DOUBLE DECKER SETS OF GENERIC SURFACES IN 3-SPACE AS HOMOLOGY CLASSES

SHIN SATOH

Abstract

The double decker set Γ of a generic map $g: F_{0}^{2} \rightarrow M^{3}$ is the preimage of the singularity of the generic surface $g\left(F_{0}\right)$. If both F_{0} and M are oriented, then Γ is regarded as an oriented 1-cycle in F_{0}, which is shown to be null-homologous if $g\left(F_{0}\right)=0 \in H_{2}(M ; \mathbf{Z})$. We also investigate a double decker set of a surface diagram which is a generic surface in \mathbf{R}^{3} with crossing information.

1. Introduction

For a connected closed surface F_{0} and a 3 -manifold M, a map $g: F_{0} \rightarrow M$ is generic if the singularity set of the image $g\left(F_{0}\right)$ consists of double points and isolated triple/branch points. Such a set is called the double point set of g and denoted by Γ^{*}. The preimage $\Gamma=g^{-1}\left(\Gamma^{*}\right)$ in F_{0} is called the double decker set of g (cf. [5]).

Every double decker set Γ is regarded as a union of immersed circles in F_{0}, which we call decker curves. If both of F_{0} and M are oriented, then each decker curve is also oriented naturally, and hence Γ determines an oriented 1-cycle in F_{0}. Figure 1 shows an example of a generic torus $g\left(F_{0}\right)$ in $M=\mathbf{R}^{3}$ with the double decker set Γ consisting of a union of three decker curves on the torus F_{0} (cf. [3]). We observe that

$$
\Gamma=(1,0)+(0,1)+(-1,-1) \in H_{1}\left(F_{0} ; \mathbf{Z}\right) \cong \mathbf{Z} \oplus \mathbf{Z}
$$

for a suitable basis of $H_{1}\left(F_{0} ; \mathbf{Z}\right)$; hence Γ is null-homologous in F_{0}. Generalizing this example, we obtain the following theorem.

Theorem 1. Let $g: F_{0} \rightarrow M$ be a generic map with F_{0} and M oriented, and let Γ be the double decker set of g. If $g\left(F_{0}\right)=0 \in H_{2}(M ; \mathbf{Z})$, then $\Gamma=0 \in H_{1}\left(F_{0} ; \mathbf{Z}\right)$.

Therefore, if M is an oriented 3-manifold with trivial second homology, then every double decker set $\Gamma \subset F_{0}$ of a generic surface $g\left(F_{0}\right) \subset M$ is always

[^0]

Figure 1
null-homologous in F_{0}. We notice that there exists a generic torus $g\left(F_{0}\right)$ in $M=S^{1} \times S^{2}$ such that $g\left(F_{0}\right) \neq 0 \in H_{2}(M ; \mathbf{Z})$ and $\Gamma \neq 0 \in H_{1}\left(F_{0} ; \mathbf{Z}\right)$.

On the other hand, if F_{0} is non-orientable, the double decker set Γ defines an unoriented 1-cycle in F_{0}. In this case, we have the following theorem.

Theorem 2. Let $g: F_{0} \rightarrow M$ be a generic map with F_{0} non-orientable, and let Γ be the double decker set of g. If $g\left(F_{0}\right)=0 \in H_{2}\left(M ; \mathbf{Z}_{2}\right)$, then $\Gamma \neq 0 \in H_{1}\left(F_{0} ; \mathbf{Z}_{2}\right)$.

Generic surfaces in \mathbf{R}^{3} play an important role in 2-knot theory, which is to study embedded surfaces in \mathbf{R}^{4} locally flatly (up to ambient isotopies of \mathbf{R}^{4}). To illustrate such an embedded surface $F \subset \mathbf{R}^{4}$, we often use a projection image $\pi(F)$ under a standard projection $\pi: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ and we may assume that $\pi(F)$ is a generic surface in \mathbf{R}^{3}. The surface diagram of F, denoted by $D(F)$, is such a generic surface $\pi(F)$ with crossing information (according to the projection direction of π) along the double point set of $\pi(F)$. In particular, a surface diagram is regular if it does not contain branch points.

