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ALEKSANDROV OPERATORS AS SMOOTHING
OPERATORS

ALEC L. MATHESON

Abstract. A holomorphic function bmapping the unit disk D into itself
induces a family of measures τα, |α| = 1, on the unit circle T by means

of Herglotz’s Theorem. This family of measures defines the Aleksandrov
operator Ab by means of the formula Abf(α) =

∫
T
f(ζ) dτα(ζ), at least

for continuous f . This operator preserves the smoothness classes deter-
mined by regular majorants, and is seen to be compact on these classes
precisely when none of the measures τα has an atomic part. In the pro-
cess, a duality theorem for smoothness classes is proved, improving a
result of Shields and Williams, and various theorems about composition
operators on weighted Bergman spaces are extended to spaces arising

from regular weights.

1. Introduction

If K is a compact Hausdorff space and X is a Banach space, there is a
one-to-one correspondence between bounded linear operators T : X → C(K)
and weak∗ continuous functions τ : K → X ∗ given by the formula

Tx(k) = τ(k)(x),

or, equivalently,
τ(k) = T ∗(δk),

where δk ∈ C(K)∗ is the functional of evaluation at k, and T ∗ : C(K)∗ → X ∗
is the adjoint of T . By a classical theorem (see [6]) T is weakly compact
if and only if τ is weakly continuous, and compact if and only if τ is norm
continuous. According to the Riesz representation theorem, C(K)∗ can be
identified with M(K), the space of regular Borel measures on K, and then δk
denotes the unit point mass at k ∈ K. Moreover, if X = C(L) for another
compact Hausdorff space L, then T ∗(µ) is a measure on L for each measure
µ on K. In particular, the map τ assigns a measure τ(k) on L to each point
k ∈ K.
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Specializing to the case K = L = T, where T is the unit circle, there is a
one-to-one correspondence between bounded operators T on C = C(T) and
weak∗ continuous functions τ from T to M = M(T). An interesting class
of operators arises from the family of Aleksandrov measures induced by a
holomorphic map b of the unit disk D into itself. For each α ∈ T, the analytic
function α+b(z)

α−b(z) has positive real part 1−|b(z)|2
|α−b(z)|2 , which, by Herglotz’s Theorem,

is the Poisson integral of a positive measure τα on T. Thus,

1− |b(z)|2

|α− b(z)|2
=
∫
T

Pz(ζ) dτα(ζ),

where Pz(ζ) = 1−|z|2
|ζ−z|2 is the Poisson kernel. Evidently,

‖τα‖ =
∫
T

dτ(ζ) =
1− |b(0)|2

|α− b(0)|2
≤ 1 + |b(0)|

1− |b(0)|
,

with equality when α and b(0) have the same argument. It follows that the
Aleksandrov operator

Ab(f(α)) =
∫
T

f(ζ) dτα(ζ)

takes continuous functions to bounded functions. As Aleksandrov [1] remarks,
the mapping α→ τα is weak∗ continuous, and consequently Ab takes contin-
uous functions to continuous functions. Applying Ab to the constant function
1 shows that

‖Ab‖ =
1 + |b(0)|
1− |b(0)|

.

In a different direction Sarason [16] showed how to extend the composi-
tion operator Cbf = f ◦ b to act on M . Indeed, if µ is a positive measure
on T, its Poisson integral u(z) =

∫
T
Pz(ζ) dµ(ζ) is a positive harmonic func-

tion. Thus u◦ b is also a positive harmonic function, and hence, by Herglotz’s
Theorem, the Poisson integral of some positive measure ν. Sarason defines
Cbµ = ν, and extends Cb to all of M by means of the Jordan decomposition
of measures. Noting that Cbδα = τα for each α ∈ T, it is easy to see that
‖Cb‖M = supK ‖τα‖ = 1+|b(0)|

1−|b(0)| . Among other results, Sarason showed that
Cb(L1) ⊂ L1, and that Cb is compact on M if and only if Cb(M) ⊂ L1,
which means that each of the measures τα is absolutely continuous. He fur-
ther showed [17] that if Cb is weakly compact on L1, it is also compact. It is
now known that this compactness is equivalent to compactness of Cb acting
on any HP space (0 < p < ∞). Proofs of this can be found in [20] or [3],
where the absolute continuity condition is shown to be equivalent to J. H.
Shapiro’s function theoretic characterization of compactness on H2 (see [19]).
Sarason also showed that the formal adjoint C∗b takes continuous functions to
continuous functions. This observation coincides with Aleksandrov’s observa-
tion that Ab(C) ⊂ C, where C denotes the space of continuous functions on T,
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since it is easy to see that Cb : M →M is the adjoint operator to Ab : C → C
(see [4]). When restricted to analytic functions, the duality between Ab and
Cb breaks down in a minor way unless b(0) = 0. Indeed, if f ∈ A, where A is
the disk algebra, then Abf is meromorphic in D with a pole of order at most
one at b(0) and with residue f(0)b(0). Hence Abf is analytic if and only if
f(0) = 0 or b(0) = 0. It follows that the rank-one perturbation Ãb of Ab given
by

