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SCREW MOTION SURFACES IN H2 × R AND S2 × R

RICARDO SA EARP AND ERIC TOUBIANA

Abstract. In this paper we study the geometry of constant mean cur-

vature H–screw motion surfaces in H2 ×R and S2 ×R. We compute the

Abresch-Rosenberg holomorphic quadratic differential Q. For instance,

if the ambient space is H2 × R, we derive that, given `, if 0 < 4H2 < 1,

then there exists a complete H–screw motion surface with pitch ` im-
mersed in H2 × R, such that Q 6= 0. An analogous result holds if the
ambient space is S2 × R. We deduce a general non-parametric formula
for the mean curvature H(ρ). When H is constant, we find a first in-
tegral and use it to get an explicit two parameter family of complete,
embedded, simply connected, minimal screw motion surfaces in H2 × R

with pitch `. If ` = 1, each such surface has Gaussian curvature K ≡ −1.
We deduce that any two isometric screw motion minimal immersions in

H2 × R or S2 × R are associate, i.e., the absolute values of their Hopf
functions are the same.

1. Introduction

In this paper we study minimal and constant mean curvature surfaces in
H2×R and S2×R. The study of such surfaces has been initiated and influenced
by Harold Rosenberg [11]. Recently, several mathematicians worked on the
subject as we will describe in the sequel. See, for instance, the articles of
Abresch-Rosenberg [1], Hauswirth [5], Meeks-Rosenberg [7], Nelli-Rosenberg
[9] and Daniel [2]. For H–surfaces immersed in H2 × R or S2 × R, Uwe
Abresch and Harold Rosenberg discovered a holomorphic quadratic differential
Q, generalizing Hopf’s holomorphic quadratic differential. The definition of
Q is the following:

Let us assume now that the ambient space is H2 × R. Let ∇∇∇ be the Rie-
mannian connection in H2 × R. If X,Y are tangent vectors and if N is the
unit normal, we define

q(X,Y ) := 2H〈∇∇∇XY,N〉 + dt(X)dt(Y ),
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where t is the height. Then

Q(X,Y ) :=
1

2
·
[
q(X,Y ) − q(JX, JY )

]
− 1

2
· i
[
q(JX, Y ) + q(X, JY )

]
,

where J is the induced almost complex structure.
When the ambient space is S2 × R, the definition of q is slightly different,

namely

q(X,Y ) := 2H〈∇∇∇XY,N〉 − dt(X)dt(Y ).

We will investigate the geometry of surfaces that are invariant by screw
motions in H2 × R := {(x, y, t), x2 + y2 < 1, t ∈ R}. We will consider a graph
λ = λ(ρ) lying in the vertical plane xt, where ρ is the hyperbolic distance from
the origin along the x axis. We will consider a surface obtained by applying
successive screw motions on λ(ρ) with pitch `, around the vertical t–axis,
called standard screw motion surface, or simply screw motion surface. An
analogous definition holds in S2 ×R. For H–screw motion surfaces in H2 ×R

or S2 × R, we will find an explicit non-parametric integral formula for λ(ρ),
and we will develop techniques to compute explicitly Q and give a geometric
description of some special cases. For instance, if 4H2 > 1, we will show that
there exists a complete H–screw motion surface immersed in H2 × R, with
pitch `, such that Q = 0 if and only if ` = 0. The generating curve of this
immersion is periodic with period 2P. Moreover, this immersion is proper if
and only if 2P and 2π` are linearly dependent over the field of the rational
numbers. We will also show that, given `, if 0 < 4H2 < 1, then there exists
a complete H–screw motion surface with pitch ` immersed in H2 × R, such
that Q 6= 0. An analogous result holds if the ambient space is S2 × R.

We now summarize our results. If the ambient space is H2 × R, we will
obtain embedded minimal surfaces, and we will determine the isometric screw
motion minimal surfaces. In fact, we will find an explicit formula for the
metric of a screw motion H–surface. Then we will deduce that two isometric
screw motion minimal immersions in H2 × R are associate, i.e., the absolute
values of their Hopf functions are the same. We remark that Benôıt Daniel
gave an equivalent definition of associate and conjugate surfaces and proved
some related results [2]. For H–screw motion surfaces, we will give an explicit
formula for the Abresch-Rosenberg holomorphic quadratic differential Q.

Minimal surfaces of revolution were studied by Barbara Nelli and Harold
Rosenberg [9]. Nelli and Rosenberg established the formula for the helicoids.
This was already obtained in [11]: The helicoid is a minimal surface that is
invariant by screw motions generated by a straight line. We will prove that
the catenoid is conjugate to a helicoid of pitch ` < 1, i.e., their Hopf functions
have opposite signs. We will prove that an helicoid is conjugate to a catenoid
if and only if ` < 1.

If the ambient space is S2 × R, we will deduce similar results. Any two
isometric screw motion minimal immersions in S2 × R are associate. William
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Meeks, III and Harold Rosenberg [7] constructed a two-parameter family of
proper minimal surfaces in S2 × R foliated by circles on each S2 × {t}. Again
on account of an explicit non-parametric integral formula for λ(ρ), we will
construct complete minimal and H–screw motion surfaces immersed in S2×R.
For instance, we will find complete minimal and H–screw motion surfaces
immersed in S2 ×R whose generating curve is periodic with period 2P. If 2P
and 2π` are linearly dependent over Q, then the immersion is proper.

We remark that H–surfaces of revolution in H2×R and S2×R were studied
in the Abresch-Rosenberg paper [1], where the authors proved some general
theorems when Q ≡ 0. For H–screw motion surfaces in S2 × R, we will
compute an explicit formula for the Abresch-Rosenberg holomorphic quadratic
differential Q.

We now give a more detailed outline of this paper. We will first prove
a general non-parametric formula for the mean curvature H(ρ). When H
is constant, we will find a first integral and use it to get an explicit two
parameter family of complete, embedded, simply connected, minimal screw
motion surfaces. More precisely, we will obtain for ` > 1/

√
2 a complete,

embedded, simply connected, minimal screw motion surface in H2 × R with
pitch ` that is conformally equivalent to the hyperbolic plane H2. If ` = 1, we
will see that each of these surfaces has Gaussian curvature K ≡ −1.

We will then establish a Bour Lemma for screw motion surfaces in the
product H2 ×R or in S2 ×R, and use it to determine all isometric immersions
with the same mean curvature H. To this end, we will follow ideas of Bour
[3], Manfredo Do Carmo and Marcos Dajczer [4] in Euclidean space and ideas
of Javier Ordóñes from his Doctoral Thesis at PUC-Rio [10] in space form.
The geometric construction underlying this result can be sketched as follows.
We will find natural coordinates s, τ such that s is the arc length of a geodesic
curve in the surface orthogonal to the orbits (helices s = cte), and hence the
metric is given by dµ2 = ds2 +U2(s)dτ2. By an obvious change of coordinates
we get conformal coordinates w = υ + iτ. Incidentally, we will obtain a family
of complete isometric surfaces in H2 × R, with constant (intrinsic) Gaussian
curvature K = −a2, 0 < a2 6 1.

For H–screw motion surfaces in H2 × R, computations show that the
Abresch-Rosenberg holomorphic quadratic differential Q is given by

1

2
(Q(Xυ, Xυ) − Q(Xτ , Xτ )) − iQ(Xυ, Xτ )

=
1

m2

(
d2 − 4H2 + `2(4H2 − 1)

)
− i

2`

m2
d,

where d is a parameter given by the first integral formula (see Lemma 11; the
geometric meaning will be pointed out in the study of the generating curve)
and m is a parameter given by Bour’s Lemma. We observe that if d = 0, H > 0
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and ` = 0 or 1− 4H2 > 0, then Q 6= 0. Notice that if the surface is rotational
(` = 0), we may suppose m = 1. Then Q = 0 if and only if d = ±2H,H > 0.

Now notice that if 1 < 4H2, and if d2 = 4H2, H > 0, then Q = 0 if and
only if ` = 0. In the case 1 − 4H2 < 0, ` = 0, H > 0 and d = −2H we infer
formula 29 S in [1]. In the case 1 − 4H2 > 0, H > 0, ` = 0 and d = −2H
we obtain the formula 31 D in [1]. If d = 2H, ` = 0 we get formula 31 C
in [1]. In the case H = 1/2, ` = 0 and d = −1 we deduce formula 30 D in
[1]. On the other hand, if 1 > 4H2, H > 0, and if d = 0, then Q 6= 0. If
d = 0, H > 0, ` = 0, and if 1 − 4H2 > 0, we infer the formula

cosh

(
t
√

1 − 4H2

2H

)
= sinh ρ ·

√
1 − 4H2

2H
.

For the values of H and d given above, we will describe the geometric
proprieties of the H–screw motion surface. Using quite different techniques,
namely reduction methods, Stefano Montaldo and Irene I. Onnis gave a clas-
sification of screw motion surfaces in H2 × R, based on the profile curve in
orbit space [8].

Finally, if the ambient space is S2 × R, then the Abresch-Rosenberg holo-
morphic quadratic differential Q for H–screw motion surfaces is given by

1

2
·
[
Q(Xυ, Xυ) − Q(Xτ , Xτ )

]
− iQ(Xυ, Xτ )(1)

=
1

m2

(
4H2 − d2 + `2(1 + 4H2)

)
+ i

2`

m2
d.

