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AN ERGODIC AND TOPOLOGICAL APPROACH TO
DISCONJUGATE LINEAR HAMILTONIAN SYSTEMS

RUSSELL JOHNSON, SYLVIA NOVO, AND RAFAEL OBAYA

Abstract. This paper is devoted to the qualitative study of disconju-
gate random linear Hamiltonian systems. We relate the principal so-

lutions at ±∞ with the ergodic structure of the flow, the presence of
exponential dichotomy, and the description of the Sacker-Sell spectrum.
A continuity theorem for the principal solutions is also provided.

1. Introduction

In this paper, we study some problems relating to time-varying linear
Hamiltonian differential equations using techniques of the theory of random
differential systems. We will see that, using these techniques, it is possible
to gain new information about such classical objects as the principal solu-
tions and the Lyapunov type numbers of linear Hamiltonian equations. It is
also possible to explore such themes of more recent interest as the recurrence
properties of the solutions of such equations.

Before giving an outline of the results presented here, we try to put them
in perspective. In the last 40 years or so, an approach to the study of
non-autonomous linear differential equations

(1.1) x′ = A(t) x , x ∈ Rn, t ∈ R ,
has been developed using methods of ergodic theory and topological dynamics.
One begins by introducing the so-called hull HA of the (bounded measurable)
function A; this is the closure of the set of translates As(·) = A(s + ·) in
an appropriate function space. One then observes that the solutions of (1.1)
define a flow in the product space HA × Rn. One can then study Lyapunov
numbers and exponential dichotomies with the help of this flow structure; one
obtains a theory of wide applicability to nonautonomous differential equations,
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nonlinear as well as linear. Notable results were obtained using these ideas
in the 1960s and 1970s by Artstein, Bronstein, Millionščikov, Sell, and other
authors.

In the 1980s another technique was added to those already existing for
the study of (1.1), namely that of rotation numbers for linear Hamiltonian
systems (Johnson and Moser [9], Johnson [8]). It turns out that there is a
close connection between Lyapunov exponents, rotation numbers, exponen-
tial dichotomies, and the classical Weyl m-functions. These themes were all
explored and applications were worked out in, among others papers, Johnson
and Nerurkar [10], Johnson et al. [11], Novo et al. [16]. We note that there
are substantial applications of all these concepts to the study of problems
as diverse as the spectral theory of the quasi-periodic Schrödinger operator,
the existence of chaotic orbits in singularly perturbed ODEs (Batelli and
Palmer [3]), non-autonomous control theory, and the theory of orthogonal
polynomials.

The conglomeration of methods and applications which we have just de-
scribed is the field of random differential systems. Some authors prefer to
reserve this term for stochastically driven differential equations, so our termi-
nology is perhaps not entirely standard.

Let us explain in a bit more detail what we mean by a random Hamilton-
ian differential system. Let Ω be a compact metric space which supports a
continuous real flow σ : Ω × R → Ω, (ξ, t) 7→ ξ · t. Consider the family of
equations

(1.2) z′ =
[
H1(ξ·t) H2(ξ·t)
H3(ξ·t) −HT

1 (ξ·t)

]
z = H(ξ·t) z , ξ ∈ Ω ,

where H1, H2, H3 are continuous, n × n matrix-valued functions on Ω, and
H2, H3 are symmetric. The flow (Ω, σ) may be (but need not be) that defined
by translation on the hull of a single function H(·). We will assume that H2

is positive semidefinite, and that the system (1.2) is disconjugate on R for
each ξ ∈ Ω. This implies the existence of principal solutions of (1.2) both as
t→∞ and as t→ −∞.

We now outline the results to be discussed in this paper. Let LR be the
manifold of real Lagrange planes in R2n, and let KR = Ω × LR. The equa-
tions (1.2) induce in a natural way a flow on KR. We will discuss the supports
of the invariant measures on the Lagrange bundle, then give a formula for the
sum γ of the non-negative Lyapunov exponents of (1.2) whose proof makes use
of the ergodic structure of the flow on KR. Next we will give a necessary and
sufficient condition for the presence of exponential dichotomy in (1.2), using
the principal solutions. Then we turn to the recurrence properties of solutions
of (1.2), or more precisely of their images in the Lagrange bundle KR. We
show that, if the base flow (Ω, σ) is minimal, then the principal solutions de-
fine almost automorphic minimal subsets of KR. When (Ω, σ) is minimal, we
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also prove a property of the Sacker-Sell spectrum of (1.2) when exponential
dichotomy is not present. Finally, we will discuss an L2-convergence result of
the principal solutions when (1.2) depends in a certain way on a parameter
E and E tends to a value E0 at which the dichotomy property does not hold.

This paper is part of what is now a long-standing effort to study linear non-
autonomous Hamiltonian systems from the point of view of random systems;
see, e.g., [8], [10], [16], and especially [11] (where, however, it is assumed that
H2 > 0).

2. Preliminaries

Let Ω be a compact metric space, σ : R×Ω→ Ω, (t, ξ) 7→ ξ·t a continuous
flow and m0 a fixed σ-ergodic measure on Ω. We consider the family of linear
Hamiltonian systems (1.2) where, as we have said before, H is a continuous
real 2n × 2n matrix-valued function and H2 and H3 are n × n symmetric
matrices. This family of systems induces in a natural way a skew-product flow
on Ω×C 2n. If U(t, ξ) represents the fundamental matrix solution of equation
(1.2) for ξ ∈ Ω with U(0, ξ) = I2n, the trajectory of (ξ, z) is {(ξ·t, U(t, ξ) z)| t ∈
R}.

It is known that for each t ∈ R and ξ ∈ Ω, U(t, ξ) lies in the symplectic
group Sp(n,R) = {G ∈MR(2n)|GTJG = J}, where J =

[
0 −In
In 0

]
. We recall

that an n-dimensional vector subspace F ⊂ C 2n is called a complex Lagrange
plane if xTJy = 0 for all x, y ∈ F . The space LC of all complex Lagrange
planes of C 2n is a compact orientable manifold of dimension n(n + 1)/2.
Since U(t, ξ)F lies in LC whenever F ∈ LC, the map τ : R × Ω × LC →
Ω×LC, (t, ξ, F ) 7→ (ξ·t, U(t, ξ)F ) defines a continuous skew-product flow on
KC = Ω× LC.

An element F of LC can be represented by a 2n×n matrix
[
F1
F2

]
of range n

with FT1 F2 = FT2 F1. The column vectors form the basis of the Lagrange sub-
space; so two matrices

[
F1
F2

]
and

[
G1
G2

]
represent the same complex Lagrange

plane if and only if there is a non-singular n× n complex matrix P such that
F1 = G1P and F2 = G2P . The set SC(n) of symmetric n×n complex matrices
parametrizes an open dense subset of LC, D̃ =

{[
In
M

]
|M ∈ SC(n)

}
. Taking

these complex coordinates in (1.2), we obtain the Riccati equations

(2.1) M ′ = −MH2(ξ·t)M −MH1(ξ·t)−HT
1 (ξ·t)M +H3(ξ·t) , ξ ∈ Ω .