Ãbf(α) = Abf(α)− f(0)
b(0)

α− b(0)
maps A into itself. On the other hand, Bourdon and Cima [2] showed that
Cb maps the space K of Cauchy-Stieltjes transforms into itself, and it is well-
known that K can be identified in a canonical way with the dual A∗ of the
disk algebra. It is shown in [4] that Cb : K → K is the adjoint of Ãb : A→ A.
In order to simplify the subsequent discussion, it will be assumed from now
on that b(0) = 0, so that Ãb = Ab.

It turns out that not only does Ab preserve continuity, but it also preserves
smoothness in the following sense. A majorant is a nonnegative, continuous,
increasing function ω on [0,∞) with ω(0) = 0. The majorant ω is Dini regular
if there is a positive constant α such that∫ δ

0

ω(t)
t

dt ≤ αω(δ)

for all δ > 0, and is said to satisfy the bp condition if there is a positive
constant β such that

δ

∫ ∞
δ

ω(t)
t1+p

dt ≤ βω(δ)

for all δ > 0. A majorant is regular if it is both Dini regular and satisfies the
b1 condition.

Let Λω be the collection of functions f ∈ C whose modulus of continuity

ω(f, δ) = sup{ |f(ζ)− f(ζ ′)| : |ζ − ζ ′| ≤ δ }

is majorized by ω(δ). With the norm

‖f‖ω = ‖f‖∞ + sup
δ

ω(f, δ)
ω(δ)

,

it is easy to see (and well known) that Λω is a Banach algebra.

Theorem 1. Let ω be a regular majorant. Then Ab(Λω) ⊂ Λω and indeed
Ab is a bounded operator on Λω.

The proof of this theorem will rely on the identification of Aω = Λω ∩ A
with the dual space of a certain weighted Bergman space. The theorem will
then be seen to be a consequence of Littlewood’s Subordination Principle
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[5]. Known arguments about the compactness of composition operators on
Bergman spaces will then lead to the next theorem.

Theorem 2. The operator Ab is compact on Λω if and only if τα has no
atomic part for each α ∈ T.

Specifically, Aω is isomorphic to the dual of the weighted Bergman space
A1(ψ), where ψ(r) = ω(1− r2)/(1− r2). In general f ∈ Ap(ψ) if and only if
the integral ∫∫

D

|f(z)|pψ(|z|) dx dy

is finite. The following more general theorem will be obtained.

Theorem 3. Let ψ(r) = ω(1−r2)/(1−r2) where ω is a regular majorant.
Then the composition operator Cb is bounded on the Bergman space Ap(ψ) for
0 < p <∞, and is compact if and only if b has no angular derivatives.

It was shown by R. Nevanlinna [14] that b has an angular derivative in the
sense of Carathéodory at β ∈ T if and only if τα({β }) > 0 for some α ∈ T.
This should be contrasted with the compactness condition for C, which is
equivalent to the absolute continuity of τα for each α.

2. Preliminaries

For a majorant ω, set

ω∗(t) =
∫ t

0

ω(s)
s

ds,

and

ω∗(t) = t

∫ ∞
t

ω(s)
s2

ds.

Then ω is Dini regular if ω∗(t) ≤ αω(t) for some α > 0 and all t ≥ 0, and
satisfies the b1 condition if ω∗(t) ≤ βω(t) for some β > 0 and all t ≥ 0. The
majorant ω is regular if it is Dini regular and satisfies the b1 condition.

The regularity assumption derives its importance from the following two
inequalities, whose proofs can be found in [11]. For a function f analytic in
D, let M∞(f, r) = sup{ |f(z)| : |z| = r }. If f is analytic in D and continuous
on D, with modulus of continuity ω(δ) = ω(f, δ), then

M∞(f ′, r) = O(ω∗(1− r)/(1− r)) as r → 1−.

On the other hand, if M∞(f ′, r) = O(ω(1 − r)/(1 − r)), and if ω∗(t) → 0 as
t→ 0+, the function f extends to a continuous function on D having modulus
of continuity

ω(f, δ) = O(ω(δ) + ω∗(δ)) as δ → 0.
These two inequalities combine to yield the following known propositions.
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Proposition 1. Let ω be a regular majorant, and let f be analytic in the
unit disk D. Then f ∈ Aω if and only if

M∞(f ′, r) = O(ω(1− r)/(1− r)).

Proposition 2. Let ω be a regular majorant, and let u be a real valued
function in Λω. Then the harmonic conjugate ũ also belongs to Λω.