2. Some formulas for immersions of Ω ⊂ C in M 2 × R

Let M2 be a two dimensional Riemannian manifold. Let (x, y, t) be local
coordinates in M2×R, where z = x+iy are conformal coordinates on M 2 and
t ∈ R. Let σ2|dz|2 be the conformal metric in M 2. Thus ds2 = σ2|dz|2 + dt2

is the metric in the product space M 2 × R. Let Ω ⊂ C be a planar domain
and let

X : Ω # M2 × R, w 7→ (h(w), f(w)), w = u + iv ∈ Ω,

be an immersion of Ω in M2×R. We say that h(w) is the horizontal component
and that f(w) is the vertical component. Let ∂x, ∂y, ∂t be a local frame field
adapted to X. Let 〈, 〉 be the inner product in the product space M 2×R; that
is, if V = a∂x + b∂y + c∂t is a tangent vector, then 〈V, V 〉 = (a2 + b2)σ2 + c2.
We will need the complex operators ∂w and ∂w, defined as follows. If g is
a differentiable function in a domain Ω, we set gw := (1/2)(gu − igv) and
gw := (1/2)(gu + igv). Thus, using the complex terminology, we can rewrite
gu = gw + gw and gv = igw − igw.
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Proposition 1. X : Ω # M2 × R, w = u + iv 7→ X(w), is a conformal
immersion if and only if

(fw)
2

= − (σ◦h)
2
hwhw.

Furthermore, the induced metric ds2 = µ2|dw|2 is given by

µ2 = (σ◦h)
2
(|hw| + |hw|)2 .

Proof. Note that 〈Xu, Xu〉 = 〈Xv, Xv〉 if and only if σ2(|hu|2 − |hv|2) =
f2

v −f2
u , and 〈Xu, Xv〉 = 0 if and only if σ2 <huhv = −fufv. Now multiplying

the second equation by 2i and subtracting from the first equation, we deduce
that X is conformal if and only if

σ2(|hu|2 − |hv|2 − 2i<hvhu) = −(f2
u − f2

v − 2ifufv)

Using the operators ∂w and ∂w, we deduce that

(σ◦h)
2
hwhw = − (fw)

2
,

as desired. This completes the proof of the first part of the statement.
We now turn to the computation of the induced metric ds2 = µ2|dw|2. We

have

µ2 =
1

2
(〈Xu, Xu〉 + 〈Xv, Xv〉)

=
1

2

(
(σ◦h)2(|hu|2 + |hv|2) + f2

u + f2
v

)

=
1

2

(
2(σ◦h)2(|hw|2 + |hw|2) + 4(σ◦h)2|hw||hw|

)
.

The last equation follows from complex terminology, using the first part of the
statement. This completes the proof of the second part of the statement. �

Let ∇∇∇ be the Riemannian connection in M 2 × R.

Proposition 2.

∇∇∇∂x
∂x =

σx

σ
∂x − σy

σ
∂y,

∇∇∇∂y
∂y = −σx

σ
∂x +

σy

σ
∂y,

∇∇∇∂y
∂x = ∇∇∇∂x

∂y =
σy

σ
∂x +

σx

σ
∂y,

∇∇∇∂x
∂t = ∇∇∇∂y

∂t = ∇∇∇∂t
∂t = ∇∇∇∂t

∂x = ∇∇∇∂t
∂y = 0.

Proof. The proof is a standard computation, in view of the product metric
ds2 = σ2|dz|2 + dt2. �

Proposition 3. Let

X : Ω # M2 × R, w 7→ (h(w), f(w)), w = u + iv ∈ Ω
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be an immersion of a planar domain Ω in M 2 × R. Then

∇∇∇Xu
Xu =

(
<huu +

(
(<hu)2 − (=hu)2

) σx

σ
+ 2<hu=hu

σy

σ

)
∂x

+
(
=huu +

(
(=hu)2 − (<hu)2

) σy

σ
+ 2<hu=hu

σx

σ

)
∂y + fuu∂t

=
(
<huu + (hw + hw)

2 σz

σ
+
(
hw + hw

)2 σz

σ

)
∂x

+
(
=huu − i (hw + hw)

2 σz

σ
+ i
(
hw + hw

)2 σz

σ

)
∂y + fuu ∂t,

∇∇∇Xv
Xv =

(
<hvv +

(
(<hv)2 − (=hv)2

) σx

σ
+ 2<hv=hv

σy

σ

)
∂x

+
(
=hvv +

(
(=hv)2 − (<hv)2

) σy

σ
+ 2<hv=hv

σx

σ

)
∂y + fvv∂t

=
(
<hvv − (hw − hw)

2 σz

σ
−
(
hw − hw

)2 σz

σ

)
∂x

+
(
=hvv + i (hw − hw)

2 σz

σ
− i
(
hw − hw

)2 σz

σ

)
∂y + fvv ∂t,

∇∇∇Xu
Xv = ∇∇∇Xv

Xu

=
(
<huv + (<hu<hv −=hu=hv)

σx

σ
+ (<hu=hv + =hu<hv)

σy

σ

)
∂x

+
(
=huv + (<hu=hv + =hu<hv)

σx

σ
+ (=hu=hv −<hu<hv)

σy

σ

)
∂y

+ fuv∂t

=
(
<huv + i

(
h2

w − h2
w

) σz

σ
+ i
(
h

2

w − h
2

w

) σz

σ

)
∂x

+
(
=huv +

(
h2

w − h2
w

) σz

σ
−
(
h

2

w − h
2

w

) σz

σ

)
∂y + fuv ∂t.

Proof. Applying Proposition 2 to any immersion X(u, v), we can easily
compute ∇∇∇Xu

Xu,∇∇∇Xv
Xv and ∇∇∇Xv

Xu in terms of the derivatives of the hor-
izontal component h and the vertical component f . Making use of complex
terminology, we obtain the identities in the statement. �

Proposition 4. Assume that

X : Ω # M2 × R, w 7→ (h(w), f(w)), w ∈ Ω

is a conformal immersion. Then a unit normal N is given by

N =

(
2
σ <F, 2

σ =F, |F |2 − 1
)

|F |2 + 1
,

where

F =
fwhw − fwhw

σ|hw| (|hw| + |hw|)
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and

F 2 = −hw

hw

.

Proof. By a simple computation, we see that 〈Xu, N〉 = 〈Xv, N〉 = 0 and
〈N,N〉 = 1, which proves the proposition. �

Remark. Note that when the ambient space is the Euclidean space, i.e.,
σ = 1, the complex function F appearing in Proposition 4 is called the oriented
Euclidean Gauss map, and denoted by g in the minimal surfaces literature.

Let Xs, Xτ , be adapted tangent vectors, where s, τ are natural coordinates,
given by Theorem 19 and Theorem 20. We will compute the covariant deriva-
tives, as follows.

Proposition 5. Let S be a screw motion surface immersed in H2 × R

given by

(2) X(ρ(s), ϕ(s, τ)) = (tanh ρ/2 cosϕ, tanh ρ/2 sin ϕ, λ(ρ) + `ϕ) ,

where ` > 0 is the pitch. If ` = 0, the surface is rotational.
Then (using complex notation) we have

∇∇∇Xs
Xs =

(
e iϕ
[ ρ′′

1 + cosh ρ
− ϕ2

s tanh(ρ/2) cosh ρ(3)

+ i

(
2ϕsρ

′

1 + cosh ρ
+ tanh(ρ/2)ϕss +

2 sinh2 ρϕsρ
′

(1 + cosh ρ)2

)]
,

λ′′ρ′2 + λ′ρ′′ + `ϕss

)
,

∇∇∇Xτ
Xτ = −e iϕϕ2

τ cosh ρ tanh(ρ/2),(4)

∇∇∇Xτ
Xs = e iϕ ϕτ cosh ρ

1 + cosh ρ
(−ϕs sinh ρ + iρ′) .(5)

In addition, a unit normal is given by

N =
ρ′

mU

(−e iϕ (λ′ sinh ρ + i`)

1 + cosh ρ
, sinh ρ

)
.(6)

Proof. The proof is a long calculation, setting

<h := tanh(ρ(s)/2) cos(ϕ(s, τ)), =h := tanh(ρ(s)/2) sin(ϕ(s, τ)),

and f := λ◦ρ(s) + `ϕ(s, τ), taking into account Proposition 3 and Proposi-
tion 4. �

Similarly, we state the following formulas for future reference.
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Proposition 6. Let S be a screw motion surface immersed in S2 × R

given by

(7) X(ρ(s), ϕ(s, τ)) = (tan ρ/2 cosϕ, tan ρ/2 sin ϕ, λ(ρ) + `ϕ) ,

where ` > 0 is the pitch. If ` = 0, the surface is rotational.
Then (using complex notation)

∇∇∇Xs
Xs =

(
e iϕ
[ ρ′′

1 + cos ρ
− ϕ2

s tan(ρ/2) cos ρ(8)

+ i

(
2ϕsρ

′

1 + cos ρ
+ tan(ρ/2)ϕss −

2 sin2 ρϕsρ
′

(1 + cos ρ)2

)]
,

λ′′ρ′2 + λ′ρ′′ + `ϕss

)
,

∇∇∇Xτ
Xτ = −e iϕϕ2

τ cos ρ tan(ρ/2),(9)

∇∇∇Xτ
Xs = e iϕ ϕτ cos ρ

1 + cos ρ
(−ϕs sin ρ + iρ′) .(10)

In addition, a unit normal is given by

N =
ρ′

mU

(−e iϕ (λ′ sin ρ + i`)

1 + cos ρ
, sin ρ

)
.(11)

Proof. The proof is a calculation similar to that of Proposition 5. �

Proposition 7. Assume that

X : Ω # M2 × R, w 7→ (h(w), f(w)), w ∈ Ω,

is a conformal immersion with induced metric ds2 = µ2|dw|2. Then the mean

curvature vector
−→
H is given by

2µ2 −→
H = 4<

(
hww + 2

σz

σ
hwhw

)
∂x +4=

(
hww + 2

σz

σ
hwhw

)
∂y +4f ∂t.