The flow on Ω × D̃ is then given by (ξ,M) · t = (ξ · t,M(t, ξ,M)), where
M(t, ξ,M) is the solution of (2.1) with initial data M(0, ξ,M) = M.

Analogously, we consider the space LR of real Lagrange planes of R2n, a
compact manifold of dimension n(n + 1)/2. As in the complex case, we can
represent the elements of LR by 2n × n real matrices of range n of the form[
F1
F2

]
with FT1 F2 = FT2 F1. By taking an orthonormal basis of the subspace,
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LR can be identified with the homogeneous space of left cosets G/H, where

G = Sp(n,R) ∩ SO(2n,R)

=
{[

Φ −Ψ
Ψ Φ

]
| ΦTΦ + ΨTΨ = In , ΦTΨ = ΨTΦ

}
,

H = O(n,R) =
{[

R 0
0 R

]
| RTR = In

}
.

Then LR is a symmetric Riemannian space with a G-invariant metric. It can
be shown that G/H is orientable when n is odd and non-orientable when n
is even (see Matsushima [13] and Mishchenko et al. [15]). In any case, we
can consider the set of real Lagrange planes with an assigned orientation, LR,
which is an orientable compact manifold, a two-covering of LR, and which can
be identified with the homogeneous space G/H1, where

H1 = SO(n,R) =
{[

R 0
0 R

]
| RTR = In , detR = 1

}
.

The next theorem explains the transformation of the systems (1.2) when
generalized polar coordinates are used (see Reid [20]). The application of
the polar transformation to the study of matrix differential equations was
first presented by Barret [2] and was subsequently refined by Reid [18] for
differential systems.

Theorem 2.1. Let
[
F1
F2

]
be a real Lagrange plane and Φ, Ψ and R n× n

real matrices such that
[
F1
F2

]
= [ ΦR

ΨR ], with
[

Φ −Ψ
Ψ Φ

]
∈ G and R non-singular.

Then the 2n× n solution of (1.2) corresponding to the initial data
[
F1
F2

]
is[

F1(t, ξ, F1, F2)
F2(t, ξ, F1, F2)

]
=
[

Φ(t, ξ,Φ,Ψ)R(t, ξ,Φ,Ψ, R)
Ψ(t, ξ,Φ,Ψ)R(t, ξ,Φ,Ψ, R)

]
,

where Φ(t, ξ,Φ,Ψ), Ψ(t, ξ,Φ,Ψ) and R(t, ξ,Φ,Ψ, R) are the solutions of

Φ′ = ΨQ(ξ·t,Φ,Ψ) ,

Ψ′ = −ΦQ(ξ·t,Φ,Ψ) ,
(2.2)

R′ = S(ξ·t,Φ,Ψ)R(2.3)

given by the initial data Φ, Ψ, and R, respectively, with

Q(ξ,Φ,Ψ) =
[
ΦT ΨT

]
JH(ξ)

[
Φ
Ψ

]
, S(ξ,Φ,Ψ) =

[
ΦT ΨT

]
H(ξ)

[
Φ
Ψ

]
.

Furthermore,

RT (t, ξ,Φ,Ψ, R)R(t, ξ,Φ,Ψ, R) = FT1 (t, ξ, F1, F2)F1(t, ξ, F1, F2)

+ FT2 (t, ξ, F1, F2)F2(t, ξ, F1, F2)
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and [
Φ(t, ξ,Φ,Ψ) −Ψ(t, ξ,Φ,Ψ)
Ψ(t, ξ,Φ,Ψ) Φ(t, ξ,Φ,Ψ)

]
∈ G

for all t ∈ R.

Therefore, with these coordinates, the skew-product flow τ induced by
equations (1.2) on the compact metric space KR = Ω × LR can be expressed
in the following way: if [ Φ

Ψ ] is a real Lagrange plane with ΦTΦ + ΨTΨ = In
and Φ(t, ξ,Φ,Ψ) and Ψ(t, ξ,Φ,Ψ) are the matrix solutions of the equations
(2.2) with initial data Φ and Ψ, then

τ(t, ξ,Φ,Ψ) = (ξ·t,Φ(t, ξ,Φ,Ψ),Ψ(t, ξ,Φ,Ψ))

defines the equation of the flow on KR. The relation M = ΨΦ−1 gives us the
change between the systems of coordinates that we have introduced.

The concept of rotation number for systems (1.2) was discussed in Novo et
al. [16] in terms of the argument of a symplectic fundamental matrix solution.
Let V (t, ξ) =

[
V1(t,ξ) V3(t,ξ)
V2(t,ξ) V4(t,ξ)

]
be a fundamental symplectic matrix solution of

(1.2). The rotation number is defined as

α = lim
t→∞

1
t

Arg V (t, ξ) ,

where Arg is any argument equivalent to that defined by Arg1 V = arg det(V1−
iV2) and a continuous branch of the argument is taken. The rotation number
is well-defined, i.e., the limit exists and takes the same value for almost every
ξ ∈ Ω with respect to m0, and is independent of the choices of the equivalent
argument and the fundamental matrix. A geometric introduction of the ro-
tation number and its relation with the Arnold-Maslov index [1] is given in
Johnson [8] and Johnson and Nerurkar [10].

To end this section we recall the definition of the Lyapunov exponent of the
systems (1.2) with respect to m0. Letting ∧n denote the n-th wedge product,
we define

γ = lim
t→∞

1
t

ln ‖ ∧n U(t, ξ)‖ ,

which exists for almost every ξ ∈ Ω with respect to m0. As a matter of
fact, γ =

∑n
j=1 γj where γ1 ≥ · · · ≥ γn ≥ 0 are the non-negative Lyapunov

exponents of the systems (1.2) with respect to m0 and, since U(t, ξ) is a
symplectic matrix, the remaining Lyapunov exponents are−γ1 ≤ · · · ≤ −γn ≤
0.

Ergodic representations for the rotation number and the Lyapunov expo-
nent, in terms of the generalized polar coordinates, were obtained in [16].

3. Ergodic properties of disconjugate linear Hamiltonian systems

Throughout this section, we will study ergodic properties of linear Hamil-
tonian systems (1.2) satisfying the following conditions.
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Assumption 3.1.

(1) The n × n matrix-valued function H2(ξ) ≥ 0 is positive semidefinite
on Ω.

(2) The systems (1.2) are identically normal for each ξ ∈ Ω, i.e., for
any nontrivial solution z(t, ξ) = (z1(t, ξ), z2(t, ξ))T , the vector z1(t, ξ)
does not vanish throughout any interval of R.

(3) There exists a 2n × n matrix solution of (1.2),
[
F1(t,ξ)
F2(t,ξ)

]
∈ LR, such

that detF1(t, ξ) 6= 0 for each t ∈ R and ξ ∈ Ω.