The proof of the second proposition depends on the fact that the derivative
of the analytic function f = u+ iũ is given by the integral formula

f ′(z) =
1
π

∫ π

−π

eit

(eit − z)2
u(eit) dt =

1
π

∫ π

−π

eit

(eit − z)2
(u(eit)− u(eis)) dt,

and it is this formula that is used to prove the first inequality above. The
same methods produce the following theorem about Toeplitz operators (cf.
[11]).

Theorem 4. Let s be a bounded analytic function on the unit disk D, and
let

Tsf(z) =
1

2π

∫ π

−π

s(eit)f(eit)
eit − z

dt.

Then Ts is a bounded operator on Aω.

Corresponding results hold for the subspaces Λω,0 of Λω and Aω,0 of Aω
consisting of those functions f which satisfy ω(f, δ) = o(ω(δ)).

Two regular majorants ω1(t) and ω2(t) are equivalent if there are positive
constants c1 and c2 such that

c1ω1(t) ≤ ω2(t) ≤ c2ω2(t).

Clearly, equivalent majorants determine the same spaces of functions, with
equivalent norms. The author would like to thank the referee for suggesting
the following proposition and its proof. It leads to significant simplification
of the subsequent arguments. The original approach followed the methods
found in [12] and [7].

Proposition 3. If ω is a regular majorant, there exists an equivalent
regular majorant ω1 and exponents 0 < ν < µ < 1 such that t−µω1(t) increases
to ∞ and t−νω1(t) decreases to 0 as t decreases to 0.

Proof. Choose A so that logA > max(α, β2). Then

ω∗(At) =
∫ At

0

ω(s)
s

ds ≥ ω(t)
∫ At

t

1
s
ds = ω(t) logA.
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Thus, (1+δ)ω(t) ≤ ω(At) for some positive δ. Next, there is an s, t < s < At,
such that

ω(s)
s

logA =
ω(s)
s

∫ At

t

1
u
du ≤

∫ At

t

ω(u)
u2

du ≤ ω∗(t)
t
≤ βω(t)

t
.

Now, since s < At,

ω(At)
At

= ω(At)
∫ ∞
At

1
u2

du ≤
∫ ∞
At

ω(u)
u2

du ≤ ω∗(s)
s

.

It follows that

ω(At)
At

≤ ω∗(s)
s
≤ βω(s)

s
≤ β2

logA
ω(t)
t

= (1− η)
ω(t)
t
,

say, where η > 0. Thus ω(At) ≤ A(1− η)ω(t).
Now for each integer n let ω1(An) = ω(An) and let logω1 be a linear

function of log t between An and An+1. Clearly, ω and ω1 are equivalent.
Choosing µ, 0 < µ < 1, so that Aµ < 1 + δ, shows that

Aµ(n+1)ω(A−(n+1)) < Aµn(1 + δ)ω(A−(n+1)) ≤ Aµnω(A−n),

so that the first assertion holds, at least at the special points An. Similarly,
if 0 < ν < 1 and A1−ν(1− η) < 1,

Aνnω(A−n) ≤ A1−ν(1− η)Aν(n+1)ω(A−(n+1) < Aν(n+1)ω(A−(n+1)).

A simple computation shows that the derivative of t−a logω1(t) with re-
spect to log t on (An, An+1) is equal to log

(
ω1(An+1)
ω1(An)

)
/logA − a. The in-

equality (1 + δ)ω(An) ≤ ω(An+1) shows that this derivative is greater than
log(1 + δ)/ logA − a which is greater than 0 for a = µ. Similarly, the in-
equality ω(An+1) ≤ A(1− η)ω(An) shows that this derivative is smaller than
(logA(1 − η))/ logA − a which is less than 0 for a = ν. This completes the
proof. �

This approach can be used to construct regular majorants with various
properties. For example if {ωn}n∈Z is an increasing sequence such that

0 < a =
1

log 2
lim inf
n→−∞

ωn+1

ωn
<

1
log 2

lim sup
n→−∞

ωn+1

ωn
= b < 1,

the regular majorant given by ω(2n) = ωn, etc., satisfies the conclusion of
Proposition 3 only if 0 < µ < a and b < ν < 1. This answers a question posed
to the author by John R. Cannon.

It is easy to show that a majorant ω satisfying the conclusions of Propo-
sition 3 must be regular. In the remainder of this paper it will be assumed
that the regular majorant ω satisfies the conclusion of Proposition 3 with
exponents µ and ν.
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3. Duality

For a regular majorant ω, the results of the preceding section allow the
identification of the space Aω with a space of analytic functions of restricted
growth. Specifically, if φ(r) is positive and continuous for 0 ≤ r < 1 with
limr→1 φ(r) = 0, A∞(φ) will denote the space of functions f analytic in the
unit disk and satisfying the growth condition

sup
0≤r<1

M∞(f, r)φ(r) <∞,

with the norm ‖f‖φ of f set equal to the quantity on the left-hand side of
the above inequality. This space has a subspace A0(φ) consisting of those
functions f in A∞(φ) which satisfy

lim
r→1

M∞(f, r)φ(r) = 0.