Proof. Using Proposition 3 we see that

∇∇∇Xu
Xu +∇∇∇Xv

Xv

=
(
<huu + <hvv + 4hwhw

σz

σ
+ 4hwhw

σz

σ

)
∂x

+
(
=huu + =hvv − 4ihwhw

σz

σ
+ 4ihwhw

σz

σ

)
∂y + 4f ∂t

= 4<
(
hww + 2

σz

σ
hwhw

)
∂x + 4=

(
hww + 2

σz

σ
hwhw

)
∂y + 4f ∂t,

as desired. Since X is conformal, this completes the proof of the proposition.
�
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Remark. We make some fairly general comments concerning harmonic
maps. We recall that a function

h : Ω ⊂ C → (M2, σ2|dz|2), w 7→ h(w),

is a harmonic map if it satisfies

(12) hww + 2
σz

σ
hwhw = 0.

We also recall that for any harmonic map h : Ω ⊂ C 7→ M 2 there exists a
related Hopf holomorphic function given by

(13) φ = (σ◦h)
2
hwhw;

see [13], [14]. For the reader’s benefit we show now that φ is indeed holomor-
phic. A simple computation, using complex differentiation and the chain rule,
ensures that

φw = (σ◦h)
2

[
hw

(
hww +

2σz

σ
hwhw

)
+ hw

(
hww +

2σz

σ
hwhw

)]
.

Hence φ is holomorphic if h is an harmonic map. It is worth noting that if h
is a harmonic map, the zeros of hw and hw are isolated unless φ ≡ 0. In view
of Proposition 1 and Proposition 7, we infer that

X : Ω # M2 × R, w 7→ (h(w), f(w)), w ∈ Ω

is a conformal minimal (possibly ramified) immersion if and only if the fol-

lowing three conditions hold: (fw)
2

= −φ, the horizontal component h is a
harmonic map, and the vertical component f is a harmonic function.

Let Ω ⊂ C be a planar domain, and let M 2 be a two dimensional space

of constant Gaussian curvature. Let X, X̃ : Ω # M2 × R be two conformal

immersions with same constant mean curvature H. Assume that X and X̃
are isometric, that is, ds̃2 = ds2 = µ2 |dw|2, where w ∈ Ω is a complex
parameter. Assume also for the moment that M 2 = R2, and that X and

X̃ are isometric immersions in R3. We now describe the standard notion of
associate immersions in R3.

Let φR3 and φ̃R3 be the classical Hopf functions of X, and X̃, respectively.
A standard computation show that

|φR3 |2 =
∣∣∣φ̃R3

∣∣∣
2

=
(
H2 − K

)
µ4,

where K is the Gaussian curvature. It follows that

φ̃R3 = eiθ φR3 , θ ∈ R.

Now turning to the product space H2 × R, let X(w) = (h(w), f(w)) be a

minimal conformal immersion with Hopf function φ given by (13). Let φ̃ be
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the Hopf function associate to X̃, given by (13). We then have the following
theorem.

Theorem 8 (Hauswirth, Sa Earp, Toubiana [6]). Let X, X̃ : U # H2 ×R

be two conformal and minimal isometric immersions. If φ = φ̃, then, up to

rigid motions of H2 × R, the two immersions X and X̃ are the same.

This result suggests the following definition.

Definition. We say that two conformal isometric immersions X, X̃ :

Ω # H2 ×R are associate, if the Hopf functions satisfy the relation φ̃ = eiθ φ.

If φ̃ = −φ, we say that the two surfaces are conjugate.

Of course, these definitions can be extended to S2 ×R, and more generally
to M2 × R. We consider the following question:

Is it true that two isometric minimal immersions X, X̃ of Ω in H2 ×R are
associate?

As we will see, this question has a positive answer in the context of minimal
standard screw motion surfaces immersed in H2 × R or S2 × R.

3. Some formulas for H–surfaces in H2 × R and S2 × R that are

invariant by screw motions

Let H2 = {(x, y), x2 + y2 < 1} be the hyperbolic plane equipped with the
hyperbolic metric, i.e., σ = 2/(1 − |z|2). The metric in H2 × R in cylindrical
coordinates (ρ, θ, t), where ρ is the hyperbolic distance measure from the origin

of H2, i.e., R = tanh ρ/2, R =
√

x2 + y2, and t is the height, is given by

ds2 = dρ2 + sinh2 ρ dθ2 + dt2. We will study surfaces that are invariant by a
1-parameter group of screw motions. As we indicated in the introduction, the
idea is to take a graph t = λ(ρ) in the vertical plane xt and turn it around
the t axis by performing screw motions. More precisely, we consider smooth
immersions of the form (2):

Proposition 9. A unit normal vector N is (using complex notation)

N =
1√

`2 + sinh2 ρ + λ′2 sinh2 ρ

(− eiϕ(λ′ sinh ρ + i`)

1 + cosh ρ
, sinh ρ

)
.

Proof. For the sake of clarity, this formula for the unit normal could be
derived with the aid of the formula obtained in Proposition 4, assuming the
existence of natural parameters s, τ . However, the formula also follows readily,
by a simple computation, from the equations 〈N,N〉 = 1 and 〈N,Xϕ〉 =
〈N,Xρ〉 = 0, where

Xϕ = (− tanh ρ/2 sinϕ, tanh ρ/2 cos ϕ, `)
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and

Xρ =

(
cos ϕ

1 + cosh ρ
,

sin ϕ

1 + cosh ρ
, λ′(ρ)

)

are the tangent vectors adapted to X. �

We will need the mean curvature equation for screw motion surfaces.

Proposition 10. The mean curvature equation is

2H(ρ)
(
`2 + sinh2 ρ + λ′2 sinh2 ρ

)3/2
(14)

= λ′′ sinh ρ(`2 + sinh2 ρ)

+ λ′ cosh ρ(2`2 + sinh2 ρ + λ′2 sinh2 ρ).

Proof. We shall take natural coordinates s, τ so that the induced metric is
given by dµ2 = ds2 + U2dτ2. In fact, it is easy to see that this can be done
locally (see Theorem 19). We have therefore natural conformal coordinates
υ + iτ , where υ =

∫
(1/U)ds. Of course, the induced metric becomes

dµ2 = U2(dυ2 + dτ2).

Notice that the mean curvature H is given by

2H(ρ)U2 = U2〈∇∇∇Xs
Xs, N〉 + 〈∇∇∇Xτ

Xτ , N〉.
Now invoking Proposition 5, Proposition 9, and (2), we obtain, after a long
calculation,

U2〈∇∇∇Xs
Xs, N〉 = U2

(
λ′′(`2 + sinh2 ρ) sinh ρ

(`2 + sinh2 ρ + λ′2 sinh2 ρ)3/2

+
cosh ρλ′`2

(`2 + sinh2 ρ + λ′2 sinh2 ρ)3/2

+
cosh ρλ′`2

(`2 + sinh2 ρ)(`2 + sinh2 ρ + λ′2 sinh2 ρ)1/2

)
,

〈∇∇∇Xτ
Xτ , N〉 = U2 cosh ρλ′ sinh2 ρ

(`2 + sinh2 ρ)(`2 + sinh2 ρ + λ′2 sinh2 ρ)1/2
.

Adding these equalities we obtain the desired formula. �

The following formula is crucial for our study.

Lemma 11.
(

λ′ sinh2 ρ√
`2 + sinh2 ρ + λ′2 sinh2 ρ

)′

= 2 sinh ρH(ρ).
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In particular, if H is constant, we obtain

λ′2 sinh4 ρ

`2 + sinh2 ρ + λ′2 sinh2 ρ
= (d + 2 cosh ρH)

2
(first integral).(∗)

Proof. Using (14), we find that the derivative of the quantity

λ′ sinh2 ρ√
`2 + sinh2 ρ + λ′2 sinh2 ρ

is exactly 2 sinh ρH(ρ). This completes the proof of the Proposition. �

Now let S2 = C∪{∞} be the sphere equipped with the spherical metric, i.e.,
σ = 2/(1 + |z|2). The metric in S2×R in cylindrical coordinates (ρ, θ, t), where
ρ is the sphere distance measure from the origin of S2, i.e., R = tan ρ/2, R =√

x2 + y2, and t is the height, is given by ds2 = dρ2 + sin2 ρ dθ2 + dt2. We
investigate surfaces that are invariant by a 1-parameter group of screw mo-
tions. We consider smooth immersions of the form (7). Using the formula for
the unit normal obtained above, we infer the following result.

