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DOUBLE DECKER SETS OF GENERIC SURFACES IN
3-SPACE AS HOMOLOGY CLASSES

SHIN SATOH

Abstract. The double decker set Γ of a generic map g : F 2
0 → M3

is the preimage of the singularity of the generic surface g(F0). If both
F0 and M are oriented, then Γ is regarded as an oriented 1-cycle in F0,

which is shown to be null-homologous if g(F0) = 0 ∈ H2(M ; Z). We also
investigate a double decker set of a surface diagram which is a generic
surface in R3 with crossing information.

1. Introduction

For a connected closed surface F0 and a 3-manifold M , a map g : F0 →M
is generic if the singularity set of the image g(F0) consists of double points
and isolated triple/branch points. Such a set is called the double point set of
g and denoted by Γ∗. The preimage Γ = g−1(Γ∗) in F0 is called the double
decker set of g (cf. [5]).

Every double decker set Γ is regarded as a union of immersed circles in
F0, which we call decker curves. If both of F0 and M are oriented, then each
decker curve is also oriented naturally, and hence Γ determines an oriented
1-cycle in F0. Figure 1 shows an example of a generic torus g(F0) in M = R3

with the double decker set Γ consisting of a union of three decker curves on
the torus F0 (cf. [3]). We observe that

Γ = (1, 0) + (0, 1) + (−1,−1) ∈ H1(F0; Z) ∼= Z⊕ Z

for a suitable basis of H1(F0; Z); hence Γ is null-homologous in F0. General-
izing this example, we obtain the following theorem.

Theorem 1. Let g : F0 →M be a generic map with F0 and M oriented,
and let Γ be the double decker set of g. If g(F0) = 0 ∈ H2(M ; Z), then
Γ = 0 ∈ H1(F0; Z).

Therefore, if M is an oriented 3-manifold with trivial second homology,
then every double decker set Γ ⊂ F0 of a generic surface g(F0) ⊂M is always
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Figure 1

null-homologous in F0. We notice that there exists a generic torus g(F0) in
M = S1 × S2 such that g(F0) 6= 0 ∈ H2(M ; Z) and Γ 6= 0 ∈ H1(F0; Z).

On the other hand, if F0 is non-orientable, the double decker set Γ defines
an unoriented 1-cycle in F0. In this case, we have the following theorem.

Theorem 2. Let g : F0 → M be a generic map with F0 non-orientable,
and let Γ be the double decker set of g. If g(F0) = 0 ∈ H2(M ; Z2), then
Γ 6= 0 ∈ H1(F0; Z2).

Generic surfaces in R3 play an important role in 2-knot theory, which is to
study embedded surfaces in R4 locally flatly (up to ambient isotopies of R4).
To illustrate such an embedded surface F ⊂ R4, we often use a projection
image π(F ) under a standard projection π : R4 → R3 and we may assume
that π(F ) is a generic surface in R3. The surface diagram of F , denoted by
D(F ), is such a generic surface π(F ) with crossing information (according to
the projection direction of π) along the double point set of π(F ). In particular,
a surface diagram is regular if it does not contain branch points.

We have two equivalence relations for (regular) surface diagrams as follows:
(1) Two surface diagrams D(F ) and D(F ′) are equivalent if there exists

a finite sequence of surface diagrams D(F ) = D1 → D2 → · · · →
Dn = D(F ′) such that each Di → Di+1 is one of the seven local
deformations shown in Figures 2(a) and 2(b).

(2) Two regular surface diagrams D(F ) and D(F ′) are regular-equivalent
if there exists a finite sequence of surface diagrams D(F ) = D1 →
D2 → · · · → Dn = D(F ′) such that each Di is regular and Di → Di+1

is one of the four local deformations shown in Figure 2(a).
In Figure 2, we omit the crossing information of surface diagrams. We call
the local moves in the figure Roseman moves [8]. It is known that D(F ) and
D(F ′) is equivalent if and only if F and F ′ are ambient isotopic in R4.

The double decker set Γ of a surface diagram D(F ) is that of the generic
projection π(F ). If F is oriented and D(F ) is regular, then Γ is oriented again
by using the crossing information of D(F ). We notice that this orientation of
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Figure 2

Γ is different from that defined only from π(F ). By regarding Γ as a 1-cycle
in this sense, we have the following result:

Theorem 3. There exist two regular surface diagrams which are equiva-
lent but not regular-equivalent.

