)⊗OP(V )(1).

The group SL(V ) acts on P(V ), and the action lifts to OP(V )(1). The isomor-
phism of TP(V ) with OP(V )(2) is SL(V )-equivariant. Now fix a basis of V
compatible with ω, i.e., such that ω = e1 ∧ e2, where e1, e2 is the basis. So
we have P(V ) ∼= CP

1 ∼= P(C2). Let L denote the restriction of OP(V )(1) to
H ⊂ CP1. Restricting the identification of OP(V )(2) with TP(V ) to H we get
a holomorphic isomorphism

(3.1) σ : L⊗2 −→ TH

which is compatible with the SL(2,R)-linearizations (as the isomorphism of
TP(V ) with OP(V )(2) is SL(V )-equivariant).

There is a unique Hermitian structure on L such that if we equip L⊗2 with
the induced Hermitian structure, then σ is a Hermitian structure preserving
isomorphism between L⊗2 and TH equipped with the Poincaré metric. We
will denote by L the equivariant line bundle defined by L equipped with this
holomorphic Hermitian structure.

For any integer c, consider the equivariant line bundle L⊗c. The holomor-
phic and the Hermitian structures on L⊗c are induced by the corresponding
structures on L. It is easy to see that c1 = c for this equivariant line bundle
L⊗c, where c1 is defined in (2.6). This follows immediately from the fact that
c1 = 1 for the equivariant line bundle L.

It is easy to check that up to isomorphism, there is exactly one equivariant
line bundle with c1 = c. Indeed, if L′ is another equivariant line bundle with
c1 = c, then consider the equivariant line bundle Hom(L⊗c ,L′). Since the
isotropy group Hx acts trivially on the fiber Hom(L⊗c ,L′)x for all x ∈ H,
there is a unique isomorphism, up to multiplication by a global constant
exp(2π

√
−1r) for some r ∈ R, between the equivariant line bundles L′ and

L⊗c.
Next we will construct equivariant rank two vector bundles. Consider the

C∞ complex vector bundle

(3.2) V(2, c) := L⊗c ⊕ L⊗(c+2) .
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The Hermitian structure on L induces a Hermitian structure on the rank two
bundle V(2, c). The Hermitian structures on L⊗c and L⊗(c+2) are the obvious
ones obtained from the Hermitian structure on L and the decomposition in
(3.2) is orthogonal. This determines the Hermitian structure of V(2, c). The
SL(2,R)-linearizations of L⊗c and L⊗(c+2) induce a SL(2,R)-linearization of
V(2, c) that preserves the Hermitian structure. We will construct a holomor-
phic structure on V(2, c). First note that the holomorphic structures of L⊗c
and L⊗(c+2) induce a holomorphic structure on the direct sum V(2, c). But
we need to modify this holomorphic structure.

Consider the line bundle

(3.3) ξc := Ω0,1
H
⊗Hom(L⊗(c+2) ,L⊗c) .

The section σ in (3.1) identifies Hom(L⊗(c+2) ,L⊗c) = L−2 with the holo-
morphic cotangent bundle Ω1,0

H
. Therefore, the line bundle ξc is canonically

trivialized, with the trivialization given by the section of Ω1,1
H

defined by the
Poincaré metric on H.

The holomorphic structure of L induces a holomorphic structure on any
tensor power of it. For any integer j, let ∂L⊗j denote the Dolbeault operators
defining the holomorphic structure of L⊗j . For any δ ∈ C, consider the
differential operator

∂δ : V(2, c) −→ Ω0,1
H
⊗ V(2, c)

defined by

(3.4) ∂δ =
(
∂L⊗c δ

0 ∂L⊗(c+2)

)
.

Using the canonical identification of the line bundle ξc in (3.3) with the trivial
line bundle with fiber C, the complex number δ in (3.4) gives a homomorphism
from L⊗(c+2) to Ω0,1

H
⊗ L⊗c. It is easy to see that the action of SL(2,R)

on V(2, c) preserves the holomorphic structure defined by ∂δ. Indeed, this
is an immediate consequence of the fact that ∂L⊗c , ∂L⊗(c+2) and the above
mentioned homomorphism defined by δ are all invariant under the action of
SL(2,R).