The codimension-one subspace of functions f ∈ Aω which vanish at the origin
is then identified with A∞(φ) under the correspondence of f with f ′, when
φ(r) = (1− r2)/ω(1− r). Similarly, A0(φ) corresponds to the subspace Aω,0
of functions vanishing at the origin.

Rubel and Shields [15] showed that under rather general conditions A∞(φ)
is isomorphic to the second dual of A0(φ), and subsequently Shields and
Williams [21] identified the intervening dual space under more restrictive hy-
potheses on φ. To describe this, first consider a positive continuous function
ψ(r) for 0 < r ≤ 1 with ∫ 1

0

ψ(r) dr <∞.

For f analytic in D define

‖f‖ψ =
∫ 1

0

M1(f, r)ψ(r) dr,

where

M1(f, r) =
1

2π

∫ π

−π
|f(reit)| dt.

Then A1(ψ) will be the Banach space of analytic functions f with ‖f‖ψ <∞.
A function φ as above will be called normal if there exist k > ε > 0 and

r0 < 1 such that

φ(r)
(1− r)ε

↓ 0 and
φ(r)

(1− r)k
↑ ∞ (r0 ≤ r, r → 1−).

The functions (φ, ψ) then form a normal pair if there is α > k − 1 such that

φ(r)ψ(r) = (1− r2)α (0 ≤ r < 1).
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If (φ, ψ) is a normal pair, there is a pairing between A∞(φ) and A1(ψ)
given by

(f, g) =
1
π

∫∫
D

f(z)g(z)φ(|z|)ψ(|z|) dx dy, f ∈ A∞(φ), g ∈ A1(ψ).

For f(z) =
∑∞
n=0 anz

n ∈ A∞(φ) and g(z) =
∑∞
n=0 bnz

n ∈ A1(ψ), this pairing
is also given by

(f, g) =
∞∑
n=0

anbnn!
(α+ 1)(α+ 2) · · · (α+ n+ 1)

,

with the series converging in the sense of Abel. In particular, when α = 0,
the pairing is

(f, g) =
∞∑
n=0

anbn
n+ 1

Theorem 2 of [21] then asserts that the dual space A0(φ)∗ is isomorphic to
A1(ψ), and that A1(ψ)∗ is isomorphic to A∞(φ).

When ω is a regular majorant, the function φ(r) = (1 − r2)/ω(1 − r2)
is normal, and so the duality result of Shields and Williams holds between
A∞(φ) and A1(ψ) with ψ(r)φ(r) = 1. It will be more convenient to use the
dual pairing

(f, g) =
1
π

∫∫
D

f(z)zg(z)φ(|z|)ψ(|z|) dx dy.

The analysis of Shields and Williams carries over. Moreover, in terms of
coefficients the pairing is

(f, g) =
∞∑
n=0

anbn+1

n+ 1
,

where, as above, the series converges in the sense of Abel. If h(z) =
∑∞
n=0 cnz

n

∈ Aω, its derivative belongs to A∞(φ) and the dual pairing

〈h, g〉 = c0b0 + (h′, g) = c0b0 +
∞∑
n=0

(n+ 1)cn+1bn+1

n+ 1
=
∞∑
n=0

cnbn

leads to the following theorem.

Theorem 5. Let ω(r) be a regular majorant. If ψ(r) is given by the
formula ψ(r) = (1− r2)/ω(1− r2), the space A1(ψ) is isomorphic to the dual
space of Aω,0, and in turn has dual space isomorphic to Aω. For f(z) =∑∞
n=0 anz

n ∈ Aω and g(z) =
∑∞
n=0 bnz

n ∈ A1(ψ), the dual pairing is given
by

〈f, g〉 =
∞∑
n=0

anbn,

where the series converges in the sense of Abel.
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4. Aleksandrov operators

Throughout this section b will denote a holomorphic function mapping the
unit disk into itself which fixes the origin. Theorem 1 now admits a simple
proof based on duality and Littlewood’s subordination principle in the form

M1(f ◦ b, r) ≤M1(f, r).

The next lemma is immediate.

Lemma 6. Let ψ(r) be a positive, increasing, integrable function on 0 ≤
r < 1. Then the composition operator Cb is bounded on A1(ψ).

If ω is a regular majorant and ψ(r) = ω(1− r2)/(1− r2), then ψ(r) satisfies
the hypotheses of the lemma. Indeed,

ψ(r) =
ω(1− r2)
(1− r2)

=
(

1
1− r2

)1−ν
ω(1− r2)
(1− r2)ν

is increasing, since each factor on the right is. Thus Cb is a bounded operator
on the dual space A1(ψ).

As noted in the introduction, it was shown in [4] that Ab is the formal
adjoint of Cb, when the dual pairing is given by

(f, g) =
∑

fngn.