Proposition 12. A unit normal vector N is (using complex notation)

N =
1√

`2 + sin2 ρ + λ′2 sin2 ρ

(− eiϕ(λ′ sin ρ + i`)

1 + cos ρ
, sin ρ

)
.

The mean curvature equation is given in the following result.

Proposition 13. We have

2H(ρ)
(
`2 + sin2 ρ + λ′2 sin2 ρ

)3/2
(15)

= λ′′ sin ρ(`2 + sin2 ρ)

+ λ′ cos ρ(2`2 + sin2 ρ + λ′2 sin2 ρ).

The companion result to Lemma 11 is the following.

Lemma 14.
(

λ′ sin2 ρ√
`2 + sin2 ρ + λ′2 sin2 ρ

)′

= 2 sin ρH(ρ).

In particular, if H is constant, we obtain

λ′2 sin4 ρ

`2 + sin2 ρ + λ′2 sin2 ρ
= (d − 2 cos ρH)

2
(first integral).(∗∗)

We observe that the proofs of Proposition 12, Proposition 13 and Lemma 14
are exactly the same as those of the analogous results in H2 × R with the
substitutions sinh ρ → sin ρ and cosh ρ → sin ρ. We omit the details.
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Of course, the reader may expect that there exists some discovery process
leading to Lemma 11 and Lemma 14. This is related to the knowledge of the
Hopf function and of the Abresch-Rosenberg quadratic differential.

In the remainder of the paper, we will employ the formulas established
in this section to study minimal and constant (mean) curvature surfaces in
H2 × R and S2 × R.

4. Complete minimal screw motion immersions in H2 × R and

S2 × R

We wish to find complete embedded minimal screw motion surfaces in
H2 × R and complete minimal screw motion surfaces in S2 × R and describe
these geometrically.

We first investigate minimal surfaces in H2 × R. Notice that the helicoids
are obtained from the first integral (∗) by setting d = 0. Assume d 6= 0. Up
to vertical translations or symmetry about the xy plane, we infer from (∗)
that the generating graph t = λ(ρ) of a minimal screw motion immersion in
H2 × R is given by (assuming d > 0; if d = 0 we obtain the helicoids)

(16) λ(ρ) = d

∫ ρ

a

√
` 2 + sinh2 r

sinh r
√

sinh2 r − d2
dr, d = sinh a.

Before we proceed to construct the minimal (and constant mean curva-
ture) surfaces, we fix some notation and prove some basic formulas for future
reference.

We shall always denote by t = λ◦ρ(R) := λ(ρ(R)) the height, where R is
the Euclidean distance in {x2 +y2 < 1} or C∪{∞} measured from the origin,
when the ambient space is H2 × R or S2 × R, respectively. By the chain rule
we easily obtain the following relations:

dλ◦ρ
dR

=

{
λ′(ρ)(1 + cosh ρ) if the ambient space is H2 × R,

λ′(ρ)(1 + cos ρ) if the ambient space is S2 × R,

d2λ◦ρ
dR2

=

{
λ′′(ρ)(1 + cosh ρ)2 + λ′(ρ)(sinh ρ)(1 + cosh ρ)

if the ambient space is H2 × R.

(17)

In the following result, we obtain a family of embedded surfaces with Gaussian
curvature K ≡ −1.

Theorem 15. The generating function t = λ◦ρ(R) of a minimal immer-
sion invariant by screw motions is an increasing strictly concave function for
R > (

√
1 + d2−1)/d cutting orthogonally the x–axis at (

√
1 + d2−1)/d. When

ρ → ∞, i.e., R → 1, then t = λ◦ρ has a finite limit and the tangent line to the
graph has a limit angle α with the x–axis such that tan α = d. Thus, extending
the graph by symmetry about the x–axis, we obtain a complete embedded curve
with bounded height generating a complete minimal properly immersed surface
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in H2×R. Each such surface is conformally equivalent to the hyperbolic plane
H2.

In addition, if ` > 1/
√

2, then for any parameter d we obtain a minimal
simply connected embedded screw motion surface. If ` = 1, then each such
surface has Gaussian curvature K ≡ −1.

Proof. Of course, in view of (16) we see that λ′(ρ) > 0 if ρ > a and that
λ(ρ) is vertical at ρ = a. According to (17) we deduce t = λ◦ρ is a strictly

increasing function for R > (
√

1 + d2 − 1)/d cutting orthogonally the x–axis

at (
√

1 + d2 − 1)/d. Differentiating twice (16), taking into account (17), after
a straightforward computation we infer

d2λ◦ρ
dR2

· 1

(1 + cos ρ)

= d · sinh2 ρ (`2 + sinh2 ρ)
[
(sinh2 ρ − d2) − (cosh2 ρ + cosh ρ)

]

sinh2 ρ (`2 + sinh2 ρ)1/2 (sinh2 ρ − d2)3/2

− d · `2(1 + cosh ρ) cosh ρ(sinh2 ρ − d2)

sinh2 ρ (`2 + sinh2 ρ)1/2 (sinh2 ρ − d2)3/2
.

Thus d2λ◦ρ/dR2 < 0 if R > (
√

1 + d2 − 1)/d, for any pitch `. Clearly,
using (16) once again, we deduce λ◦ρ has a finite limit when R → 1 (hence
the height t = λ◦ρ is bounded) and the tangent line to the graph has a limit
angle α with the x–axis such that tan α = d. Notice that the curvature

k(R) :=
d2λ◦ρ/dR2

(
1 + (dλ◦ρ/dR)

2
)3/2

has a finite limit at R = (
√

1 + d2−1)/d. Clearly, the minimal surface equation
(see (14)) is invariant by vertical reflection, i.e., λ(−ρ) = −λ(ρ). Thus, we
can extend the graph smoothly across the x–axis by vertical reflection. We
have therefore constructed a complete embedded curve satisfying the required
geometric properties which generates a complete proper minimal surface in
H2 × R that is invariant by screw motions with pitch ` for any ` > 0. This
completes the proof of the first part of the statement.

Notice that by Corollary 21 we deduce that for ` = 1 each surface has
Gaussian curvature K ≡ −1 (since K = −U ′′/U). To investigate embedded
surfaces, we shall construct under our assumptions a family of surfaces (con-
taining the helicoids) such that the height t = λ(ρ) of the generating curve
for each element of this family satisfies limρ→∞ t < π`. In view of (16), this
can be achieved by elementary one variable calculus estimates, as follows.

By the change of variables ξ = sinh ρ we get

λ(ρ) = d

∫ sinh ρ

d

√
`2 + ξ2

1 + ξ2
· 1√

ξ + d
· dξ

ξ
√

ξ − d
.
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We define

c := max

{
1,

√
`2 + d2

1 + d2

}
.

By an elementary argument we deduce the inequality

λ(ρ) 6
c
√

d√
2

∫ sinh ρ

d

dξ

ξ
√

ξ − d
.

Setting

I(ρ) :=

∫ sinh ρ

d

dξ

ξ
√

ξ − d
,

we have

I(ρ) =

∫ √
sinh ρ−d

0

2dς

ς2 + d
(ς =

√
ξ − d)

=
2√
d

∫ √
sinh ρ

d
−1

0

dζ

1 + ζ2
(ζ =

ς√
d
)

=
2√
d

arctan

√
sinh ρ

d
− 1.

Hence

I(ρ) −→ π√
d

(as ρ → ∞).

But then

lim
ρ→∞

λ(ρ) 6
cπ√

2
.

Now if ` > 1/
√

2, we deduce that cπ/
√

2 < π`. Hence we obtain

lim
ρ→∞

λ(ρ) < π`,

as desired.
Finally, we observe that by invoking Theorem 19 we readily see that we

can parametrize our screw motion surfaces with the aid of natural coordinates
s, τ for all real values. In terms of the natural conformal coordinates υ + iτ ,
where υ =

∫
(1/U)ds, it suffices to deduce that υ is bounded to conclude that

the conformal type is H2. To see this, we first combine Theorem 19 with (16)
to infer the formula

ρ′2(s) =
sinh2 ρ − d2

sinh2 ρ
.
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Then, making the change of variables ν = ρ(ξ), we obtain

υ(s) = m

∫ s

0

dξ√
`2 + sinh2 ρ(ξ)

= m

∫ ρ(s)

a

sinh ν dν√
sinh2 ν − d2

√
`2 + sinh2 ν

.

Clearly, the above expression for υ shows that υ is bounded. This completes
the proof of the Theorem. �

Next we will display our first figure generated with the aid of Maple soft-
ware.