We have two equivalence relations for (regular) surface diagrams as follows:
(1) Two surface diagrams $D(F)$ and $D\left(F^{\prime}\right)$ are equivalent if there exists a finite sequence of surface diagrams $D(F)=D_{1} \rightarrow D_{2} \rightarrow \cdots \rightarrow$ $D_{n}=D\left(F^{\prime}\right)$ such that each $D_{i} \rightarrow D_{i+1}$ is one of the seven local deformations shown in Figures 2(a) and 2(b).
(2) Two regular surface diagrams $D(F)$ and $D\left(F^{\prime}\right)$ are regular-equivalent if there exists a finite sequence of surface diagrams $D(F)=D_{1} \rightarrow$ $D_{2} \rightarrow \cdots \rightarrow D_{n}=D\left(F^{\prime}\right)$ such that each D_{i} is regular and $D_{i} \rightarrow D_{i+1}$ is one of the four local deformations shown in Figure 2(a).
In Figure 2, we omit the crossing information of surface diagrams. We call the local moves in the figure Roseman moves [8]. It is known that $D(F)$ and $D\left(F^{\prime}\right)$ is equivalent if and only if F and F^{\prime} are ambient isotopic in \mathbf{R}^{4}.

The double decker set Γ of a surface diagram $D(F)$ is that of the generic projection $\pi(F)$. If F is oriented and $D(F)$ is regular, then Γ is oriented again by using the crossing information of $D(F)$. We notice that this orientation of

Figure 2
Γ is different from that defined only from $\pi(F)$. By regarding Γ as a 1-cycle in this sense, we have the following result:

Theorem 3. There exist two regular surface diagrams which are equivalent but not regular-equivalent.

This paper is organized as follows. In Section 2, we review the notion of generic surfaces and introduce an orientation of double decker sets. In Section 3 , we study a relationship between homology classes of double decker sets and Alexander numberings. In Section 4, we introduce another orientation of a double decker set of a surface diagram induced from the crossing information.

2. Double decker sets as homology classes

We first review the notion of generic surfaces in a 3-manifold; we refer to [5] for more details. Let F_{0} denote a connected closed surface and M a 3-manifold. We say that a map $g: F_{0} \rightarrow M$ is generic if for each point $x \in g\left(F_{0}\right)$ there is a 3-ball neighborhood $N(x)$ of x in M such that the pair $\left(N(x), g\left(F_{0}\right) \cap N(x)\right)$ is homeomorphic to one of Figure 3(a)-(d). Such a surface $g\left(F_{0}\right)$ is a generic surface in M and denoted by F_{0}^{*}. In the cases (b), (c) and (d), the point $x \in F_{0}^{*}$ is called a double point, a triple point and a branch point, respectively.

Then the set $\operatorname{cl}\left\{x \in M \mid \# g^{-1}(x)>1\right\}$ consists of (possibly empty) double points and isolated triple/branch points. This singular set is called the double point set of g and denoted by Γ^{*}. The preimage $g^{-1}\left(\Gamma^{*}\right) \subset F_{0}$ of the double point set Γ^{*} is called a double decker set of g and denoted by Γ.

Figure 3
A double point set Γ^{*} is regarded as a union of immersed curves in M, which are called double curves. Each double curve is homeomorphic to a circle or an arc whose endpoints are branch points. We see that the preimage of a double curve consists of (one or two) immersed circles in F_{0}. Thus, the double decker set Γ is regarded as a union of immersed circles in F_{0}. Such an immersed circle in Γ is called a decker curve. Figure 4 shows an example of a generic projective plane in \mathbf{R}^{3} which is called the Boy's surface [1]. In this example, the double point set consists of one double curve and the double decker set consists of one decker curve.