With respect to the pairing used in this paper, Cb∗ is the formal adjoint of
Ab, where b∗(z) = b(z). In particular, Ab is bounded on polynomials in Aω.
In [16] Sarason observed that if b(0) = 0, the adjoint of Cb takes polynomials
of degree n into polynomials of degree at most n. Since the polynomials are
dense in Aω,0, it follows that Ab is a bounded operator on Aω,0, and hence
also on Aω since the latter space is isomorphic to the second dual of Aω,0.

If f ∈ Λω and f is real valued, according to Proposition 2 its harmonic
conjugate f̃ also belongs to Λω. Hence F = f + if̃ belongs to Aω. Applying
Ab to F and taking the real part shows that Abf ∈ Λω. This completes the
proof of Theorem 1.

5. Carleson measures and compactness

Because operators are compact if and only if their adjoints are, Theorem 2
will follow from the corresponding theorem for the composition operator Cb
acting on A1(ψ), where ψ(r) = ω(1−r2)/(1−r2). Actually a somewhat more
general result is true. For 0 < p <∞, let Ap(ψ) denote the space of functions
analytic in D for which

‖f‖pp,ψ =
1
π

∫∫
D

|f(z)|pψ(|z|) dx dy <∞.
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For 1 ≤ p < ∞, this is a Banach space and for all p it is an F -space. Little-
wood’s principle again guarantees that Cb is a bounded operator on each of
these spaces.

Theorem 7. Let ω be a regular majorant, and let ψ(r) = ω(1− r2)/(1−
r2). Then the composition operator Cb is compact on Ap(ψ) if and only if b
has no angular derivatives in the sense of Carathéodory.

The proof of this theorem will use extensions of known arguments involving
the Carleson measures for these spaces. The Carleson measure aspects will be
treated in this section, and angular derivatives will be considered in the next.

A positive regular Borel measure µ on D is a Carleson measure for Ap(ψ)
if there is a constant C such that∫

D

|f(z)|p dµ ≤ C‖f‖pp,ψ

for every f ∈ Ap(ψ). As the following theorem indicates, Carleson measures
admit a geometric characterization. This theorem, whose proof will be given
below, is an extension of known results.

Theorem 8. Let I be an arc of the unit circle and let R(I) denote the
Carleson square on I. Thus z ∈ R(I) if and only if 1−|z| < |I| and z/|z| ∈ I,
where |I| denotes the normalized length of I. If ω is a regular majorant and
ψ(r) = ω(1 − r2)/(1 − r2), the positive regular Borel measure µ on D is a
Carleson measure for Ap(ψ) if and only if

µ(R(I)) ≤ C|I|ω(|I|)
for all arcs I on the unit circle. When this happens, the constant C and
the Carleson measure constant are proportional. Moreover, the embedding of
Ap(ψ) into Lp(µ) is compact if and only if for every ε > 0 there is a δ > 0
such that

µ(R(I)) ≤ ε|I|ω(|I|)
whenever |I| < δ.

For each holomorphic function b mapping the unit disk into itself there is
an associated positive regular Borel measure µb determined by the change of
variables formula ∫

D

u(ζ) dµb(ζ) =
∫∫
D

u ◦ b(z)ψ(|z|) dx dy.

Since ∫
D

|f(ζ)|p dµb(ζ) =
∫∫
D

|f ◦ b(z)|pψ(|z|) dx dy,

for each f ∈ Ap(ψ), it follows from the boundedness of Cb on Ap(ψ) that µb
is a Carleson measure for each space Ap(ψ).
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Now any operator T from Ap(ψ) to a Banach space X is compact if and
only if ‖Tfn‖ → 0 for every bounded sequence (fn) in Ap(ψ) which converges
to zero uniformly on compact subsets of D. If µb satisfies the last condition of
Theorem 8, the composition operator Cb is compact on Ap(ψ). Indeed, given
ε > 0, choose δ > 0 so that µb(R(I)) < ε|I|ω(|I|) whenever |I| < δ. Let µ1

be the restriction of µb to the disk |z| ≤ 1 − δ and let µ2 = µb − µ1. If (fn)
is a bounded sequence in Ap(ψ) which converges to 0 uniformly on compact
subsets of the unit disk, then

‖Cbfn‖pp,ψ =
∫
|fn|p dµ1 +

∫
|fn|p dµ2.

The first integral on the right tends to 0 because µ1 is supported on a compact
set, and the second does not exceed cεp for some constant c. It follows that
Cb is compact.

The following norm estimate will be needed for the proof of the converse
and again in the proof of Theorem 8. The argument comes from [21]. The
expression A ≈ B means there are two positive constants c1 and c2 such that
c1 ≤ A/B ≤ c2.

Proposition 4. Let ka(z) = (1− az)−2/p for a ∈ D. Then

‖ka‖p,ψ ≈
ω(1− |a|2)

1− |a|2
as |a| → 1.