Generating curve of minimal screw motion surface in H2 × R: the

ρt–plane

ρ

l=1
t

d=1 d=10000

l=1l=1

d=7
0

Figure 1

We observe that the generating curve plotted above leaves the x–axis ver-
tically and very fast becomes horizontal, as expected in view of (16). Indeed,
fixing ` = 1, we have: if d = 1, then t = λ(20) = 1.570796323; if d = 7, then
t = λ(20) = 1.570796298; if d = 10000, then t = λ(20) = 1.570755104. More-
over, for either d = 1 and ρ = 40, 80, 200, 500, or d = 7 and ρ = 40, 80, 200, 500,
or d = 10000 and ρ = 40, 80, 200, 500, Maple gives the same output (with 11
digit accuracy), namely t = 1.5707963268.
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Generating curve of minimal screw motion surface in H2 × R

d=7

1

t

d=1

l=1

0
R

Figure 2

Minimal screw motion surface in H2 × R: ` = 1, d = 1

Figure 3
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Next let us turn our attention to minimal surfaces that are invariant by
screw motions immersed in S2 × R, given by (7). We shall simplify the dis-
cussion.

Up to vertical translations or symmetry about the xy plane, we infer from
(∗∗) that the generating graph t = λ(ρ) of a minimal screw motion immersion
in S2 × R, is given by (we may assume d > 0, since if d = 0 we obtain the
helicoids)
(18)

λ(ρ) = d

∫ ρ

a

√
` 2 + sin2 r

sin r
√

sin2 r − d2
dr, a < ρ < π − a (d = sin a, 0 < a < π/2).

Theorem 16. We assume d > 0. The generating function t = λ◦ρ(R)
of a minimal immersion that is invariant by screw motions is an increasing
function for d/(1 +

√
1 − d2) < R < d/(1−

√
1 − d2) and is vertical at d/(1 +√

1 − d2) and d/(1 −
√

1 − d2). By extending the graph by vertical symmetry
we obtain a complete embedded curve (periodic in the t direction), generating
a complete minimal immersed screw motion surface in S2 × R. Any such
rotational minimal surface is an embedded annulus.

In addition, the period 2P of any such minimal screw motion surface sat-
isfies the estimates

2π` < 2π
√

`2 + d2 6 2P 6 2π
√

`2 + 1.

If the period 2P and 2π` are linearly dependent over Q, then the immersion
is proper. If the period 2P and 2π` are linearly independent over Q, then the
immersion is not proper and the surface is dense in the region Ω of S2 × R

(bounded by two cylinders) given by d/(1 +
√

1 − d2) < R < d/(1−
√

1 − d2),
t ∈ R.

Proof. Of course, according to (18) and (17), t = λ◦ρ is a strictly increasing

function for d/(1 +
√

1 − d2) < R < d/(1 −
√

1 − d2), departing vertically

from d/(1 +
√

1 − d2). Notice that λ(π − ρ) = 2λ(π/2) − λ(ρ) for a < ρ <
π − a. Hence the graph of λ(ρ) is symmetric in the ρt plane about the point
(ρ = π/2, t = λ(π/2)). But then the graph of λ(ρ) is vertical at ρ = π − a,

and therefore t = λ◦ρ arrives vertically at d/(1 −
√

1 − d2). Owing to the
minimal equation (15) we can extend the graph by vertical reflection at the

points d/(1 +
√

1 − d2) and d/(1 −
√

1 − d2), as in the proof of Theorem 15,
to construct a complete embedded curve periodic in the t direction. We
obtain a complete minimal immersion in S2×R. Of course, any such minimal
rotational surface is embedded. This completes the proof of the first part of
the statement.
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In view of formula (18), we conclude that the period 2P of the generating
curve is given by

(19) P = d

∫ π−a

a

√
` 2 + sin2 ρ

sin ρ
√

sin2 ρ − d2
dρ.

Hence

B
√

`2 + d2 6 P 6 B
√

`2 + 1,

where

(20) B := d

∫ π−a

a

1

sin ρ
√

sin2 ρ − d2
dρ.

To complete the proof of the second part of the statement, it suffices to proof
the following claim.

Claim. B = π.

To prove the Claim we will perform various changes of variables to show
that (20) is elementary.

B = d

∫ cos a

− cos a

dr1

(1 − r2
1)
√

1 − r2
1 − d2

(substituting r1 := cos ρ)

= d

∫ 1

−1

dr2

(1 − (1 − d2)r2
2)
√

1 − r2
2

(substituting r2 :=
r1√

1 − d2
)

= d

∫ π/2

−π/2

dr3

1 − (1 − d2) sin2 r3

(substituting r2 := sin r3)

= d

∫ ∞

−∞

dr4

1 + d2r2
4

(substituting r4 := tan r3)

= π.

In view of (7) and the preceding geometric construction (the periodicity of
the generating curve), notice that the last part of the statement follows from
the following elementary property of the real numbers: Consider the subgroup
Λ of the real number (R,+) given by Λ := {2Pk + 2π`n; k, n ∈ Z}. There
are two possibilities (see [12]): Either the period 2P and 2π` are linearly
dependent over Q and then Λ is isomorphic to Z, or else Λ is dense in R. In
the first case the immersion is proper, and in the second case it is dense in the
region between the two cylinders, as we asserted in the statement. Note that
if 2π`n = 2Pk, n, k ∈ Z, then the screw motion surface “closes” after turning
n times around the vertical axis t with self-intersections. �
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Generating curve of a minimal screw motion surface in S2 × R:

` = 1, d = sin(π/10)

t

0
R

Figure 4

Minimal screw motion surface in S2 × R : ` = 1, d = sin(π/10)

Figure 5
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5. Complete H–screw motion surfaces in H2 × R and S2 × R

In this section we give a geometric description of screw motion surfaces
with constant (non-zero) mean curvature H in H2 × R.

Notice that, up to a vertical translation or a symmetry about the xy plane,
the first integral (∗) yields

(21) λ(ρ) =

∫ ρ

∗

(d + 2 cosh r H)
√

` 2 + sinh2 r

sinh r
√

sinh2 r − (d + 2 cosh r H)2

dr.

We recall again and we will deduce later (see Proposition 26) that the
Abresch-Rosenberg quadratic holomorphic form for rotational H–surfaces van-
ishes if and only if d = ±2H.

We will give a full description in the case when d = −2H, and we will
outline the description when 1−4H2 > 0, H > 0 and d = 0 or d = 2H. In the
latter situation, we shall state the result, but leave the details to the reader.
Notice, however, that these values of d are important. In fact, if 1 < 4H2,
and if d2 = 4H2, H > 0, then the Abresch-Rosenberg holomorphic form Q
vanishes if and only if ` = 0 (the rotational surfaces). If 1 > 4H2, H > 0, and
if d = 0, then the Abresch-Rosenberg holomorphic form Q does not vanish.
We omit the discussion of other values of d.

Theorem 17.

A. Let d = −2H,H > 0. Assume 1− 4H2 > 0. Then for any pitch `, up
to a vertical translation or a vertical reflection, the graph of t = λ◦ρ is
strictly increasing and strictly convex for 0 < R < 1, and t → ∞ (as
R → 1). The graph can be extended to a complete embedded curve by
odd reflection. Hence we obtain a complete properly immersed screw
motion H–surface in H2 × R that contains the vertical axis t. The
tangent to the curve at the origin forms an angle α with the x–axis
such that tan α = 2H`. As ` → 0 the screw motion family of surfaces
converges to two embedded rotational surfaces, symmetric about the
xy plane and fitting together at the origin.

B. Let d = −2H,H > 0. Assume 1 − 4H2 < 0. Then, up to a verti-
cal translation, the graph of t = λ◦ρ is strictly convex for 0 < R <
1/(2H), and is vertical at 1/(2H). The graph can be extended to a
complete embedded periodic curve in the t direction, by vertical reflec-
tion at 1/(2H) and odd reflection at the origin. We obtain a com-
plete immersed (periodic in the t direction) screw motion H–surface
in H2 × R that contains the vertical axis t. The tangent to the curve
at the origin forms an angle α with the x–axis such that tan α = 2H`.
As ` → 0 the screw motion family of surfaces converges to a family of
closed rotational (genus 0) surfaces fitting together along the vertical
axis. In addition, the period 2P of any such screw motion surface
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satisfies the estimate

(22) 2`π < 2P 6 2π

√
`2 + [4H/(4H2 − 1)]

2
.

If the period 2P and 2π` are linearly dependent over Q, then the
immersion is proper. If the period 2P and 2π` are linearly independent
over Q, then the immersion is not proper and the surface is dense in
the region Ω of H2 × R (bounded by a cylinder) given by −1/(2H) <
R < 1/(2H), t ∈ R.

C. Assume 1 − 4H2 > 0, H > 0 and d = 2H or d = 0. Then the
generating curve, up to a vertical translation, is complete embedded
in the xt plane, symmetric about the x–axis, and each symmetric part
is a graph asymptotic to the vertical line R = 1. For d = 2H the curve
cuts orthogonally the x–axis at a point R = 2H, and for d = 0 the
curve cuts orthogonally the x–axis at

(
1 −

√
1 − 4H2

)
/2H. In any

case the part of the curve near these points in the upper half plane
t > 0 is strictly concave. We obtain therefore a complete properly
immersed screw motion H–surface in H2 × R.

In addition, any such rotational surface is embedded.

Proof. Of course, in view of (21), for d = −2H,H > 0, the height t = λ(ρ),
up to a vertical translation or vertical reflection, is given by

(23) λ(ρ) =

∫ ρ

0

H
√

` 2 + sinh2 r

cosh(r/2)
√

cosh2(r/2) (1 − 4H2) + 4H2

dr.