It is known that under these hypotheses the systems (1.2) are disconju-
gate on R for each ξ ∈ Ω, that is, for every non-zero solution z(t, ξ) =
(z1(t, ξ), z2(t, ξ))T , the vector z1(t, ξ) vanishes at most once on R. In fact,
if H2(ξ) ≥ 0 and systems (1.2) are identically normal, the disconjugacy is
equivalent to property (3) of the Assumption 3.1 (see Chapter 2.1 of Cop-
pel [4]). A detailed study of the properties of disconjugate linear Hamiltonian
systems can be found in Hartman [5], Coppel [4] and Reid [20].

We also recall that a 2n × n matrix solution of (1.2),
[
F1(t,ξ)
F2(t,ξ)

]
∈ LR, is

called principal at +∞ (resp. at −∞) if detF1(t, ξ) 6= 0 for each t ∈ R, and(∫ t

t0

F−1
1 (s, ξ)H2(ξ·s) (F−1

1 )T (s, ξ) ds
)−1

→ 0

as t → +∞ (resp. t → −∞). Note that, as shown in Proposition 2.2 of [4],
when (1) and (2) of Assumption 3.1 hold the symmetric matrix

∫ t
t0
F−1

1 (s, ξ)
H2(ξ·s) (F−1

1 )T (s, ξ) ds is invertible for t > t0.
From Assumption 3.1, the systems (1.2) possess principal solutions at ±∞,

which will be denoted by
[
F±1 (t,ξ)

F±2 (t,ξ)

]
, and they are unique as elements of LR.

In addition, since detF±1 (0, ξ) 6= 0, we can define

N±(ξ) = F±2 (0, ξ)(F±1 )−1(0, ξ).

Without loss of generality, in the rest of the paper the initial data of the
principal solutions at ±∞ are assumed to be

[
F±1 (0,ξ)

F±2 (0,ξ)

]
=
[

In
N±(ξ)

]
. It was

shown in Johnson et al. [11] that N±(ξ) are pointwise limits of continuous
matrix-valued functions

(3.1) N±(ξ) = lim
r→±∞

Mr(ξ),

where Mr(ξ) = F2,r(0, ξ)F
−1
1,r (0, ξ) and

[
F1,r(t,ξ)

F2,r(t,ξ)

]
is a non-trivial solution

of (1.2) with F1,r(r, ξ) = 0, irrespective of the value of F2,r(r, ξ). They are
also bounded solutions along the flow of the Riccati equation (2.1) and define
τ -invariant subsets {(ξ,N±(ξ)) | ξ ∈ Ω} ⊂ KR which concentrate two singular
τ -invariant measures (which may coincide). The next theorem was proved
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in [11] for H2(ξ) > 0. It remains valid with the same proof in the present case,
and characterizes the set where all the τ -invariant measures are concentrated.

Theorem 3.2. Let J = {(ξ,M) ∈ Ω× SR(n) |N+(ξ) ≤M ≤ N−(ξ)}.

(i) (ξ,M) ∈ J if and only if the solution F (t, ξ) =
[
F1(t,ξ)
F2(t,ξ)

]
of (1.2) with

initial condition F (0, ξ) =
[
In
M

]
satisfies detF1(t, ξ) 6= 0 for every

t ∈ R.
(ii) J is a compact invariant set.
(iii) Every τ -invariant measure ν on KR is concentrated on J , i.e.,

ν(J ) = 1. In particular, if m0 is an ergodic measure on Ω and{(
ξ,
[
F1(ξ)
F2(ξ)

])
∈ KR | ξ ∈ Ω0

}
is a τ -invariant subset of KR with m0(Ω0)

= 1, then the set

A = {ξ ∈ Ω0 | detF1(ξ) 6= 0 and N+(ξ) ≤ F2(ξ)F−1
1 (ξ) ≤ N−(ξ)}

is σ-invariant and m0(A) = 1.
(iv) J is the maximal invariant subset of D = {(ξ,M) | ξ ∈ Ω, M ∈

SR(n)}. Moreover, each minimal subset of KR is contained in J .

Let γ =
∑n
j=1 γj be the Lyapunov exponent of the systems (1.2) with re-

spect to an ergodic measure m0, where γ1 ≥ · · · ≥ γn ≥ 0 are the non-negative
Lyapunov exponents of (1.2) with respect to m0. The remaining Lyapunov
exponents are −γ1 ≤ · · · ≤ −γn ≤ 0. From Oseledets’ multiplicative ergodic
theorem (see Oseledets [17] and Johnson et al. [12]), as in Lemma 2.3 of [16],
we can construct for almost every ξ ∈ Ω a basis {xξ,1, . . . ,xξ,n,yξ,1, . . . ,yξ,n}
of R2n satisfying

(i) lim |t|→∞(1/t) ln ‖U(t, ξ) xξ,j‖ = γj for j = 1, . . . , n,
(ii) lim |t|→∞(1/t) ln ‖U(t, ξ) yξ,j‖ = −γj for j = 1, . . . , n,
(iii) the subspaces Fξ,1 = 〈xξ,1, . . . ,xξ,n〉 and Fξ,2 = 〈yξ,1, . . . ,yξ,n〉 are

real Lagrange planes.
(Recall that U(t, ξ) is the fundamental matrix solution of (1.2) with U(0, ξ) =
I2n.)

In addition, we will represent by V+(ξ), V0(ξ) and V−(ξ) the sum of the sub-
spaces corresponding to strictly negative, null and strictly positive Lyapunov
exponents, respectively. That is,

V+(ξ) = 〈yξ,1, . . . ,yξ,n−s〉 ,
V 0(ξ) = 〈xξ,n−s+1, . . . ,xξ,n,yξ,n−s+1, . . .yξ,n〉 ,
V−(ξ) = 〈xξ,1, . . . ,xξ,n−s〉 ,

where 0 ≤ s ≤ n and 2s is the number of null Lyapunov exponents.
The next two propositions explain the behaviour of some solutions of the

family of systems (1.2) which are important for the ergodic characterization
given in the last theorem of the section.
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Proposition 3.3. For almost every ξ ∈ Ω, there exists a 2n × n matrix
solution

[
F1(t,ξ)
F2(t,ξ)

]
∈ LR of (1.2) such that detF1(t, ξ) 6= 0 for each t ∈ R and

lim
t→∞

1
2t

ln det
(
FT1 (t, ξ)F1(t, ξ)

)
= γ .

Proof. As shown in Proposition 2.5 of [16], there is a τ -ergodic measure ν0

on KR such that
γ =

∫
KR

trS(ξ,Φ,Ψ) dν0 ,

where the n × n matrix-valued function S(ξ,Φ,Ψ) was introduced in Theo-
rem 2.1. Therefore, Birkhoff’s ergodic theorem assures that, for almost every
(ξ,Φ,Ψ) with respect to ν0,

γ = lim
t→∞

1
t

∫ t

0

trS(τ(s, ξ,Φ,Ψ)) ds .

Moreover, denoting by
[
F1(t,ξ)
F2(t,ξ)

]
the 2n × n matrix solution of (1.2) with

initial data
[
F1(0,ξ)
F2(0,ξ)

]
= [ Φ

Ψ ], and using the equation (2.3) satisfied by the

generalized polar coordinate R(t, ξ) with RT (t, ξ)R(t, ξ) = FT1 (t, ξ)F1(t, ξ) +
FT2 (t, ξ)F2(t, ξ), we conclude that

lim
t→∞

1
2t

ln det
(
FT1 (t, ξ)F1(t, ξ) + FT2 (t, ξ)F2(t, ξ)

)
= γ .