We already constructed an invariant Hermitian structure on V(2, c) for the
action of SL(2,R). Since ∂δ is also invariant the action of SL(2,R),

W(δ, c) := (V(2, c) , ∂δ),

is an equivariant vector bundle.
The following proposition describes all irreducible rank two vector bundles

in terms of the above equivariant vector bundles W(δ, c).

Proposition 3.1. The equivariant vector bundle W(δ, c) is irreducible if
and only if δ 6= 0. The two irreducible vector bundles W(δ, c) and W(δ′, c′)
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are isomorphic if and only if c = c′ as well as |δ| = |δ′|. Any rank two
irreducible vector bundle is isomorphic to some W(δ, c).

Proof. If ζ is a line subbundle of W(δ, c) left invariant by the Chern con-
nection ∇, then its orthogonal complement ζ⊥ is also left invariant by ∇ (as
∇ preserves the Hermitian structure). This implies that either ζx or (ζ⊥)x
must coincide with (L⊗(c+2))x. Consequently, L⊗(c+2) coincides with either
ζ or ζ⊥. Now, it is easy to see that L⊗(c+2) is not a holomorphic subbundle
unless δ = 0. This proves that W(δ, c) is irreducible if and only if δ 6= 0.

If W(δ′, c′) is isomorphic to W(δ, c) as an equivariant vector bundle, then
considering the action of Hx on their fibers over x we see that c = c′ and
the isomorphism of W(δ′, c′) with W(δ, c) must preserve the decomposition
of the (common) underlying C∞ vector bundle V(2, c) given in (3.2). In
other words, the isomorphism individually preserves the subbundles L⊗c and
L⊗(c+2). Furthermore, since SL(2,R) acts transitively on H, the induced
isomorphisms of L⊗c and L⊗(c+2) must be constant scalar multiplications.

Consider the C∞ automorphism

T = exp(
√
−1θ)IdL⊗c ⊕ exp(

√
−1θ′)IdL⊗(c+2)

of V(2, c), where θ and θ′ are real numbers. We observed above that any
SL(2,R) action preserving unitary automorphisms of V(2, c) must be of this
type. It is straight-forward to check that the conjugation T−1 ◦ ∂δ ◦ T of the
Dolbeault operator defined in (3.4) satisfies the identity

T−1 ◦ ∂δ ◦ T =
(
∂L⊗c exp(

√
−1(θ′ − θ))δ

0 ∂L⊗(c+2)

)
Consequently, W(δ, c) and W(δ′, c′) are isomorphic if and only if the two
conditions in the statement, namely c = c′ and |δ| = |δ′|, are satisfied.

Let E be an irreducible vector bundle of rank two. From Theorem 2.7 we
know that c1 = c and c2 = c+ 2 for some c ∈ C. Consequently, the SL(2,R)-
linearized bundle E is isomorphic to V(2, c). Now it is easy to check that E is
isomorphic to some W(δ, c), and the proof of the proposition is complete. �

We will now extend Proposition 3.1 to higher ranks. This extension is
rather straight-forward. We first proved the rank two case since it is nota-
tionally simpler.

Let

(3.5) V(n, c) := L⊗c ⊕ L⊗(c+2) ⊕ · · · ⊕ L⊗(c+2n−4) ⊕ L⊗(c+2n−2)

be the C∞ rank n vector bundle over H . The vector bundle V(n, c) has a
SL(2,R)-linearization and a Hermitian structure defined by the direct sum
of the corresponding structures on the individual direct summands in the
decomposition (3.5); as before, the Hermitian structure on any tensor power
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of L is induced by the Hermitian structure on L. The action of SL(2,R) on
V(n, c) clearly preserves the Hermitian structure.

Take δ := (δ1, δ2, · · · , δn−1) ∈ Cn−1. Consider the holomorphic structure
on V(n, c) defined by the Dolbeault operator

(3.6) ∂δ =


∂L⊗c δ1 0 · · · 0 0

0 ∂L⊗(c+2) δ2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · ∂L⊗(c+2n−4) δn−1

0 0 0 · · · 0 ∂L⊗(c+2n−2)

 .