Proof. First note that

1
2π

∫ π

−π
|ka(reiθ)|p dθ =

1
1− |a|2r2

.

It follows that

‖ka‖pp,ψ =
∫ 1

0

1
1− |a|2r2

ω(1− r2)
1− r2

dr.

Since
1

1− |a|2r2

ω(1− r2)
1− r2

≈ 1
1− |a|r

ω(1− r)
1− r

,

it is enough to estimate the integral of the latter expression. Now, integrating
by parts gives∫ 1

0

1
1− ρr

ω(1− r)
1− r

dr = ω∗(1) + ρ

∫ 1

0

1
(1− ρr)2

∫ r

0

ω(1− s)
1− s

ds dr

= ω∗(1) + ρ

∫ 1

0

ω∗(1− r)
(1− ρr)2

dr

≈ ω∗(1) + ρ

∫ 1

0

ω(1− r)
(1− ρr)2

dr.
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Since ω is increasing,

ρ

∫ 1

0

ω(1− r)
(1− ρr)2

dr ≤ ρ
∫ 1

0

ω(1− ρr)
(1− ρr)2

dr

=
∫ 1

1−ρ

ω(u)
u2

du

≤ ω∗(1− ρ)
1− ρ

≤ βω(1− ρ)
1− ρ

,

which is half of what is needed.
To obtain the lower estimate, note that

ρ

∫ 1

0

ω(1− r)
(1− ρr)2

dr = ρ

∫ 1

0

(1− r)µ

(1− ρr)2

ω(1− r)
(1− r)µ

dr

≥ 1
2

∫ 1

0

(1− r)µω(1− ρr)
(1− ρr)2+µ

dr

≥ 1
2
ω(1− ρ)

∫ 1

0

(1− r)µ

(1− ρr)2+µ
dr,

when, say, 1/2 < ρ < 1. The inequality then follows from the simple estimate∫ 1

0

(1− ρr)−m(1− r)γ dr ≥ c(1− ρ)1+γ−m,

which is valid for γ < 1 and m > γ + 1. �

Suppose p = 1 (the argument for other values of p is similar). For each
nonzero a ∈ D, let Ia be the arc of the circle with length |Ia| = 1 − |a|
and center a/|a|. The functions fa = |Ia|

ω(|Ia|)ka are norm bounded, while the
estimate |1−az| ≤ c(1−|a|) for z ∈ R(Ia) shows that |fa(z)| ≥ C/(|Ia|ω(|Ia|))
for z ∈ R(Ia). In particular, if µ is a Carleson measure for A1(ψ), then

µ(R(Ia)) =
∫
R(Ia)

dµ ≤ c|Ia|ω(|Ia|)
∫
R(Ia)

|fa| dµ ≤ c′|Ia|ω(|Ia|),

and the geometric condition of Theorem 8 holds for µ.
If the last condition of Proposition 8 fails for the measure µ, there is an

η > 0 and a sequence of arcs In with |In| → 0 and such that µ(R(In)) ≥
η|In|ω(|In|) for each n. If an is the point with 1−|an| = |In| and with an/|an|
the center of In, then the functions fan tend to 0 uniformly on compact subsets
of D, but the above estimate shows that∫

|fan | dµ ≥ Cη for all n,
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and so the embedding of A1(ψ) in L1(µ) cannot be compact.
The easiest way to show that µ is a Carleson measure for Ap(ψ) if µ(R(I)) ≤

C|I|ω(|I|) is to use a method of Luecking [10]. This method uses a family of
sets E(a), a ∈ D, with the following properties:

(i) E(a) ⊂ D;
(ii) area(E∗(a)) ≤ c1 area(E(a)), with E∗(a) = ∪{E(b) :E(b)∩E(a) 6=∅};
(iii) ψ(b) ≤ c2ψ(a) for all b ∈ E(a).

If the functions f ∈ Ap(ψ) satisfy a mean value inequality

|f(z)|p ≤ c3
area(E(a))

∫
E(a)

|f(z)|p dx dy,

Luecking proves that µ is a Carleson measure for Ap(ψ) provided µ(E(a)) ≤
c4
∫
E(a)

ψ(z) dx dy for each a ∈ D.
In the current setting it is enough to let E(a) be the hyperbolic disk with

center a and fixed radius r. The mean value inequality and the properties (i)
and (ii) are known to hold in this case. For the third property, if E(a) = { b :∣∣∣ a−b1−ab

∣∣∣ < r }, then

|a| − r
1− |a|r

≤ |b| ≤ |a|+ r

1 + |a|r
.