Figure 4

Assume that F_{0} and M are oriented. We give the generic surface F_{0}^{*} the orientation which comes from that of F_{0}. Then each decker curve is oriented as follows. Let H^{*} and $H^{\prime *}$ be two sheets in F_{0}^{*} which intersect along a double curve C^{*}, and let $C \subset H$ and $C^{\prime} \subset H^{\prime}$ be the decker curves which are the preimages of C^{*}; see Figure $5(\mathrm{a})$. Let \vec{n} and \vec{n}^{\prime} be the orientation normals to H^{*} and $H^{\prime *}$, respectively. Then the orientation \vec{v} of $C \subset H$ is determined by the condition that the ordered triple $\left(\vec{n}, \vec{n}^{\prime}, g(\vec{v})\right)$ matches the orientation of M. The orientation \vec{v}^{\prime} of C^{\prime} is also defined similarly; hence $g(\vec{v})=-g\left(\vec{v}^{\prime}\right)$. We
see that the orientations of decker curves near a preimage of a branch point are coincident; see Figure $5(\mathrm{~b})$. Hence, the double decker set Γ is regarded as a union of oriented immersed circles in F_{0} and determines a homology class in $H_{1}\left(F_{0} ; \mathbf{Z}\right)$; see again Figure 1.

Figure 5

Theorem 1. Let $g: F_{0} \rightarrow M$ be a generic map with F_{0} and M oriented and Γ be the double decker set of g. If $g\left(F_{0}\right)=0 \in H_{2}(M ; \mathbf{Z})$, then $\Gamma=0 \in$ $H_{1}\left(F_{0} ; \mathbf{Z}\right)$.

Proof. Since the \mathbf{Z}-intersection form $\operatorname{Int}_{F_{0}}: H_{1}\left(F_{0} ; \mathbf{Z}\right) \times H_{1}\left(F_{0} ; \mathbf{Z}\right) \rightarrow \mathbf{Z}$ is non-singular, it is sufficient to prove that $\operatorname{Int}_{F_{0}}(\ell, \Gamma)=0$ for any oriented simple closed curve ℓ in F_{0}. We may assume that $\ell^{*}=g(\ell)$ is embedded in $F_{0}^{*}=g\left(F_{0}\right)$ and misses the triple/branch points of F_{0}^{*}. We take a loop $\overline{\ell^{*}}$ embedded in M which goes parallel to ℓ^{*} and intersects F_{0}^{*} transversely. By using the orientation of F_{0}^{*}, we may assume that each point of $\overline{\ell^{*}} \cap F_{0}^{*}$ appears near $g(\ell \cap \Gamma)$ only; see Figure 6. Then we see that $\operatorname{Int}_{F_{0}}(\ell, \Gamma)=\operatorname{Int}_{M}\left(\overline{\ell^{*}}, F_{0}^{*}\right)$, where $\operatorname{Int}_{M}: H_{1}(M ; \mathbf{Z}) \times H_{2}(M ; \mathbf{Z}) \rightarrow \mathbf{Z}$ denotes the intersection form in M. Since $F_{0}^{*}=0 \in H_{2}(M ; \mathbf{Z})$, we have $\operatorname{Int}_{F_{0}}(\ell, \Gamma)=\operatorname{Int}_{M}\left(\overline{\ell^{*}}, F_{0}^{*}\right)=0$.

Figure 6
We remark that Theorem 1 is trivial in the case when F_{0} is a sphere.

In the case when $F_{0}^{*} \neq 0 \in H_{2}(M ; \mathbf{Z})$, not every double decker set is nullhomologous in F_{0}. To see this, we take a 2 -sphere $S=\{*\} \times S^{2}$ and a torus $T=S^{1} \times C$ in $M=S^{1} \times S^{2}$, where C is a circle embedded in S^{2}. We notice that S and T intersect along the circle $\{*\} \times C$. By attaching a 1-handle between S and T without producing new singularities, we obtain a generic torus F_{0}^{*} in $S^{1} \times S^{2}$. Then it is easy to see that F_{0}^{*} presents a generator of $H_{2}\left(S^{1} \times S^{2} ; \mathbf{Z}\right) \cong \mathbf{Z}$ and the double decker set Γ is not null-homologous in the torus F_{0}.