After performing a long, but elementary computation, we obtain

λ′′(ρ) = H
sinh(ρ/2)

[
(1 + cosh ρ)2 + cosh ρ `2(4H2 − 1) − `2

]

2
√

`2 + sinh2 ρ

√[
4H2 + cosh2(ρ/2) (1 − 4H2)

]3
cosh2(ρ/2)

and

d2λ◦ρ
dR2

= H
(1 + cosh ρ) sinh(ρ/2)

√
`2 + sinh2 ρ

√[
4H2 + cosh2(ρ/2) (1 − 4H2)

]3
[
4H2 `2

(24)

+ (1 − 4H2)(1 + cosh ρ) sinh2 ρ + 8H2 sinh2 ρ + (1 + cosh ρ)2
]
.

Let us first prove Assertion A. Using (23) and (24), in view of (17), if
1−4H2 > 0, we observe that t = λ◦ρ is strictly increasing and strictly convex
for 0 < R < 1, and satisfies t → ∞ (as R → 1). Clearly, in view of (23),
we see that the tangent to the curve at the origin forms an angle α with the
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x–axis such that tan α = 2H`. Now letting R → 0, we infer by a computation
that the curvature

k(R) :=
d2λ◦ρ/dR2

(
1 + (dλ◦ρ/dR)

2
)3/2

goes to 0. We can therefore extend t = λ◦ρ to the interval (−1, 1) by odd
reflection. Hence we get a complete curve symmetric about the origin. We
obtain a complete properly immersed H–surface that contains the vertical
axis t. Clearly, in view of (23), as ` → 0 the screw motion family of surfaces
converge to two rotational surfaces, symmetric about the xy plane and fitting
together at the origin.

Next, we prove Assertion B. According to (23) and (24), in view of (17),
we observe that if 1 − 4H2 < 0, then using the inequality

4H2 `2+(1 − 4H2)(1 + cosh ρ) sinh2 ρ + 8H2 sinh2 ρ + (1 + cosh ρ)2

> 4H2`2 + (1 + cosh ρ)2,

we deduce once again that t = λ◦ρ is strictly increasing and strictly convex
for 0 < R < 1/(2H), and is vertical at 1/(2H).

As before, we see that the graph can be extended to a complete periodic
curve in the t direction, by vertical reflection at 1/(2H) and odd reflection
at the origin. We obtain a complete immersed H–surface that contains the
vertical axis t. Again, we see easily that the tangent to the curve at the
origin forms an angle α with the x axis such that tan α = 2H`, and as ` → 0
the screw motion family of surfaces converges to a family of closed embedded
rotational (genus 0) surfaces fitting together along the vertical axis.

This completes the proof of the first part of the statement.
Observe now that, on account of (23) and the geometric construction per-

formed in the first part of the statement, the period 2P is given by (with
sinh(a) = 4H/(4H2 − 1))

(25) 2P = 4H

∫ a

0

√
` 2 + sinh2 ρ

cosh(ρ/2)
√

cosh2(ρ/2) (1 − 4H2) + 4H2

dρ.

Hence

(26) 4H`A 6 2P 6 4HA

√
`2 + [4H/(4H2 − 1)]

2
,

where

A :=

∫ a

0

1

cosh(ρ/2)
√

cosh2(ρ/2) (1 − 4H2) + 4H2

dρ.
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We compute A by making the natural change of coordinates R = tanh(ρ/2),
and obtain

A = 2

∫ 1/2H

0

1√
1 − 4R2H2

dR(27)

=
1

H

∫ 1

0

dς√
1 − ς2

(ς = 2HR)

=
π

2H
.

Finally, putting together (26) and (27), we derive the estimate (22) in the
second part of the statement. Once again, as in Theorem 16, we see that there
are two possibilities: Either the period 2P and 2π` are linearly dependent over
Q, or else

Λ := {2Pk + 2π`n; k, n ∈ Z}
is dense in R. In the first case the immersion is proper, and in the second case
it is dense in the region bounded by the cylinder, as asserted in the statement.
Of course, any such rotational surface is embedded. This completes the proof
of the Theorem. �
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Generating curve of H–screw motion surface in H2 × R:

1 − 4H2 > 0, d = −2H, ` = 1

t

0 1
R

t

0 1
R

Figure 6. H = 1/2 and H = 1/10 (resp.)
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H–screw motion surface in H2 × R : 1 − 4H2 > 0, d = −2H, ` = 1

Figure 7. H = 1/10

Figure 8. H = 1/10



SCREW MOTION SURFACES IN H
2 × R AND S

2 × R 1349

Generating curve of H–screw motion surface in H2 × R:

1 − 4H2 < 0, d = −2H, ` = 1

t

0 1
R

Figure 9. H = 1

H–screw motion surface in H2 × R : 1 − 4H2 < 0, d = −2H, ` = 1

Figure 10. H = 1
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Generating curve of H–screw motion surface in H2 × R:

1 − 4H2 > 0, d = 0, ` = 1

t

0 1R

Figure 11. H = 1/4

H–screw motion surface in H2 × R : 1 − 4H2 > 0, d = 0, ` = 1

Figure 12. H = 1/4
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On account of Lemma 14, we can give an analogous geometric description
for H–screw motion surfaces (H 6= 0) immersed in S2 × R.

Again, recall that, up to a vertical translation or a symmetry about the xy
plane, the first integral (∗∗) yields

(28) λ(ρ) =

∫ ρ

∗

(d − 2 cos r H)
√

` 2 + sin2 r

sin r
√

sin2 r − (d − 2 cos r H)2

dr.

Theorem 18.

A. Assume 2H < d < 1, H > 0. Then for any pitch `, up to a vertical
translation or a vertical reflection, the graph of t = λ◦ρ is strictly
increasing for R1 := tan(ρ1/2) < R < R2 := tan(ρ2/2), where

ρ1 = arccos

(√
1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2

)
,

ρ2 = π − arccos

(√
1 + 4H2 − d2

1 + 4H2
− 2dH

1 + 4H2

)
,

and is vertical at R1 and R2. By extending the graph by vertical
symmetry we obtain a complete embedded curve (that is periodic in
the t direction). We obtain a complete immersed H–screw motion
surface in S2 × R. Any such rotational H–surface is an embedded
annulus. The period 2P of any such surface is given by

(29) 2P =

∫ ρ2

ρ1

2
(d − 2 cos r H)

√
` 2 + sin2 r

sin r
√

sin2 r − (d − 2 cos r H)2

dr.

B. Assume d = 2H,H > 0. Then for any pitch `, up to a vertical trans-
lation or a vertical reflection, the graph t = λ◦ρ is strictly increasing
for −1/(2H) < R < 1/(2H), and vertical at ±1/(2H). By extending
the graph by vertical symmetry we obtain a complete embedded curve
(periodic in the t direction). We obtain a complete immersed H–screw
motion surface in S2 × R. Any such rotational H–surface is closed
embedded (fitting together along the vertical axis).

In addition, if the period 2P and 2π` are linearly dependent over
Q, then the immersion is proper.

Proof. Let us first proceed to prove Assertion A. We begin with the follow-
ing computations:

sin2 ρ−(d − 2 cos ρH)2

= (1 + 4H2)

[(√
1 + 4H2 − d2

1 + 4H2

)2

−
(

cos ρ − 2dH

1 + 4H2

)2]
.
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Thus sin2 ρ − (d − 2 cos ρH)2 = 0 if

cos ρ = ±
√

1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2
,

and sin2 ρ − (d − 2 cos ρH)2 > 0 if

−
√

1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2
< cos ρ <

√
1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2
.

Notice also that our assumptions imply

−1 < −
√

1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2
< 0,

√
1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2
< 1,

and d − 2 cos ρH > 0.
Now, in view of (28), we obtain under the assumptions 2H < d < 1, H > 0,

the height of t = λ(ρ), up to a vertical translation or vertical reflection, is
defined for

ρ1 := arccos

(√
1 + 4H2 − d2

1 + 4H2
+

2dH

1 + 4H2

)
< ρ < π

− arccos

(√
1 + 4H2 − d2

1 + 4H2
− 2dH

1 + 4H2

)
:= ρ2

by

(30) λ(ρ) =

∫ ρ

ρ1

(d − 2 cos r H)
√

` 2 + sin2 r

sin r
√

sin2 r − (d − 2 cos r H)2

dr.

Of course, the graph is given by an increasing function λ in the interval
(ρ1, ρ2), departing vertically at ρ = ρ1 and arriving vertically at ρ = ρ2.
Again, by applying vertical symmetry, we can extend the graph to obtain a
complete embedded curve (periodic in the t direction). We obtain a complete
immersed H–screw motion surface in S2 ×R. This completes the proof of the
first part of the statement. Of course, each rotational H–surface constructed
in the first part is embedded.

Now, in light of (30), we deduce that the period 2P of the generating curve
is given by

(31) 2P =

∫ ρ2

ρ1

2
(d − 2 cos r H)

√
` 2 + sin2 r

sin r
√

sin2 r − (d − 2 cos r H)2

dr.