In addition, from Theorem 3.2 we deduce that the τ -ergodic measure ν0 is
concentrated on J , which implies that for almost every ξ ∈ Ω and each t ∈ R,
detF1(t, ξ) 6= 0 and N+(ξ·t) ≤ F2(t, ξ)F−1

1 (t, ξ) ≤ N−(ξ·t). Therefore,

γ = lim
t→∞

1
2t

ln det
(
FT1 (t, ξ)F1(t, ξ) + FT2 (t, ξ)F2(t, ξ)

)
= lim
t→∞

1
2t

ln det
(
FT1 (t, ξ)

[
In +M2(t, ξ)

]
F1(t, ξ)

)
,

and the boundedness of the symmetric matrix M(t, ξ) = F2(t, ξ)F−1
1 (t, ξ)

yield

lim
t→∞

1
2t

ln det
(
FT1 (t, ξ)F1(t, ξ)

)
= γ

for almost every ξ ∈ Ω, as asserted. �

Proposition 3.4. Let G(t, ξ) =
[
G1(t,ξ)
G2(t,ξ)

]
be a 2n × n matrix solution

of (1.2) linearly independent with the principal solution F+(t, ξ) =
[
F+

1 (t,ξ)

F+
2 (t,ξ)

]
almost everywhere, i.e., det

[
G1(t,ξ) F+

1 (t,ξ)

G2(t,ξ) F+
2 (t,ξ)

]
6= 0 . Then for almost every

ξ ∈ Ω

lim sup
t→∞

1
2t

ln det
(
GT1 (t, ξ)G1(t, ξ)

)
= γ .
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Proof. Let
[
F1(t,ξ)
F2(t,ξ)

]
be any 2n × n matrix solution of (1.2). Since G(t, ξ)

and F+(t, ξ) provide a fundamental matrix solution, there are constant n×n
matrices C1(ξ) and C2(ξ) such that F1(t, ξ) = G1(t, ξ)C1(ξ) + F+

1 (t, ξ)C2(ξ).
Therefore, setting P (t, ξ) = G−1

1 (t, ξ)F+
1 (t, ξ), we have

FT1 (t, ξ)F1(t, ξ) = [C1(ξ) + P (t, ξ)C2(ξ)]T ×
×GT1 (t, ξ)G1(t, ξ) [C1(ξ) + P (t, ξ)C2(ξ)] ,

and since P (t, ξ)→ 0 as t→∞, as shown in Proposition 2.4 of [4], we deduce
that

lim sup
t→∞

1
2t

ln det
(
FT1 (t, ξ)F1(t, ξ)

)
≤ lim sup

t→∞

1
2t

ln det
(
GT1 (t, ξ)G1(t, ξ)

)
.

Finally, since these limits are always ≤ γ, and by Proposition 3.3 there exists
a solution

[
F1(t,ξ)
F2(t,ξ)

]
for which this limit is exactly γ almost everywhere, we

obtain the result. �

Remark 3.5. Similarly, a 2n × n matrix solution
[
G1(t,ξ)
G2(t,ξ)

]
of (1.2) that

is linearly independent with
[
F−1 (t,ξ)

F−2 (t,ξ)

]
satisfies

lim sup
t→−∞

1
2t

ln det
(
GT1 (t, ξ)G1(t, ξ)

)
= −γ ,

for almost every ξ ∈ Ω. Note that in both cases we have not assumed the
initial data to be a Lagrange plane.

We will denote by F±(ξ) both the real Lagrange planes
[

In
N±(ξ)

]
obtained

from the principal solutions at ±∞ and the 2n×n real matrix
[

In
N±(ξ)

]
. The

context will give in each case the exact meaning of the symbol.
The next result yields an ergodic representation of the Lyapunov exponent

with respect to an ergodic measure m0 on Ω, and characterizes the Lagrange
planes F±(ξ) in terms of the Lyapunov exponents of the system.

Theorem 3.6.

(i) For almost every ξ ∈ Ω, the Lagrange plane F+(ξ) coincides with
V+(ξ)⊕ L0(ξ), where L0(ξ) ⊂ V0(ξ).

(ii) For almost every ξ ∈ Ω, the Lagrange plane F−(ξ) coincides with
V−(ξ)⊕ L̃0(ξ), where L̃0(ξ) ⊂ V0(ξ).

(iii) γ = ∓
∫

Ω
tr [H1(ξ) +H2(ξ)N±(ξ)] dm0.

(iv) For almost every ξ ∈ Ω, L0(ξ) = L̃0(ξ) and dim (F+(ξ) ∩ F−(ξ)) =
s = dimV0(ξ)/2. In particular, we have:
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• γ = 0 if and only if N+(ξ) = N−(ξ) almost everwhere.
• γ1 ≥ . . . ≥ γn > 0 if and only if F+(ξ) and F−(ξ) are supple-

mentary subspaces for almost every ξ ∈ Ω.

Proof. (i) Let us assume that there is j ∈ {1, 2, . . . , n− s} such that yξ,j 6∈
F+(ξ). We consider a supplementary subspace of F+(ξ) generated by the
vectors {vξ,1,vξ,2, . . . ,vξ,n} ⊂ {xξ,1, . . . ,xξ,n,yξ,1, . . . ,yξ,n}, where vξ,1 =
yξ,j , and which is not necessarily a Lagrange plane. We denote by G(ξ) the

2n × n matrix G(ξ) = [vξ,1vξ,2 · · ·vξ,n] and let G(t, ξ) =
[
G1(t,ξ)
G2(t,ξ)

]
be the

2n× n matrix solution of (1.2) with initial data G(0, ξ) = G(ξ). Notice that

n∑
k=1

lim
t→∞

1
2t

ln ‖U(t, ξ) vξ,k‖ < γ

because
lim
t→∞

1
2t

ln ‖U(t, ξ) vξ,1‖ = −γj < 0 .

It is easy to prove, as in Proposition 2.5 of [16], that

lim sup
t→∞

1
2t

ln det
(
GT1 (t, ξ)G1(t, ξ)

)
≤ lim sup

t→∞

1
2t

ln det
(
GT1 (t, ξ)G1(t, ξ) +GT2 (t, ξ)G2(t, ξ)

)
≤

n∑
k=1

lim
t→∞

1
2t

ln ‖U(t, ξ) vξ,k‖ < γ ,

which contradicts Proposition 3.4. Thus, necessarily V+(ξ) ⊂ F+(ξ). In
addition, let us suppose that v = v−+v++v0 ∈ F+(ξ) with v± ∈ V±(ξ), v0 ∈
V0(ξ) and v− 6= 0. Since V+(ξ) ⊂ F+(ξ), we deduce that v−+v0 ∈ F+(ξ) and
yTξ,j J (v− + v0) = 0 for every j = 1, 2, . . . , n− s. Moreover, since U(t, ξ) is a
sympletic fundamental matrix solution, yTUT (t, ξ)JU(t, ξ) x is independent
of t for all x,y ∈ R2n. Together with the behavior of the solutions at ±∞ this
implies that yTξ,j J v0 = 0 for every j = 1, 2, . . . , n−s. Therefore, yTξ,j J v− = 0
for every j = 1, 2, . . . , n and we will obtain n+1 isotropic independent vectors,
which is impossible. Consequently, F+(ξ) = V+(ξ)⊕ L0(ξ), as asserted.