Assume that F_{0} is non-orientable. Then the double decker set Γ of a generic map $g: F_{0} \rightarrow M$ defines a homology class in $H_{1}\left(F_{0} ; \mathbf{Z}_{2}\right)$. For example, the double decker set of Boy's surface is the generator of $H_{2}\left(F_{0} ; \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2}$ (recall that F_{0} is homeomorphic to a projective plane).

TheOrem 2. Let $g: F_{0} \rightarrow M$ be a generic map with F_{0} non-orientable and Γ be the double decker set of g. If $g\left(F_{0}\right)=0 \in H_{2}\left(M ; \mathbf{Z}_{2}\right)$, then $\Gamma \neq 0 \in$ $H_{1}\left(F_{0} ; \mathbf{Z}_{2}\right)$.

Proof. It is sufficient to prove that there exists a closed curve ℓ in F_{0} such that the \mathbf{Z}_{2}-intersection number $\operatorname{Int}_{F_{0}}(\ell, \Gamma)$ is equal to $1 \in \mathbf{Z}_{2}$. We take ℓ such that its regular neighborhood in F_{0} is homeomorphic to an immersed Möbius band. Then we can show, as in the proof of Theorem 1, that the number of the crossings $\ell \cap \Gamma$ is odd, and hence we have $\operatorname{Int}_{F_{0}}(\ell, \Gamma)=1$.

REMARK. The proof of Theorem 2 shows that $\operatorname{Int}_{F_{0}}(\cdot, \Gamma): H_{1}\left(F_{0} ; \mathbf{Z}_{2}\right) \rightarrow$ \mathbf{Z}_{2} corresponds to the first Stiefel-Whitney class $w_{1} \in H^{1}\left(F_{0} ; \mathbf{Z}_{2}\right)$, since $\operatorname{Int}_{F_{0}}(\ell, \Gamma)=1$ (resp. 0) if and only if the regular neighborhood of ℓ in F_{0} is homeomorphic to an immersed Möbius band (resp. annulus).

3. Alexander numberings

In this section, we give an alternative proof of Theorem 1 (and Theorem 2) by using Alexander numberings. We first recall an Alexander numbering in the case of a union of oriented curves γ immersed in a connected, oriented closed surface F_{0}. The curve γ divides F_{0} into regions. Let \mathcal{R} be the set of the closures of all the regions $F_{0}-\gamma$. Then an Alexander numbering is a map $c: \mathcal{R} \rightarrow \mathbf{Z}$ such that $c\left(R_{\text {right }}\right)+1=c\left(R_{\text {left }}\right)$ for any adjacent two regions, where $R_{\text {right }}$ (resp. $R_{\text {left }}$) denotes the region to the right (resp. left) of the bounded oriented curve; see Figure 7(a). Of course, not every $\gamma \subset F_{0}$ admits an Alexander numbering; more precisely, an Alexander numbering exists if and only if γ is null-homologous in F_{0} (cf. [2]). Roughly speaking, γ is presented by the boundary $\partial\left(\sum_{k=1}^{n} c_{k} R_{k}\right)$, where $c_{k} \in \mathbf{Z}$ and $\mathcal{R}=\left\{R_{k}\right\}_{k=1, \ldots, n}$, if and only if $\left\{c_{k}\right\}$ gives an Alexander numbering for \mathcal{R}.

An analogous definition of Alexander numberings can be given for a generic surface in a 3 -manifold (cf. [6]). Let $g: F_{0} \rightarrow M$ be a generic map with F_{0} and M oriented. Then the generic surface $F_{0}^{*}=g\left(F_{0}\right)$ divides M into some regions.