This completes the proof of Assertion A.
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Let us now prove Assertion B. In light of (28) we see that if d = 2H, the
height λ up to a vertical translation is defined in the interval

−2 arccos
(
2H/

√
1 + 4H2

)
< ρ < 2 arccos

(
2H/

√
1 + 4H2

)

by
(32)

λ(ρ) =

∫ ρ

−2 arccos
(
2H/

√
1+4H2

)H

√
`2 + sin2 r

cos(r/2)
√

cos2(r/2)(1 + 4H2) − 4H2
dr.

Hence the graph is vertical at ρ = −2 arccos
(
2H/

√
1 + 4H2

)
and at ρ =

2arccos
(
2H/

√
1 + 4H2

)
and is increasing in the interval between these two

points. As in our earlier constructions, we apply vertical symmetry to build a
complete embedded curve (periodic in the t direction). We obtain a complete
immersed H–screw motion surface in S2 × R. Of course, any such rotational
surface is embedded. Once again, as in Theorem 16, if the period 2P and 2π`
are linearly dependent over Q, then the immersion is proper. This completes
the proof of the theorem. �

Generating curve of H–screw motion surface in S2 × R:

` = 1, H = 1/20, d = 1/2.

t

0
R

Figure 13
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H–screw motion surface in S2 × R : ` = 1, H = 1/20, d = 1/2

Figure 14

Remark. Observe that the period of the H–screw motion surface encoun-
tered in Theorem 18 (B) is given by

2P =

∫ 2 arccos
(
2H/

√
1+4H2

)

−2 arccos
(
2H/

√
1+4H2

) 2H

√
`2 + sin2 ρ

cos(ρ/2)
√

cos2(ρ/2)(1 + 4H2) − 4H2
dρ.

6. Isometric screw motion immersions in H2 × R and S2 × R of

constant mean or Gauss curvature

We first examine screw motion surfaces immersed in H2 × R. Notice that
the induced metric dµ2, in cylindrical coordinates, is given by

dµ2 = (1 + λ′2)dρ2 + 2`λ′dρdϕ + (`2 + sinh2 ρ)dϕ2.

The idea, originating with Bour in the 19th century [3], improved by Do
Carmo-Dajczer [4] in Euclidean space, and developed by Ordóñes in space
form in his doctoral thesis at PUC-Rio [10], works nicely in our context. We
will find natural coordinates s, τ , where s is the arc length of a geodesic in
the surface, orthogonal to the helices (orbits), such that the metric is given
by

(33) dµ2 = ds2 + U2(s)dτ2,

where U(s) > 0 is a smooth function. More precisely, we have the following
result.
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Theorem 19 (Bour’s Lemma in H2×R). Any surface that is invariant by
screw motions can be parametrized locally by natural coordinates s, τ . Let S
be such a screw motion surface with pitch ` 6= 0 in H2 ×R. Then there exists
a two parameter family F(m, `),m 6= 0, of screw motion surfaces isometric to
S, with contains a surface of revolution, given by

m2U2(s) = `2 + sinh2 ρ(s),(34)

1 − ρ′2(s) =
λ′2 sinh2 ρ

`2 + sinh2 ρ + λ′2 sinh2 ρ
,(35)

ρ(s) =

∫ √
m4U2U ′2

(m2U2 − `2) (m2U2 − `2 + 1)
ds,(36)

λ◦ρ(s) =

∫ √
(m2U2 − `2 + 1)(m2U2 − `2) − m4U2U ′2

m2U2 − `2 + 1
×(37)

× mU

m2U2 − `2
ds,

ϕ(s, τ) =
τ

m
− `

∫ √
(m2U2 − `2 + 1)(m2U2 − `2) − m4U2U ′2

m2U2 − `2 + 1
×(38)

× 1

mU(m2U2 − `2)
ds.

In addition, given a2 6 1, if m2a2 > `2 and `2 6 1, there exists a family of
complete isometric screw motion immersions with pitch ` and constant Gauss
curvature K = −a2.

Proof. In view of (2) the induced metric dµ2 of a given screw motion sur-
face, say S, immersed in H2 × R, is given by

(39) dµ2 =
(
1 + λ′2

)
dρ2 + 2` λ′dρdϕ +

(
`2 + sinh2 ρ

)
dϕ2.

Write (39) in the form

dµ2 =

(
1 +

λ′2 sinh2 ρ

`2 + sinh2 ρ

)
dρ2

︸ ︷︷ ︸
ds2

+
(
`2 + sinh2 ρ

)
︸ ︷︷ ︸

U2

(
dϕ +

`

`2 + sinh2 ρ
dλ◦ρ

)2

︸ ︷︷ ︸
dτ2

.

(40)

We can therefore define (locally) natural coordinates s, τ with the aid of
the Inverse Function Theorem by the following equations:

ds =

√
1 +

λ′2 sinh2 ρ

`2 + sinh2 ρ
dρ,(41)

dτ = dϕ +
`λ′

`2 + sinh2 ρ
dρ.(42)
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Next, we search for an explicit parametrization of an arbitrary screw mo-
tion surface (with pitch denoted by ` for convenience) isometric to S, by
natural coordinates s, τ, involving a simple expression in terms of U and the
parameters `,m as in the statement. We recall that the metric is given by
(33). Notice that we may suppose U > 0, since we assume for the moment
ρ > 0 (the extension to ρ = 0 or to negative values requires an additional
argument).

Clearly, in view of (41), any screw motion surface satisfies that ρ (and, of
course, λ) does not depend on τ . Hence ρ = ρ(s), U = U(s). Again, in view
of (41), we infer (35) as claimed in the statement, which we rewrite here for
future reference as follows:

(43) ρ′2 =
`2 + sinh2 ρ

`2 + sinh2 ρ + λ′2 sinh2 ρ
.

Now, on account of (40), we must have

Udτ = ±
√

`2 + sinh2 ρ

(
dϕ +

`

`2 + sinh2 ρ
dλ◦ρ

)
.

Consequently,

∂ϕ

∂τ
= ± U√

`2 + sinh2 ρ
,(44)

∂ϕ

∂s
=

−`

`2 + sinh2 ρ

dλ◦ρ
ds

.(45)

In view of (44) and (45), we deduce that ∂ϕ/∂τ does not depend on s. Hence
we obtain the important formula

(46) ± U√
`2 + sinh2 ρ

=
1

m
, m 6= 0.

This gives (34) in the statement.
Next, we differentiate (34) with respect to s and deduce, after some calcu-

lation,

(47) ρ′2 =
m4U2U ′2

(m2U2 − `2) (m2U2 − `2 + 1)
.

This proves (36) in the statement.
Employing (47), in view of (43), we infer, after some simple operations, a

formula for (λ◦ρ)′(s) which proves (37) in the statement. Combining (44),
(45) and (37) we finally obtain (38).

Now observe that if the formulas (36), (37) and (38) hold for some pitch

` > 0, then they also hold for any pitch ˜̀ in the interval [0, `], since (m2U2 −
`2 + 1)(m2U2 − `2)−m4U2U ′2 > 0. We obtain thus a family F(m, `),m 6= 0,
of surfaces isometric to S containing a surface of revolution (` = 0). This
completes the proof of the first part of the statement.
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Next, we proceed to prove the second part of the statement. Recalling our
natural conformal coordinates w = υ + iτ , where υ =

∫
(1/U)ds, we infer

easily that the Gaussian curvature K of a screw motion immersion is given
by

(48) K =
−U ′′

U
.

An elementary calculation shows that if K = −a2, 0 < a2 6 1, taking a
solution of (48) of the form U = cosh as, if m2a2 > `2 and ` 6 1, then
m2U2 − `2 > 0 and (m2U2 − `2 + 1)(m2U2 − `2) − m4U2U ′2 > 0 for all s.
Therefore, we can define a complete screw motion surface with prescribed
Gaussian curvature K = −a2, with the aid of (36), (37) and (38). This
completes the proof of the theorem. �

Once again, we can derive an analogous result for the case when the ambient
space is S2 × R.

Theorem 20 (Bour’s Lemma in S2 × R ). Any surface that is invariant
by screw motions can be parametrized locally by natural coordinates s, τ . Let
S be a screw motion surface in S2 × R. Then there exists a two parameter
family F(m, `),m 6= 0, of screw motion surfaces isometric to S, given by

m2U2(s) = `2 + sin2 ρ(s),

1 − ρ′2(s) =
λ′2 sin2 ρ

`2 + sin2 ρ + λ′2 sin2 ρ
,

ρ =

∫ √
m4U2U ′2

(m2U2 − `2) (1 − m2U2 + `2)
ds,

λ◦ρ(s) =

∫ √
(1 − m2U2 + `2)(m2U2 − `2) − m4U2U ′2

1 − m2U2 + `2
×

× mU

m2U2 − `2
ds,

ϕ(s, τ) =
τ

m
− `

∫ √
(1 − m2U2 + `2)(m2U2 − `2) − m4U2U ′2

1 − m2U2 + `2
×

× 1

mU(m2U2 − `2)
ds.

Proof. The proof is analogous to that of Theorem 19, replacing sinh ρ by
sin ρ and cosh ρ by cos ρ. �

We now use Theorem 19 to determine all isometric immersions (with the
same U) in H2 × R that are invariant by screw motions and have the same
constant mean curvature H.
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Corollary 21. Let S be a H–screw motion surface in H2×R parametrized
by natural coordinates s, τ.