The proof of (ii) is analogous, in view of Remark 3.5, and (iii) can be proved
using the same argument as in the proof of Theorem 4.6(iii) of [11].

(iv) By (i) and (ii), F+(ξ) = V+(ξ)⊕L0(ξ) and F−(ξ) = V−(ξ)⊕L̃0(ξ). We
consider the invariant Lagrange plane F (ξ) = V+(ξ) ⊕ L̃0(ξ) which admits a
representation of the form

[
In
M(ξ)

]
because

{
(ξ, F (ξ)) =

(
ξ,
[
F1(ξ)
F2(ξ)

])
| ξ ∈ Ω

}
is a τ -invariant subset of KR and therefore, by Theorem 3.2, detF1(ξ) 6= 0
almost everywhere. As in (iii), we have −γ =

∫
Ω

tr [H1(ξ) +H2(ξ)M(ξ)] dm0,
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which together with −γ =
∫

Ω
tr [H1(ξ) +H2(ξ)N+(ξ)] dm0 yields∫

Ω

tr
[
H2(ξ)(M(ξ)−N+(ξ))

]
dm0 = 0 .

Moreover, by Theorem 3.2 we have N+(ξ) ≤ M(ξ) for almost every ξ ∈ Ω,
and since H2(ξ) ≥ 0 we conclude that H2(ξ)N+(ξ) = H2(ξ)M(ξ) almost
everywhere on Ω. Therefore, if we consider the 2n×n matrix solution of (1.2)
F (t, ξ) =

[
F1(t,ξ)
F2(t,ξ)

]
∈ LR, with initial data

[
F1(0,ξ)
F2(0,ξ)

]
=
[

In
M(ξ)

]
, we obtain

d

dt
F+

1 (t, ξ) = H1(ξ·t)F+
1 (t, ξ) +H2(ξ·t)F+

2 (t, ξ)

=
[
H1(ξ·t) +H2(ξ·t)N+(ξ·t)

]
F+

1 (t, ξ) ,
d

dt
F1(t, ξ) = H1(ξ·t)F1(t, ξ) +H2(ξ·t)F2(t, ξ)

= [H1(ξ·t) +H2(ξ·t)M(ξ·t)]F1(t, ξ) .

Since F1(0, ξ) = F+
1 (0, ξ) = In and H2(ξ)N+(ξ) = H2(ξ)M(ξ) almost every-

where on Ω, this yields F1(t, ξ) = F+
1 (t, ξ) for almost every ξ ∈ Ω. Finally,

since the systems (1.2) are identically normal, the same holds for the other
components of the solutions, i.e., we have F2(t, ξ) = F+

2 (t, ξ). Hence we
conclude that F (t, ξ) = F+(t, ξ) for almost every ξ ∈ Ω. This implies that
N+(ξ) = M(ξ), L0(ξ) = L̃0(ξ) and dim(F+(ξ) ∩ F−(ξ)) = dimL0(ξ) = s =
dimV0(ξ)/2 almost everywhere, as asserted. �

4. Topological properties of disconjugate
linear Hamiltonian systems

In this section we consider some important topological properties satisfied
by the family of systems (1.2) (under Assumption 3.1) and a perturbation
of this family. We begin with a characterization of exponential dichotomy in
terms of the principal solutions.

Proposition 4.1. The family of linear Hamiltonian systems (1.2) admits
an exponential dichotomy on Ω if and only if R2n = F+(ξ)⊕F−(ξ) for every
ξ ∈ Ω.

Proof. If (1.2) admits an exponential dichotomy (E.D.), there are closed
invariant Lagrange planes W+(ξ) and W−(ξ) with R2n = W+(ξ) ⊕W−(ξ)
for every ξ ∈ Ω, and positive constants C, β such that

‖U(t, ξ) z‖ ≤ Ce−βt‖z‖ for every t ≥ 0 and z ∈W+(ξ) ,

‖U(t, ξ) z‖ ≤ Ceβt‖z‖ for every t ≤ 0 and z ∈W−(ξ).

As in the proof of Theorem 3.6, we then see that F+(ξ) = W+(ξ) and F−(ξ) =
W−(ξ) for every ξ ∈ Ω. Note that we have equality for every ξ ∈ Ω since, in
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this case, the 2n× n matrix solution
[
F1(t,ξ)
F2(t,ξ)

]
∈ LR of (1.2) with initial data

W−(ξ) satisfies Proposition 3.3 for every ξ ∈ Ω.
Conversely, let us assume that R2n = F+(ξ)⊕ F−(ξ) for every ξ ∈ Ω. We

denote, as usual, by F±(t, ξ) =
[
F±1 (t,ξ)

F±2 (t,ξ)

]
the principal solutions at ±∞ with

initial data
[

In
N±(ξ)

]
. Since F+(ξ) and F−(ξ) are supplementary subspaces,

by Proposition 2.4 of [4] we have, for each ξ ∈ Ω,

(4.1) lim
t→∞

(F−1 )−1(t, ξ)F+
1 (t, ξ) = 0.

In addition, the fact that the expression

(4.2) (F+
2 )T (t, ξ)F−1 (t, ξ)− (F+

1 )T (t, ξ)F−2 (t, ξ) = N+(ξ)−N−(ξ)

is independent of t, for each ξ ∈ Ω, together with (4.1) yields

0 = lim
t→∞

[
(F+

2 )T (t, ξ)F−1 (t, ξ)− (F+
1 )T (t, ξ)F−2 (t, ξ)

]
(F−1 )−1(t, ξ)F+

1 (t, ξ)

= lim
t→∞

(F+
1 )T (t, ξ)

[
N+(ξ·t)−N−(ξ·t)

]
F+

1 (t, ξ) .

Since, in this case, N−(ξ)−N+(ξ) > 0, we conclude that

(4.3) lim
t→∞

[
N−(ξ·t)−N+(ξ·t)

]1/2
F+

1 (t, ξ) = 0 .

Moreover, from (4.2) we obtain

N+(ξ)−N−(ξ) = (F+
1 )T (t, ξ)

[
N+(ξ·t)−N−(ξ·t)

]
F−1 (t, ξ) ,

that is,

(F−1 )−1(t, ξ) =
[
N+(ξ)−N−(ξ)

]−1 (F+
1 )T (t, ξ)

[
N+(ξ·t)−N−(ξ·t)

]
,

and (4.3) yields

(4.4) lim
t→∞

(F−1 )−1(t, ξ) = 0 .