This paper is organized as follows. In Section 2, we review the notion of
generic surfaces and introduce an orientation of double decker sets. In Section
3, we study a relationship between homology classes of double decker sets and
Alexander numberings. In Section 4, we introduce another orientation of a
double decker set of a surface diagram induced from the crossing information.

2. Double decker sets as homology classes

We first review the notion of generic surfaces in a 3-manifold; we refer to [5]
for more details. Let F0 denote a connected closed surface andM a 3-manifold.
We say that a map g : F0 →M is generic if for each point x ∈ g(F0) there is a
3-ball neighborhood N(x) of x in M such that the pair (N(x), g(F0) ∩N(x))
is homeomorphic to one of Figure 3(a)–(d). Such a surface g(F0) is a generic
surface in M and denoted by F ∗0 . In the cases (b), (c) and (d), the point
x ∈ F ∗0 is called a double point, a triple point and a branch point, respectively.
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Then the set cl{x ∈ M | #g−1(x) > 1} consists of (possibly empty) double
points and isolated triple/branch points. This singular set is called the double
point set of g and denoted by Γ∗. The preimage g−1(Γ∗) ⊂ F0 of the double
point set Γ∗ is called a double decker set of g and denoted by Γ.

Figure 3

A double point set Γ∗ is regarded as a union of immersed curves in M ,
which are called double curves. Each double curve is homeomorphic to a
circle or an arc whose endpoints are branch points. We see that the preimage
of a double curve consists of (one or two) immersed circles in F0. Thus, the
double decker set Γ is regarded as a union of immersed circles in F0. Such
an immersed circle in Γ is called a decker curve. Figure 4 shows an example
of a generic projective plane in R3 which is called the Boy’s surface [1]. In
this example, the double point set consists of one double curve and the double
decker set consists of one decker curve.

Figure 4

Assume that F0 and M are oriented. We give the generic surface F ∗0 the
orientation which comes from that of F0. Then each decker curve is oriented
as follows. Let H∗ and H ′∗ be two sheets in F ∗0 which intersect along a double
curve C∗, and let C ⊂ H and C ′ ⊂ H ′ be the decker curves which are the
preimages of C∗; see Figure 5(a). Let ~n and ~n′ be the orientation normals to
H∗ and H ′∗, respectively. Then the orientation ~v of C ⊂ H is determined by
the condition that the ordered triple (~n, ~n′, g(~v)) matches the orientation of
M . The orientation ~v′ of C ′ is also defined similarly; hence g(~v) = −g(~v′). We
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see that the orientations of decker curves near a preimage of a branch point
are coincident; see Figure 5(b). Hence, the double decker set Γ is regarded as
a union of oriented immersed circles in F0 and determines a homology class
in H1(F0; Z); see again Figure 1.

Figure 5

Theorem 1. Let g : F0 → M be a generic map with F0 and M oriented
and Γ be the double decker set of g. If g(F0) = 0 ∈ H2(M ; Z), then Γ = 0 ∈
H1(F0; Z).

Proof. Since the Z-intersection form IntF0 : H1(F0; Z) × H1(F0; Z) → Z
is non-singular, it is sufficient to prove that IntF0(`,Γ) = 0 for any oriented
simple closed curve ` in F0. We may assume that `∗ = g(`) is embedded in
F ∗0 = g(F0) and misses the triple/branch points of F ∗0 . We take a loop ¯̀∗
embedded in M which goes parallel to `∗ and intersects F ∗0 transversely. By
using the orientation of F ∗0 , we may assume that each point of ¯̀∗∩F ∗0 appears
near g(`∩Γ) only; see Figure 6. Then we see that IntF0(`,Γ) = IntM ( ¯̀∗, F ∗0 ),
where IntM : H1(M ; Z)×H2(M ; Z)→ Z denotes the intersection form in M .
Since F ∗0 = 0 ∈ H2(M ; Z), we have IntF0(`,Γ) = IntM ( ¯̀∗, F ∗0 ) = 0. �

Figure 6

We remark that Theorem 1 is trivial in the case when F0 is a sphere.
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In the case when F ∗0 6= 0 ∈ H2(M ; Z), not every double decker set is null-
homologous in F0. To see this, we take a 2-sphere S = {∗} × S2 and a torus
T = S1 ×C in M = S1 × S2, where C is a circle embedded in S2. We notice
that S and T intersect along the circle {∗} × C. By attaching a 1-handle
between S and T without producing new singularities, we obtain a generic
torus F ∗0 in S1 × S2. Then it is easy to see that F ∗0 presents a generator of
H2(S1×S2; Z) ∼= Z and the double decker set Γ is not null-homologous in the
torus F0.

Assume that F0 is non-orientable. Then the double decker set Γ of a generic
map g : F0 → M defines a homology class in H1(F0; Z2). For example, the
double decker set of Boy’s surface is the generator of H2(F0; Z2) ∼= Z2 (recall
that F0 is homeomorphic to a projective plane).

Theorem 2. Let g : F0 → M be a generic map with F0 non-orientable
and Γ be the double decker set of g. If g(F0) = 0 ∈ H2(M ; Z2), then Γ 6= 0 ∈
H1(F0; Z2).

Proof. It is sufficient to prove that there exists a closed curve ` in F0 such
that the Z2-intersection number IntF0(`,Γ) is equal to 1 ∈ Z2. We take ` such
that its regular neighborhood in F0 is homeomorphic to an immersed Möbius
band. Then we can show, as in the proof of Theorem 1, that the number of
the crossings ` ∩ Γ is odd, and hence we have IntF0(`,Γ) = 1. �

Remark. The proof of Theorem 2 shows that IntF0( · ,Γ) : H1(F0; Z2)→
Z2 corresponds to the first Stiefel-Whitney class w1 ∈ H1(F0; Z2), since
IntF0(`,Γ) = 1 (resp. 0) if and only if the regular neighborhood of ` in
F0 is homeomorphic to an immersed Möbius band (resp. annulus).

3. Alexander numberings

In this section, we give an alternative proof of Theorem 1 (and Theorem
2) by using Alexander numberings. We first recall an Alexander numbering
in the case of a union of oriented curves γ immersed in a connected, oriented
closed surface F0. The curve γ divides F0 into regions. Let R be the set of
the closures of all the regions F0− γ. Then an Alexander numbering is a map
c : R → Z such that c(Rright) + 1 = c(Rleft) for any adjacent two regions,
where Rright (resp. Rleft) denotes the region to the right (resp. left) of the
bounded oriented curve; see Figure 7(a). Of course, not every γ ⊂ F0 admits
an Alexander numbering; more precisely, an Alexander numbering exists if and
only if γ is null-homologous in F0 (cf. [2]). Roughly speaking, γ is presented
by the boundary ∂(

∑n
k=1 ckRk), where ck ∈ Z and R = {Rk}k=1,...,n, if and

only if {ck} gives an Alexander numbering for R.
An analogous definition of Alexander numberings can be given for a generic

surface in a 3-manifold (cf. [6]). Let g : F0 →M be a generic map with F0 and
M oriented. Then the generic surface F ∗0 = g(F0) dividesM into some regions.
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Figure 7

We denote by S the set of the closures of these regions. Then an Alexander
numbering for S is a map d : S → Z such that d(Sover)+1 = d(Sunder) for any
adjacent two regions, where Sover (resp. Sunder) denotes the region over (resp.
under) the bounded sheet with respect to the orientation of the sheet; see
Figure 7(b). We can show similarly that an Alexander numbering for M −F ∗0
exists if and only if F ∗0 is null-homologous in M .

By using Alexander numberings, we have the following alternative proof of
Theorem 1.

Proof of Theorem 1. We use the above notations. It is sufficient to show
that the double decker set Γ ⊂ F0 admits an Alexander numbering c : R → Z.
Since F ∗0 = 0 ∈ H2(M ; Z), the generic surface F ∗0 ⊂ M admits an Alexander
numbering d : S → Z. For each R ∈ R, the divided region S ∈ S is uniquely
determined such that S is the region over g(R). Then we define the map
c : R → Z such that c(R) = d(S). It is easy to see that c gives an Alexander
numbering for F0 − Γ. �

In the case when F0 is non-orientable, we can give an alternative proof
of Theorem 2 by using a checkerboard coloring which is a map of the set of
regions R to Z2 such that any pair of adjacent regions are assigned distinct
elements. This proof is left to the reader.