(i) If 1 − 4H2 > 0, then

(
m2U2 − `2 + 1

)1/2
=

√
d2 + 1 − 4H2

1 − 4H2
· cosh

(√
1 − 4H2 (s − s0)

)
(49)

+
2dH

1 − 4H2
.

(ii) If H = 1/2 (necessarily d < 0), then

(50)
(
m2U2 − `2 + 1

)1/2
=

(√
−d

2
(s − s0)

)2

− d2 + 1

2d
.

(iii) If 1 − 4H2 < 0 (necessarily d2 + 1 − 4H2 > 0), then

(
m2U2 − `2 + 1

)1/2
=

√
d2 + 1 − 4H2

4H2 − 1
cos
(√

4H2 − 1 (s − s0)
)

(51)

+
2dH

1 − 4H2
.

Proof. From the calculations in the proof of Theorem 19 we see that the
data of a screw motion immersion in H2 ×R can be written using elementary
operations in terms of U, `,m. Inserting these data in the first integral formula
(∗), we deduce the following first order ordinary differential equation:

(52)
(m2U2 − `2 + 1) (m2U2 − `2) − m4U2U ′2

m2U2 − `2 + 1
= (2 cosh ρH + d)

2
.

Changing variables Q :=
(
m2U2 − `2 + 1

)1/2
, (52) becomes

(53) Q′2 = Q2(1 − 4H2) − 4dHQ − (d2 + 1).

Now (53) can be solved separately by elementary differential equations tech-
niques if 1− 4H2 > 0, H = 1/2 (d < 0) and 1− 4H2 < 0 (d2 + 1− 4H2 > 0).
This gives (49), (50), and (51), respectively, and completes the proof of the
corollary. �

Next, we use Theorem 20 to describe all isometric immersions (with the
same U) in S2 × R that are invariant by screw motions and have the same
mean curvature H.

Corollary 22. Let S be a screw motion immersion in S2×R parametrized
by natural coordinates s, τ. Then (necessarily 1 + 4H2 − d2 > 0)

1−m2U2 + `2(54)

=

(√
1 + 4H2 − d2

1 + 4H2
cos
(√

1 + 4H2 (s − s0)
)

+
2dH

1 + 4H2

)2

.
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Proof. Combining the first integral formula (∗∗) with the results derived
in Theorem 20 we infer

(55)

(
1 − m2U2 + `2

) (
m2U2 − `2

)
− m4U2U ′2

1 − m2U2 + `2
= (d − 2 cos ρH)

2
.

A change of variables as in the proof of Corollary 21 and elementary differential
equations techniques yields (54). This completes the proof of the corollary. �

Recall that taking υ =
∫

(1/U)ds we have natural isothermal parameters
w = υ + iτ for surfaces that are invariant by screw motions. Hence we may
compute the Hopf function φ for such minimal immersions. We have therefore:

Proposition 23. Let X : Ω ⊂ C # H2 × R be a screw motion minimal
immersion parametrized by natural conformal coordinates w = υ + iτ . The
holomorphic Hopf function φ satisfies

4<φ =
`2

m2
− 1

m2
· sinh4 ρ λ′2

`2 + sinh2 ρ + λ′2 sinh2 ρ
.(56)

The imaginary part for a rotational surface is zero. If ` 6= 0, then the holo-
morphic Hopf function satisfies

4<φ =
`2

m2
− 4m2

`2
(=φ)2.(57)

If d > 0, then the Hopf function is constant and is given by

(58) 4φ =
`2 − d2

m2
+ i

2`

m2
d.

Proof. A straightforward computation shows that the Hopf function φ (see
(13)) is given by

(59) 4φ = ρ′2U2 − sinh2 ρ (ϕτ + iUϕs)
2
.

Inserting (34), (43), (44), (45), (46) in the imaginary part of (59), and insert-
ing in the real part of (59), we deduce

4 (=φ)
2

=
`2

m4
· sinh4 ρ λ′2

`2 + sinh2 ρ + λ′2 sinh2 ρ
,

4m2 <φ = `2 − λ′2 sinh4 ρ

`2 + sinh2 ρ + λ′2 sinh2 ρ
.

(60)

In view of (60), by the first integral formula (∗) and since H = 0, we infer
(56), (57) and(58). This completes the proof of the proposition. �

Proposition 24. Let X : Ω ⊂ C # S2 × R be a conformal screw motion
minimal immersion. The holomorphic Hopf function φ satisfies

4<φ =
`2

m2
− 1

m2
· sin4 ρ λ′2

`2 + sin2 ρ + λ′2 sin2 ρ
.
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The imaginary part for a rotational surface is zero. If ` 6= 0, then the holo-
morphic Hopf function satisfies

4<φ =
`2

m2
− 4m2

`2
(=φ)2.

If d > 0, then the Hopf function is constant and is given by

4φ =
`2 − d2

m2
+ i

2`

m2
d.

Proof. The proof is analogous to that of Proposition 23, using Theorem 20
and the first integral formula (∗∗) and replacing sinh ρ by sin ρ and cosh ρ by
cos ρ. �

Corollary 25. Any two isometric screw motion minimal immersions in
H2 × R or S2 × R are associate. When the ambient space is H2 × R, the
catenoid is conjugate to a helicoid of pitch ` < 1. A helicoid is conjugate to a
catenoid if and only if ` < 1.

Proof. Observe that in view of Corollary 21 any family of minimal isometric
screw motion surfaces in H2 × R must satisfy

m2U2 = `2 + d2 − (d2 + 1)

2

(
1 − cosh(2(s − s0))

)
.

Each surface of such a family has the same absolute value of the Hopf function,
and hence they are associate. Indeed, according to Proposition 23 the related
Hopf function is constant and is given by

4φ =
`2 − d2

m2
+ i

2`

m2
d.

In view of these last two formulas, it is readily seen that the conjugate surface
to a catenoid (surfaces of revolution) is a helicoid with pitch less than 1. But
the helicoid with pitch greater than or equal 1 is not conjugate to a catenoid.
On the other hand, owing to Corollary 22, we have that any family of isometric
minimal screw motion surfaces in S2 × R satisfies

m2U2 = `2 + d2 − (d2 − 1)

2

(
1 − cos(2(s − s0))

)
.

The related Hopf function is the same as the (constant) preceding function

4φ =
`2 − d2

m2
+ i

2`

m2
d.

Hence they are associate as well. �

Remark. Notice that Proposition 23 and Proposition 24 suggest an al-
ternative approach to the first integral formulas (∗) and (∗∗) for minimal
immersions.
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We now will give an explicit formula, in our context, for the Abresch-
Rosenberg holomorphic quadratic differential Q (see [1]).

Proposition 26. Let X(υ, τ) be a screw motion H–surface immersed in
H2 × R, where s, τ are natural coordinates given in Theorem 19 and υ =∫

(1/U)ds. Then the Abresch-Rosenberg holomorphic function satisfies

1

2
·
[
Q(Xυ, Xυ) − Q(Xτ , Xτ )

]
− iQ(Xυ, Xτ )(61)

=
1

m2

(
d2 − 4H2 + `2(4H2 − 1)

)
− i

2`

m2
d.

Proof. After a lengthy computation, using Theorem 19 and (3), (4), (5),
(6), we deduce

1

2
·
[
Q(Xυ, Xυ) − Q(Xτ , Xτ )

]
− iQ(Xυ, Xτ )

= − 2H

mU

λ′ρ′ cosh ρ sinh2 ρ

m2
− `2

m2
+ 2H`2

λ′ρ′ cosh ρ

m3U
(1 + ρ′2)

+
2HU

m
λ′′ρ′3 sinh ρ + (1 − ρ′2)

sinh2 ρ

m2

− 2`

m2
i
(√

1 − ρ′2 sinh ρ − 2H cosh ρ
)

.

Now, inserting the value of λ′′ given by the mean curvature equation (14) and
using (43) and the first integral formula, we obtain the formula (61) in the
statement. This completes the proof of the proposition. �

Proposition 27. Let X(υ, τ) be a screw motion H–surface immersed in
S2 × R, where s, τ are natural coordinates given in Theorem 19 and υ =∫

(1/U)ds. Then the Abresch-Rosenberg holomorphic function satisfies

1

2
·
[
Q(Xυ, Xυ) − Q(Xτ , Xτ )

]
− iQ(Xυ, Xτ )(62)

=
1

m2

(
4H2 − d2 + `2(1 + 4H2)

)
+ i

2`

m2
d.

Proof. Using Theorem 20, (8), (9), (10) and (11), we obtain

1

2
·
[
Q(Xυ, Xυ) − Q(Xτ , Xτ )

]
− iQ(Xυ, Xτ )

= − 2H

mU

λ′ρ′ cos ρ sin2 ρ

m2
+

`2

m2
+ 2H`2

λ′ρ′ cos ρ

m3U
(1 + ρ′2)

+
2HU

m
λ′′ρ′3 sin ρ − (1 − ρ′2)

sin2 ρ

m2

+
2`

m2
i
(√

1 − ρ′2 sin ρ + 2H cos ρ
)

.
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Finally, observe that (62) can be obtained analogously to (61), with obvious
modifications. �

Remark. Notice that Proposition 26 and Proposition 27 give an alterna-
tive approach to the first integral formulas (∗) and (∗∗) for H–surfaces.
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