Figure 7

We denote by \mathcal{S} the set of the closures of these regions. Then an Alexander numbering for \mathcal{S} is a map $d: \mathcal{S} \rightarrow \mathbf{Z}$ such that $d\left(S_{\text {over }}\right)+1=d\left(S_{\text {under }}\right)$ for any adjacent two regions, where $S_{\text {over }}$ (resp. $S_{\text {under }}$) denotes the region over (resp. under) the bounded sheet with respect to the orientation of the sheet; see Figure 7(b). We can show similarly that an Alexander numbering for $M-F_{0}^{*}$ exists if and only if F_{0}^{*} is null-homologous in M.

By using Alexander numberings, we have the following alternative proof of Theorem 1.

Proof of Theorem 1. We use the above notations. It is sufficient to show that the double decker set $\Gamma \subset F_{0}$ admits an Alexander numbering $c: \mathcal{R} \rightarrow \mathbf{Z}$. Since $F_{0}^{*}=0 \in H_{2}(M ; \mathbf{Z})$, the generic surface $F_{0}^{*} \subset M$ admits an Alexander numbering $d: \mathcal{S} \rightarrow \mathbf{Z}$. For each $R \in \mathcal{R}$, the divided region $S \in \mathcal{S}$ is uniquely determined such that S is the region over $g(R)$. Then we define the map $c: \mathcal{R} \rightarrow \mathbf{Z}$ such that $c(R)=d(S)$. It is easy to see that c gives an Alexander numbering for $F_{0}-\Gamma$.

In the case when F_{0} is non-orientable, we can give an alternative proof of Theorem 2 by using a checkerboard coloring which is a map of the set of regions \mathcal{R} to \mathbf{Z}_{2} such that any pair of adjacent regions are assigned distinct elements. This proof is left to the reader.

Remark. We can generalize Theorems 1 and 2 to the case when F_{0} is disconnected.

4. Regular surface diagrams

Let $f: F_{0} \rightarrow \mathbf{R}^{4}$ be a locally-flat embedding of a connected closed surface F_{0} into \mathbf{R}^{4} and $\pi: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ the projection defined by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto$ $\left(x_{1}, x_{2}, x_{3}\right)$. By a slight perturbation of f if necessary, we may assume that $\pi \circ f: F_{0} \rightarrow \mathbf{R}^{3}$ is a generic map. The surface diagram of an embedded surface $F=f\left(F_{0}\right)$ in \mathbf{R}^{4} is a generic projection $\pi(F)$ with the crossing information. Here, the crossing information describes which of the two sheets along a double curve is higher than the other with respect to the x_{4}-coordinate. To indicate this information, we remove the neighborhood of the double curve
in the sheet (under-sheet) which lies lower than the other sheet (over-sheet); we refer to [5] for more details. We denote by $D(F)$ the surface diagram obtained from an embedded surface F in \mathbf{R}^{4}. In particular, we say that a surface diagram is regular if it does not contain branch points.

In this section we always assume that F_{0} is oriented. Then each double curve of a surface diagram D is oriented as follows. Let \vec{n}_{O}, \vec{n}_{U} be the normals to the over- and under-sheet, respectively. Then the orientation \vec{v} of the double curve is determined by the condition that the ordered triple $\left(\vec{n}_{O}, \vec{n}_{U}, \vec{v}\right)$ matches the right-handed orientation of \mathbf{R}^{3}. We define the orientation of each decker curve which inherits that of the associated double curve. This orientation of the decker curves is not coincident with that used in Sections 2 and 3. In particular, the orientations of decker curves near a preimage of a branch point of D are non-coherent. This is not the convention used in [5]. Hence, if D is a regular surface diagram, then the double decker set Γ is regarded as a union of oriented circles immersed in F_{0}, that is, we have $\Gamma \in H_{1}\left(F_{0} ; \mathbf{Z}\right)$. In this section, we use this orientation for every double decker set.