In other words, the (i, i)-th entry is the Dolbeault operator ∂L⊗(c+2i−2) on
L⊗(c+2i−2), the (i, i+ 1)-th entry is δi and the rest of the entries are zero (re-
call that ∂L⊗j denotes the Dolbeault operator for the homomorphic structure
induced by the one on L). Note that using σ in (3.1) the line bundle

Ω0,1
H
⊗Hom(L⊗(c+2i) ,L⊗(c+2i−2))

is identified with the trivial line bundle. Using this identification, δi defines a
homomorphism from L⊗(c+2i) to Ω0,1

H
⊗ L⊗(c+2i−2).

This Dolbeault operator ∂δ is preserved by the action of SL(2,R). There-
fore,

W(δ, c) := (V(n, c) , ∂δ)

is an equivariant vector bundle of rank n.
Define |δ| := (|δ1|, |δ2|, · · · , |δn−1|) ∈ Rn−1. Now we are in a position to

generalize Proposition 3.1.

Theorem 3.2. The equivariant vector bundle W(δ, c) is irreducible if and
only if δi 6= 0 for every i ∈ [1 , n − 1]. The two irreducible vector bundles
W(δ, c) andW(δ′, c′) are isomorphic if and only if c = c′ as well as |δ| = |δ′|.
Any rank n irreducible vector bundle is isomorphic to some W(δ, c).

Proof. For any j ∈ [1 , n− 1], define the subbundles

Vj :=
j−1⊕
i=0

L⊗(c+2i) ⊂ V(n, c)

and Wj := (Vj)⊥ =
⊕n−1

i=j L⊗(c+2i) ⊂ V(n, c), the orthogonal complement.
If δi = 0, then clearly both Vi and Wi are holomorphic subbundles of

W(δ, c). Therefore, if δi = 0, then W(δ, c) is not irreducible.
Conversely, if W(δ, c) is not irreducible, then we have two homomorphic

subbundles W and W⊥ of positive rank left invariant by the action of SL(2,R)
on W(δ, c). Considering the action of an isotropy subgroup Hx we see that
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both W and W⊥ must be of the form
⊕

i L⊗(c+2i) with respect to the decom-
position in (3.5) (since the components in (3.5) are precisely the eigenbundles
for characters of the isotropy subgroups).

Therefore, there is i ∈ [0 , n − 1] such that the component L⊗(c+2i−2) in
(3.5) is contained in W and the component L⊗(c+2i) is contained in W⊥. But
this would imply that δi = 0. Indeed, for a local section s of L⊗(c+2i), the
component of ∂δ(s) in L⊗(c+2i−2) coincides with δis. So, if δi 6= 0, then W⊥

is not closed under ∂δ. This contradicts that fact that W⊥ is a holomorphic
subbundle of W(δ, c).

Therefore,W(δ, c) is irreducible if and only if δi 6= 0 for each i ∈ [1 , n−1].
Any isometry of V(δ, c) commuting with the action of SL(2,R) must be

a diagonal matrix (with respect to the decomposition in (3.5)) with all the
diagonal entries of absolute value one. Let T denote the diagonal matrix with
(i, i)-th entry exp(

√
−1θi) with θi ∈ R. It is easy to check that

T−1 ◦ ∂δ ◦ T = ∂η

where ηi = exp(
√
−1(θi+1 − θi))δi and ∂δ, ∂η are as in (3.6). From this

identity it follows that W(δ, c) and W(δ′, c′) are isomorphic if and only if
c = c′ as well as |δ| = |δ′|.

Let E be an irreducible vector bundle. Using Theorem 2.7 we see that the
there is a unitary C∞ isomorphism of E with some V(δ, c) that intertwines
the actions of SL(2,R). The SL(2,R)-linearized line bundle L⊗j has a nonzero
section invariant under the action of SL(2,R) if and only if j = 0. Using this
and the earlier observation that any equivariant line bundle is isomorphic to
some power of L it follows that the holomorphic structure on E is of the form
(3.6). This completes the proof of the theorem. �
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