Let z(t, ξ) =
[

z1(t,ξ)
z2(t,ξ)

]
be a bounded solution of the system (1.2). Since

F+(t, ξ) and F−(t, ξ) form a fundamental matrix solution, we can express
the first n components of the solution as

z1(t, ξ) = F+
1 (t, ξ) c1(ξ) + F−1 (t, ξ) c2(ξ)

for some constants c1(ξ) and c2(ξ), i.e.,

(F−1 )−1(t, ξ) z1(t, ξ) = (F−1 )−1(t, ξ)F+
1 (t, ξ)c1(ξ) + c2(ξ) .

From (4.1) and (4.4) we deduce that c2(ξ) = 0 for each ξ ∈ Ω.
Analogously, the behaviour of the principal solution at −∞ shows that

c1(ξ) = 0 for each ξ ∈ Ω, so we conclude that z1(t, ξ) = 0. Therefore,
since the systems (1.2) are identically normal, they do not admit a non-zero
bounded solution. This implies E.D. on Ω (see Selgrade [23] and Sacker and
Sell [21]) in case the flow on the base Ω is minimal. In the general case, the
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above argument provides E.D. with subbundles of constant dimension on any
minimal subset of Ω, and from this we obtain E.D. over the entire space Ω
(see Sacker and Sell [22]). �

Let us assume that the flow (Ω, σ) is minimal and let π : KR → Ω be
the projection on the base Ω. Recall that a minimal subset of KR, K, is
called an almost automorphic extension of the base Ω if there exists ξ ∈ Ω
such that card(π−1(ξ) ∩ K) = 1. A point (ξ, F ) ∈ K is called an almost
automorphic point for the flow if, whenever limn→∞ τ(tn, ξ, F ) = (ξ0, F0), we
have limn→∞ τ(−tn, ξ0, F0) = (ξ, F ), and (K, τ) is an almost automorphic
flow if there exists an almost automorphic point. (See Veech [24] for these
definitions.) The following proposition shows that the principal solutions
provide minimal almost automorphic extensions of the base Ω. For the case
H2(ξ) > 0 this was shown in [11], and the same proof applies here.

Proposition 4.2. Let us assume that the flow (Ω, σ) is minimal and that
the linear Hamiltonian systems (1.2) do not admit an exponential dichotomy.
Then there is a residual invariant subset Ω0 ⊂ Ω of continuity points of N±,
and an integer k with 1 ≤ k ≤ n such that

(i) dim (F+(ξ) ∩ F−(ξ)) = k for every ξ ∈ Ω0, and dim (F+(ξ) ∩ F−(ξ))
≤ k for every ξ ∈ Ω;

(ii) the compact invariant sets K± = cls{(ξ,N±(ξ)) | ξ ∈ Ω0} are minimal
almost automorphic extensions of the base Ω.

Remark 4.3. In some cases, the invariant subset Ω0 of continuity points
of N± has null measure m0(Ω0) = 0; see, for instance, the examples of dis-
conjugate linear bidimensional systems given by Millionščikov [14] and Vino-
grad [25].

Let us consider the perturbed family of linear Hamiltonian systems

(4.5)E z′ = (H(ξ·t) + EJ−1Γ(ξ·t)) z , ξ ∈ Ω ,

where the unperturbed systems (1.2) satisfy Assumption 3.1, E ∈ C is a
complex parameter and Γ =

[
Γ1 0
0 0

]
≥ 0 is a symmetric positive semidefinite

continuous 2n × 2n matrix-valued function on Ω with Γ1(ξ) > 0. Since the
unperturbed systems (1.2) are identically normal, it is easy to show that Γ
satisfies the following Atkinson type condition: each minimal subset of Ω
contains at least one point ξ such that

(4.6)
∫ ∞
−∞

vTUT (t, ξ) Γ2(ξ·t)U(t, ξ) v dt > 0 for all v ∈ C 2n − {0} .

Johnson and Nerurkar [10] showed that this property guarantees the expo-
nential dichotomy of the systems (4.5)E for =E > 0, that is, the existence of
a splitting of the complex bundle into two τE-invariant n-dimensional closed
subbundles, Ω× C 2n = F+

Γ,E ⊕ F
−
Γ,E , and positive constants C, β such that
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(i) ‖UE(t, ξ) z‖ ≤ Ce−βt‖z‖ for every t ≥ 0 and (ξ, z) ∈ F+
Γ,E ,

(ii) ‖UE(t, ξ) z‖ ≤ Ceβt‖z‖ for every t ≤ 0 and (ξ, z) ∈ F−Γ,E .

Moreover, for every ξ ∈ Ω, the sections F±Γ,E(ξ) = {z ∈ C 2n| (ξ, z) ∈ F±Γ,E}
are complex Lagrange planes and can be represented in terms of the Weyl
M -functions by

[
In

M±Γ (ξ,E)

]
; see also Hinton and Shaw [6, 7] and Johnson [8].

The functions M±Γ (ξ, E), defined for =E 6= 0 and ξ ∈ Ω, are symmetric com-
plex n×n matrix functions, that are continuous in both variables, and analytic
outside the real axis for each fixed ξ ∈ Ω. Moreover, ±=E =M±Γ (ξ, E) > 0,
and M±Γ (ξ, E) = (M±Γ )∗(ξ, E).

We assume that the flow on Ω is minimal, which implies that the spectrum
of the corresponding self-adjoint operator Lξ = J (d/dt−H(ξ·t)) is indepen-
dent of ξ. In fact, E belongs to the resolvent if and only if (4.5)E admits an
exponential dichotomy on Ω.

Theorem 4.4.

(i) For each E < 0 the system (4.5)E is disconjugate on R and admits an
exponential dichotomy on Ω, i.e., (−∞, 0) is contained in the resolvent
set.

(ii) We have
lim
E→0−

N±(ξ, E) = N±(ξ) ,

where N±(ξ, E) are given by the principal solutions of (4.5)E at ±∞.

Proof. (i) It is easily seen that the perturbed systems (4.5)E also satisfy
conditions (1) and (2) of Assumption 3.1. Under these conditions, and since
for E < 0 we have JH(ξ · t) + EΓ(ξ · t) ≤ JH(ξ · t) for every t ∈ R, the
comparison theorem given in Proposition 2.10 of [4] yields the disconjugacy
of the systems (4.5)E on R.