Since

1−
∣∣∣∣ |a|+ r

1 + |a|r

∣∣∣∣2 =
(1− |a|2)(1− r2)

(1 + |a|r)2
≥ (1− |a|2)

1− r
1 + r

,

it follows that (1− |b|2) ≥ c(1− |a|2) for all b ∈ E(a). On the other hand,

1−
∣∣∣∣ |a| − r1− |a|r

∣∣∣∣2 =
(1− |a|2)(1− r2)

(1− |a|r)2
≤ (1− |a|2)

1 + r

1− r
,

so 1− |b|2 ≤ c(1− |a|2) for all b ∈ E(a), and thus ω(1− |b|2) ≤ c′ω(1− |a|2)
for some constant c′ depending only on c and ω. This establishes (iii).

Finally, each E(a) is contained in a Carleson square R(I), where |I| is
proportional to 1− |a|. Thus µ(E(a)) ≤ µ(R(I)) ≤ C|I|ω(|I|). On the other
hand, E(a) contains a rectangle

R(a) = { z : | arg z − arg a| < κ(1− |a|), κ(1− |a|) < 1− |z| < (1− |a|) },

where 1 > κ > 0 depends only on r. Hence∫
E(a)

ψ(z) dx dy ≥
∫
R(a)

ψ(z) dx dy

≥ c5(1− |a|)
∫ 1−|a|

κ(1−|a|)

ω(t)
t

dt

≥ c6(1− |a|)ω(κ(1− |a|)).
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Finally, ω(κ(1 − |a|)) ≥ κ′ω(|I|), where κ′ depends only on κ. Thus the
condition on µ follows.

Arguing as above, it is not difficult to see that when µ is a Carleson measure
for Ap(ψ), the embedding of Ap(ψ) into Lp(µ) is compact if and only if

µ(E(a)) = o((1− |a|)ω(1− |a|))

as |a| → 1. The compactness results can be summarized as follows.

Proposition 5. The following are equivalent:
(i) Cb is compact on Ap(ψ) for some 0 < p <∞;
(ii) Cb is compact on Ap(ψ) for all 0 < p <∞;
(iii) µb(R(I)) = o(|I|ω(|I|)) as |I| → 0.

6. Angular derivatives

Since Proposition 5 shows that compactness of Cb on Ap(ψ) does not de-
pend on p ∈ (0,∞), it will be enough to consider A2(ψ). The proof of Theorem
2 will be completed by showing directly that compactness of Cb is equivalent
to the nonexistence of angular derivatives. The argument is an adaptation to
the current setting of an argument of J. H. Shapiro.

First suppose that b has an angular derivative. Then there is a sequence
(an) in D with an → α ∈ T such that φ(an) → β ∈ T and 1−|φ(an)|

1−|an| → d ∈
(0,∞). It follows that

d

2
(1− |an|) ≤ 1− |φ(an)| ≤ 2d(1− |an|)

for large n. Arguing as in [18, Chapter 3], let fn = kan/‖kan‖2,ψ. Note that
C∗b ka = kb(a), and so

‖C∗b fn‖22,ψ =
‖kb(an)‖22,ψ
‖kan‖22,ψ

≈ 1− |an|2

1− |b(an)|2
ω(1− |b(an)|2)
ω(1− |an|)

,

and this is bounded away from 0 for large n. Now suppose that Cb is compact,
and, passing to a subsequence if necessary, that C∗b fn → g. Let p be a
polynomial. Then

〈g, p〉 = lim
n→∞

〈C∗b fn, p〉 = lim
n→∞

〈fn, Cbp〉 = lim
n→∞

p(b(an))
‖kan‖2,ψ

.

Since p is bounded and ‖kan‖2,ψ → ∞, it follows that 〈g, p〉 = 0 for all
polynomials p. Since the polynomials are dense in A2(ψ) it follows that g = 0,
and so ‖C∗b fn‖2,ψ → 0. This is a contradiction, so if Cb is compact, b has no
angular derivatives.
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Now suppose that b has no angular derivatives. To begin with, A2(ψ)
admits an equivalent norm

‖f‖2D,ψ = |f(0)|2 +
1
π

∫∫
D

|f ′(z)|2Ψ0(|z|) dx dy,

where (cf. [5, p. 133])

Ψ0(r) =
∫ 1

r

∫ 1

s

ψ(t) dt ds.

A simple argument shows that Ψ0(r) ≈ (1− r)ω(1− r). Indeed,

Ψ0(r) =
∫ 1

r

∫ 1

s

ω(1− t2)
1− t2

dt ds

≈
∫ 1

r

∫ 1

s

ω(1− t)
1− t

dt ds

=
∫ 1

r

∫ 1

s

ω(1− t)
(1− t)ν

1
(1− t)1−ν dt ds

≤
∫ 1

r

ω(1− s)
(1− s)ν

∫ 1

s

1
(1− t)1−ν dt ds

=
1
ν

∫ 1

r

ω(1− s) ds

≤ 1
ν

(1− r)ω(1− r).

An analogous argument produces the lower estimate. Thus Ψ0(r) can be
replaced by Ψ(r) = (1− r)ω(1− r) in the equivalent norm.