Figure 8
Let $F, F^{\prime} \subset \mathbf{R}^{4}$ be two embeddings of F_{0}, and $D(F)$ and $D\left(F^{\prime}\right)$ the corresponding surface diagrams. We say that $D(F)$ and $D\left(F^{\prime}\right)$ are equivalent if F and F^{\prime} are ambient isotopic in \mathbf{R}^{4} with preserving their orientations. There is a set of moves, called Roseman moves, that are similar to the Reidemeister moves in classical knot theory. These are the finite set of local moves (which are depicted in Figure 2 without the crossing information) that are sufficient to connect two equivalent diagrams via a finite sequence.

Theorem 4 ([8]). Two surface diagrams D and D^{\prime} are equivalent if and only if there exists a finite sequence of surface diagrams $D=D_{1} \rightarrow D_{2} \rightarrow$ $\cdots \rightarrow D_{n}=D^{\prime}$ such that each deformation $D_{k} \rightarrow D_{k+1}$ is one of Roseman moves.

It is known that any surface diagram is equivalent to a regular surface diagram in the case when F_{0} is orientable (cf. [4]). We introduce an equivalence relation among regular surface diagrams as follows: two regular surface diagrams D and D^{\prime} are regular-equivalent if there exists a finite sequence of surface diagrams $D=D_{1} \rightarrow D_{2} \rightarrow \cdots \rightarrow D_{n}=D^{\prime}$ such that each D_{k} is
regular and each $D_{k} \rightarrow D_{k+1}$ is one of the four Roseman moves shown in Figure 2(a).

Theorem 3. There exist two regular surface diagrams which are equivalent but not regular-equivalent.

Proof. Let D and D^{\prime} be two regular surface diagrams and Γ and Γ^{\prime} their double decker sets in F_{0}, respectively. By checking each of the four Roseman moves in Figure 2(a), we see that if D and D^{\prime} are regular-equivalent then Γ and Γ^{\prime} are homologous in F_{0}.

We consider two regular surface diagrams $D(F)$ and $D\left(F^{\prime}\right)$ as follows: $D(F)$ is shown in Figure 9 and $D\left(F^{\prime}\right)$ is an embedded torus in \mathbf{R}^{3}. We see that $D(F)$ and $D\left(F^{\prime}\right)$ are equivalent diagrams, for the embeddings $F \subset \mathbf{R}^{4}$ and $F^{\prime} \subset \mathbf{R}^{4}$ are both unknotted. On the other hand, the double decker set Γ of $D(F)$ is a union of two parallel longitudes with same orientation and Γ^{\prime} of $D\left(F^{\prime}\right)$ is empty. Since Γ is not null-homologous in the original torus F_{0}, $D(F)$ and $D\left(F^{\prime}\right)$ are not regular-equivalent.

Figure 9

References

[1] W. Boy, Über die Curvature Integra und die Topologie geschlossener Flaschen, Math. Ann. 57 (1903), 151-184.
[2] G. Cairns and D. M. Elton, The planarity problem for signed Gauss words, J. Knot Theory Ramifications 2 (1993), 359-367.
[3] J.S. Carter, How surfaces intersect in space: an introduction to topology, Second Edition, World Scientific Publishing, River Edge, NJ, 1995.
[4] J.S. Carter and M. Saito, Canceling branch points on projections of surfaces in 4-space, Proc. Amer. Math. Soc. 116 (1992), 229-237.
[5] , Knotted surfaces and their diagrams, Math. Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998.
[6] J.S. Carter, S. Kamada and M. Saito, Alexander numbering of knotted surface diagrams, Proc. Amer. Math. Soc. 128 (2000), 3761-3771.
[7] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979), 233-248.
[8] D. Roseman, Reidemeister-type moves for surfaces in four dimensional space, Knot theory (Warsaw, 1995), Banach Center Publications, vol. 42, Polish Acad. Sci., Warsaw, 1998, pp. 347-380.

Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

E-mail address: susato@sci.osaka-cu.ac.jp

[^0]: Received May 18, 2000; received in final form September 21, 2000.
 2000 Mathematics Subject Classification. Primary 57R45. Secondary 57Q45.