This implies that the rotation number αΓ(E) is 0 for each E ≤ 0. Thus,
the characterization of the exponential dichotomy in terms of the rotation
number, given by Johnson and Nerurkar in Theorem 2.10 of [10], establishes
the exponential dichotomy of system (4.5)E on Ω for E < 0. Obviously,
the closed n-dimensional invariant subbundles provided by the exponential
dichotomy admit the representation

{(
ξ,
[

In
N±(ξ,E)

])
| ξ ∈ Ω

}
in terms of the

principal solutions.
(ii) As explained at the beginning of Section 3, we have N±(ξ, E) =

lim
r→±∞

Mr(ξ, E), where Mr(ξ, E) = F2,r(0, ξ, E)F−1
1,r (0, ξ, E) and

[
F1,r(t,ξ,E)

F2,r(t,ξ,E)

]
is the solution of (4.5)E with initial conditions F1,r(r, ξ, E) = 0, F2,r(r, ξ, E) =
In. As in Proposition 5.1 and Theorem 5.2 of [11] we deduce that for E ≤ E′,
Mr(ξ, E) ≤Mr(ξ, E′) if r > 0, Mr(ξ, E) ≥Mr(ξ, E′) if r < 0 and

N+(ξ, E) ≤ N+(ξ, E′) ≤ N−(ξ, E′) ≤ N−(ξ, E) .
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Therefore, the limits
lim
E→0−

N±(ξ, E) = N±0 (ξ)

exist and are finite. To show that N±0 (ξ) and N±(ξ) are equal, we note that,
for every ξ ∈ Ω,

N+(ξ) = lim
r→∞

Mr(ξ) ,

N+(ξ) ≤ N+
0 (ξ) ,

N+(ξ) ≥Mr(ξ) ≥Mr(ξ, E) (E ≤ 0, r > 0) .

Thus,
0 ≤ N+

0 (ξ)−N+(ξ) ≤ N+
0 (ξ)−Mr(ξ)

≤ N+
0 (ξ)−N+(ξ, E) +N+(ξ, E)−Mr(ξ, E) ,

and since N+(ξ, E) → N+
0 (ξ) as E → 0− and Mr(ξ, E) → N+(ξ, E) as

r →∞, we conclude that N+(ξ) = N+
0 (ξ). The case N−(ξ) is analogous. �

Remark 4.5. Note that the functions N±(ξ, E) are the analytic contin-
uations to the real axis of the Weyl M -functions M±Γ (ξ, E) with =E > 0.
Therefore, the Herglotz properties of these functions also yield the existence
of the limits of N±(ξ, E) as E → 0−. The result is obvious if E = 0 is also
in the resolvent set, so the main interest of the above theorem lies in the case
when the unperturbed system does not admit an exponential dichotomy and
thus E = 0 is the first point of the spectrum.

The next result gives information on the Sacker-Sell spectrum of (4.5)E
when the dichotomy property does not hold at E = 0. Recall that, for a fixed
value of the parameter E, the Sacker-Sell spectrum ΣE of (4.5)E consists of
those real numbers λ for which the translated systems

z′ = [−λI2n +H(ξ·t) + EJ−1Γ(ξ·t)] z , ξ ∈ Ω

do not admit an E.D. See Sacker and Sell [21, 22] and also Selgrade [23]. We
note that, if (4.5)E does not have the dichotomy property at E = 0, then 0 is
an element of Σ0 = ΣE=0. On the other hand, 0 /∈ ΣE if E < 0.

Theorem 4.6. Suppose that N+(ξ) = N−(ξ) for all ξ ∈ Ω0. Then the
dynamical spectrum Σ0 of (4.5)E at E = 0 is a single interval containing
λ = 0 (which may reduce to {0}).

Proof. Suppose, to the contrary, that Σ0 is not a single interval. Then
symmetry considerations show that Σ0 = J+ ∪ J0 ∪ J−, where J+ ⊂ (−∞, 0),
J− ⊂ (0,∞), 0 ∈ J0 and the sets J+, J0, J− are compact and pairwise disjoint.
Here we have used basic properties of the Sacker-Sell spectrum given in [22].
By [22], there exists a decomposition

Ω× R2n = W+ ⊕W0 ⊕W− ,
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where W+, W0, W− are continuous, non-zero vector subbundles of Ω × R2n

which are invariant with respect to the flow on Ω×R2n determined by (4.5)E
with E = 0.

Let β1 = minJ+ ≤ max J+ = β2. Using the properties of Σ0 and the
bundles W+, W0, W− established in [22], we see that, if (ξ, z+) ∈ W+ with
z+ 6= 0, and if z(t) is the corresponding solution of (4.5)E with E = 0, then

(4.7) β1 ≤ lim inf
t→±∞

1
t

ln ‖z(t)‖ ≤ lim sup
t→±∞

1
t

ln ‖z(t)‖ ≤ β2 < 0 .

Similarly, let 0 < γ1 = minJ− ≤ supJ− = γ2. Then, if (ξ, z−) ∈ W− with
z− 6= 0, and if z(t) is the solution of (4.5)E with E = 0 and z(0) = z−, we
have

(4.8) 0 < γ1 ≤ lim inf
t→±∞

1
t

ln ‖z(t)‖ ≤ lim sup
t→±∞

1
t

ln ‖z(t)‖ ≤ γ2 .

Next note that, for small values of E, say |E| < ε, there are vector subbundles
W+(E), W0(E), W−(E) of Ω × R2n, that are invariant with respect to the
flow on Ω× R2n determined by (4.5)E at parameter value E, such that

Ω× R2n = W+(E)⊕W0(E)⊕W−(E) .

Moreover, the correspondences E 7→ W−(E), W0(E), W+(E) are continuous
in the natural (Grassmannian) sense. If E is small and negative, then, using
Proposition 4.1 and Theorem 4.4 (i), one can show that, for each ξ ∈ Ω, one
has ({ξ}×R2n)∩W±(E) ⊂ F±(ξ). Hence, by the continuity property stated
in Theorem 4.4 (ii), we have ({ξ} ×R2n) ∩W± ⊂ F±(ξ), where the inclusion
now holds at E = 0.

However, F−(ξ) cannot contain a vector in ({ξ}×R2n)∩W+ other than z =
0; this follows by considering the behaviour of z(t) as t→ −∞ in relation (4.7).
Similarly, (4.8) implies that F+(ξ) cannot contain a vector in ({ξ}×R2n)∩W−
other that z = 0. Now, by hypothesis, N+(ξ) = N−(ξ) for all ξ ∈ Ω0, and
this implies that W+ and W− must both reduce to the zero vector bundle.
This is a contradiction, so Theorem 4.6 is proved. �

Remark 4.7. The proof shows that more is true: if dim(F+(ξ)∩F−(ξ)) =
k for ξ ∈ Ω0, then the Sacker-Sell spectrum Σ0 at E = 0 can contain no more
that 2n− 2k + 1 intervals, one of which contains λ = 0.

5. L2-convergence of the principal solutions

We consider a sequence of families of linear Hamiltonian systems

(5.1)k z′ =
[
Hk

1 (ξ·t) Hk
2 (ξ·t)

Hk
3 (ξ·t) −(Hk

1 )T (ξ·t)

]
z = Hk(ξ·t) z , ξ ∈ Ω , k ∈ N ,

where Hk are continuous real 2n × 2n matrix-valued functions on Ω with
Hk(ξ) ∈ sp(n,R). If all of these systems are disconjugate on R and Hk(ξ)
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converges uniformly to H(ξ) with H2(ξ) > 0, it is known (see Theorem 2.11 of
Coppel [4]) that the limit system (1.2) is also disconjugate on R. However, the
continuity of the principal solutions requires that strong technical conditions
be satisfied (see Reid [19]).