Using Ψ(r) in the equivalent norm, there is a change of variables formula∫∫
D

|(f ◦ b)′(z)|2Ψ(|z|) dx dy =
∫∫

b(D)

|f ′(w)|2Mb(w) du dv,

where

Mb(w) =
∑

b(z)=w

Ψ(|z|);

see [5, p. 36]. Since b(0) = 0, the Schwarz Lemma shows that |w| ≤ |z|
whenever w = b(z), and hence 1− |z| ≤ 1− |w|. Suppose w 6= 0 and let z0 be
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the value of z of least modulus with b(z) = w. Then, because ω is increasing,

Mb(w) =
∑

b(z)=w

(1− |z|)ω(1− |z|)

≤ ω(1− |z0|)
∑

b(z)=w

(1− |z|)

≤ ω(1− |w|)
∑

b(z)=w

(1− |z|)

≤ ω(1− |w|)
∑

b(z)=w

log
1
|z|

since 1−|z| ≤ log 1/|z|. Now Littlewood’s Inequality (see [18, p. 187]) asserts
that ∑

b(z)=w

log
1
|z|
≤ log

1
|w|

,

so Mb(w) ≤ ω(1 − |w|) log 1/|w|. Hence there is a constant C such that
Mb(w) ≤ CΨ(|w|) if |w| > 1/2. On the other hand, Mb(w) is clearly bounded
if |w| ≤ 1/2. It follows that Cb is compact if Mb(w) = o(Ψ(|w|)), as |w| → 1.
To see this, it is enough to show that ‖Cbfn‖D,ψ → 0 if (fn) is a bounded
sequence in A2(ψ) which converges to 0 uniformly on compact subsets of D.
But given ε > 0 there is a δ > 0 such that Mb(w) < ε whenever 1 − |w| < δ.
Then

‖Cb(fn)‖2D,ψ = |fn(0)|2 +
1
π

∫∫
b(D)

|f ′n(w)|2Mb(w) du dv

≤ |fn(0)|2 +
C

π

∫∫
|w|≤1−δ

|f ′n(w)|2 du dv

+
ε

π

∫∫
b(D)

|f ′n(w)|2Ψ(w) du dv

≤ |fn(0)|2 +
C

π

∫∫
|w|≤1−δ

|f ′n(w)|2 du dv + ε‖fn‖2D,ψ.

Since the first two terms clearly tend to 0, it follows that limn→∞ ‖Cb(fn)‖2,ψ =
0 and so Cb is compact.

If b has no angular derivatives, then

lim
|z|→1

1− |b(z)|
1− |z|

=∞.

Otherwise there is a sequence zn ∈ D with |zn| → 1 such that lim|z|→1
1−|b(z)|

1−|z| =
a < ∞, say. Passing to a subsequence if necessary, it may be supposed that
zn → α ∈ T and b(zn) → β ∈ T. Then the Julia-Carathéodory Theorem
shows that b has an angular derivative at α. Hence, given ε > 0 there is a
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δ > 0 such that 1 − |z| < ε(1 − |w|) whenever |w| > 1 − δ and b(z) = w. It
follows that

Mb(w) =
∑

b(z)=w

(1− |z|)ω(1− |z|)

≤ ω(1− |z0|)
∑

b(z)=w

1− |z|

≤ Cω(ε(1− |w|))(1− |w|)

≤ ω(ε(1− |w|))
ω(1− |w|)

Ψ(w),

where z0 is the value of z of least modulus such that b(z) = w and the
second inequality follows from Littlewood’s Inequality. Finally, since ω(t)/tν

is increasing, it is easy to see that ω(εt)/ω(t) ≤ εν . This completes the proof.

7. Concluding remarks

It would, of course, be of interest to see a proof of Theorem 1 that does
not use duality as in the present paper. As remarked in the introduction,
Ab is compact on C if and only if the function α → τα is norm continuous.
If this function has modulus of continuity ω(t), then ω(Cbf, t) ≤ Cω(t) for
every f ∈ C, and so Ab(C) ⊂ Λω. This suggests a different approach to
smoothness. On the other hand, there are inner functions b without angular
derivatives, and so the corresponding operator Ab is compact on the spaces
Λω, even though all of the measures τα are singular, and the function α→ τα
has no point of continuity for the norm topology on M .

If α(z) = a−z
1−az is an automorphism of D, then α is a homeomorphism of T

onto itself. It is clear that α satisfies a Lipschitz condition

|α(ei(t+δ))− α(eit)| ≤ κδ
for δ > 0. Consequently, if f ∈ Λω,

|f(α(ei(t+δ)))− f(α(eit))| ≤ Cfω(|α(ei(t+δ))− α(eit)|)
≤ Cfω(κδ) ≤ CfC ′ω(δ).

Hence the restriction b(0) = 0 is inconsequential.
Finally, it is clear that the analysis here can be carried over to spaces of

functions whose smoothness is determined by an integral modulus of continu-
ity. The details will be left to others.
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