Remark. We can generalize Theorems 1 and 2 to the case when F0 is
disconnected.

4. Regular surface diagrams

Let f : F0 → R4 be a locally-flat embedding of a connected closed surface
F0 into R4 and π : R4 → R3 the projection defined by (x1, x2, x3, x4) 7→
(x1, x2, x3). By a slight perturbation of f if necessary, we may assume that
π◦f : F0 → R3 is a generic map. The surface diagram of an embedded surface
F = f(F0) in R4 is a generic projection π(F ) with the crossing information.
Here, the crossing information describes which of the two sheets along a dou-
ble curve is higher than the other with respect to the x4-coordinate. To
indicate this information, we remove the neighborhood of the double curve
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in the sheet (under-sheet) which lies lower than the other sheet (over-sheet);
we refer to [5] for more details. We denote by D(F ) the surface diagram
obtained from an embedded surface F in R4. In particular, we say that a
surface diagram is regular if it does not contain branch points.

In this section we always assume that F0 is oriented. Then each double
curve of a surface diagram D is oriented as follows. Let ~nO, ~nU be the normals
to the over- and under-sheet, respectively. Then the orientation ~v of the
double curve is determined by the condition that the ordered triple (~nO, ~nU , ~v)
matches the right-handed orientation of R3. We define the orientation of
each decker curve which inherits that of the associated double curve. This
orientation of the decker curves is not coincident with that used in Sections
2 and 3. In particular, the orientations of decker curves near a preimage of
a branch point of D are non-coherent. This is not the convention used in
[5]. Hence, if D is a regular surface diagram, then the double decker set Γ
is regarded as a union of oriented circles immersed in F0, that is, we have
Γ ∈ H1(F0; Z). In this section, we use this orientation for every double decker
set.

Figure 8

Let F, F ′ ⊂ R4 be two embeddings of F0, and D(F ) and D(F ′) the corre-
sponding surface diagrams. We say that D(F ) and D(F ′) are equivalent if F
and F ′ are ambient isotopic in R4 with preserving their orientations. There
is a set of moves, called Roseman moves, that are similar to the Reidemeister
moves in classical knot theory. These are the finite set of local moves (which
are depicted in Figure 2 without the crossing information) that are sufficient
to connect two equivalent diagrams via a finite sequence.

Theorem 4 ([8]). Two surface diagrams D and D′ are equivalent if and
only if there exists a finite sequence of surface diagrams D = D1 → D2 →
· · · → Dn = D′ such that each deformation Dk → Dk+1 is one of Roseman
moves. �

It is known that any surface diagram is equivalent to a regular surface
diagram in the case when F0 is orientable (cf. [4]). We introduce an equiva-
lence relation among regular surface diagrams as follows: two regular surface
diagrams D and D′ are regular-equivalent if there exists a finite sequence of
surface diagrams D = D1 → D2 → · · · → Dn = D′ such that each Dk is
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regular and each Dk → Dk+1 is one of the four Roseman moves shown in
Figure 2(a).

Theorem 3. There exist two regular surface diagrams which are equiva-
lent but not regular-equivalent.

Proof. Let D and D′ be two regular surface diagrams and Γ and Γ′ their
double decker sets in F0, respectively. By checking each of the four Roseman
moves in Figure 2(a), we see that if D and D′ are regular-equivalent then Γ
and Γ′ are homologous in F0.

We consider two regular surface diagrams D(F ) and D(F ′) as follows:
D(F ) is shown in Figure 9 and D(F ′) is an embedded torus in R3. We see
that D(F ) and D(F ′) are equivalent diagrams, for the embeddings F ⊂ R4

and F ′ ⊂ R4 are both unknotted. On the other hand, the double decker set
Γ of D(F ) is a union of two parallel longitudes with same orientation and Γ′

of D(F ′) is empty. Since Γ is not null-homologous in the original torus F0,
D(F ) and D(F ′) are not regular-equivalent. �

Figure 9
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