In the following theorem we characterize the continuity of the principal so-
lutions in the L2(Ω,m0)-topology in terms of the continuity of the Lyapunov
exponents of the systems. For a matrix-valued function A(ξ) ∈ L2(Ω,m0)
we set ‖A‖2 = (

∫
Ω
‖A(ξ)‖2sdm0)1/2, where ‖A(ξ)‖s = (tr[AT (ξ)A(ξ)])1/2.

Thus, if A(ξ) is a symmetric matrix for every ξ ∈ Ω, we have ‖A‖2 =
(
∫

Ω
tr[A2(ξ)] dm0)1/2.

Theorem 5.1. Aassume that systems (5.1)k are disconjugate on R for
each k ∈ N, Hk(ξ) converges uniformly to H(ξ), and H2(ξ) > 0 is positive
definite on Ω. Denote by N±k (ξ), N±(ξ) the symmetric n × n matrix-valued
functions obtained from the principal solutions at ±∞, and by γk, γ the Lya-
punov exponents of (5.1)k and (1.2), respectively. The following statements
are equivalent:

(i) lim
k→∞

γk = γ.

(ii) lim
k→∞

N±k (ξ) = N±(ξ) in the L2(Ω,m0)-topology.

Proof. (ii) ⇒ (i). As shown in Theorem 3.6, we have

γk = ∓
∫

Ω

tr
[
Hk

1 (ξ) +Hk
2 (ξ)N±k (ξ)

]
dm0 ,

γ = ∓
∫

Ω

tr
[
H1(ξ) +H2(ξ)N±(ξ)

]
dm0 .

(5.2)

From this the implication (ii) ⇒ (i) is easily deduced.
(i) ⇒ (ii). The convergence of γk to γ as k →∞ and (5.2) yield

(5.3) lim
k→∞

∫
Ω

tr
[
Hk

2 (ξ)N+
k (ξ)

]
dm0 =

∫
Ω

tr
[
H2(ξ)N+(ξ)

]
dm0 .

Together with the positivity of H2 and the uniform convergence of Hk
2 (ξ) to

H2(ξ) as k →∞, this shows that there exists a constant C0 > 0 such that

(5.4)
∣∣∣∣∫

Ω

trN+
k (ξ) dm0

∣∣∣∣ ≤ C0 for each k ∈ N .

In addition, each function N+
k (ξ) is a solution along the flow of the Riccati

equation

(5.5) M ′ = −MHk
2 (ξ·t)M−MHk

1 (ξ·t)− (Hk
1 )T (ξ·t)M+Hk

3 (ξ·t) , ξ ∈ Ω .

This implies∫
Ω

tr
[
(N+

k H
k
2N

+
k )(ξ)

]
dm0 =

∫
Ω

tr
[
(−N+

k H
k
1 − (Hk

1 )TN+
k +Hk

3 )(ξ)
]
dm0 ,
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and using again the positivity of Hk
2 (ξ) for sufficiently large k and (5.4), we

see that there exists a positive constant C > 0 such that∫
Ω

tr
[
(N+

k )2(ξ)
]
dm0 ≤ C for each k ∈ N ,

i.e., ‖N+
k ‖22 ≤ C. Therefore, there is a subsequence that is weakly conver-

gent, i.e., convergent in the σ(L2, L2)-topology. For simplicity of notation we
continue to write N+

k for the subsequence. Thus, we have

lim
k→∞

N+
k (ξ) = M+(ξ)

in the σ(L2, L2)-topology. Analogously, we obtain

lim
k→∞

N−k (ξ) = M−(ξ)

in the σ(L2, L2)-topology.
By the characterization of the principal solutions given at the beginning of

Section 3, we have
N±k (ξ) = lim

r→±∞
Mk
r (ξ),

where
Mk
r (ξ) = F k2,r(0, ξ) (F k1,r)

−1(0, ξ)

and
[
Fk1,r(t,ξ)

Fk2,r(t,ξ)

]
is the solution of (5.1)k with initial conditions F k1,r(r, ξ) = 0,

F k2,r(r, ξ) = In. Moreover, by Proposition 4.2 of [11], we have, for each r > 0
and ξ ∈ Ω,

Mk
r (ξ) ≤ N+

k (ξ) ≤ N−k (ξ) ≤Mk
−r(ξ) .

Since Mk
r (ξ) converges uniformly on Ω to Mr(ξ) as k → ∞ and since weak

convergence preserves order, we deduce that

Mr(ξ) ≤M+(ξ) ≤M−(ξ) ≤M−r(ξ) .

Finally, taking limits as r →∞ we conclude that

(5.6) N+(ξ) ≤M+(ξ) ≤M−(ξ) ≤ N−(ξ) .

In addition, by (5.2) we have

γk =
1
2

∫
Ω

tr
[
Hk

2 (ξ)
(
N−k (ξ)−N+

k (ξ)
)]
dm0 ,

and the continuity of the Lyapunov exponents implies that

lim
k→∞

∫
Ω

tr
[
Hk

2 (ξ)
(
N−k (ξ)−N+

k (ξ)
)]
dm0

=
∫

Ω

tr
[
H2(ξ)

(
N−(ξ)−N+(ξ)

)]
dm0.
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Moreover, the weak convergence of N±k (ξ) yields

lim
k→∞

∫
Ω

tr
[
Hk

2 (ξ)
(
N−k (ξ)−N+

k (ξ)
)]
dm0

=
∫

Ω

tr
[
H2(ξ)

(
M−(ξ)−M+(ξ)

)]
dm0.

Hence,∫
Ω

tr
[
H2(ξ)

(
N−(ξ)−N+(ξ)

)]
dm0 =

∫
Ω

tr
[
H2(ξ)

[
M−(ξ)−M+(ξ)

)]
dm0 .

Finally, the inequalities (5.6) and the positivity ofH2(ξ) yieldN+(ξ) = M+(ξ)
and N−(ξ) = M−(ξ) for almost every ξ ∈ Ω, and consequently

lim
k→∞

N±k (ξ) = N±(ξ)

in the σ(L2, L2)-topology.
Using again the fact that N±(ξ) are solutions to the Riccati equation (5.5)

and the weak convergence, we easily deduce that

lim
k→∞

∫
Ω

tr
[
N±k H

k
2N
±
k (ξ)

]
dm0 =

∫
Ω

tr
[
N±H2N

±(ξ)
]
dm0 .

Together with the continuity and positivity of H2(ξ) and Hk
2 (ξ) for sufficiently

large k, this gives

lim
k→∞

∫
Ω

tr
[
(N±k )2(ξ)

]
dm0 =

∫
Ω

tr
[
(N±)2(ξ)

]
dm0 .

Therefore,
lim
k→∞

‖N±k ‖2 = ‖N±‖2,

and hence
lim
k→∞

N±k (ξ) = N±(ξ)

in the L2(Ω,m0) topology. This proves the convergence of N±k to N± in the
L2(Ω,m0)-topology. Finally, we note that, although we have shown conver-
gence only for a subsequence, since the limit of any convergent subsequence
is independent of the subsequence, we have, in fact, convergence of the full
sequence. �
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