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TYPES OF RADON-NIKODYM PROPERTIES FOR THE
PROJECTIVE TENSOR PRODUCT OF BANACH SPACES

QINGYING BU, JOE DIESTEL, PATRICK DOWLING, AND EVE OJA

Abstract. LetX and Y be Banach spaces such thatX has a boundedly
complete basis. Then X⊗̂Y , the projective tensor product of X and Y ,

has the Radon-Nikodym property (resp. the analytic Radon-Nikodym
property, the near Radon-Nikodym property, contains no copy of c0) if
and only if Y has the same property.

1. Preliminaries

Throughout this paper G will denote a compact metrizable abelian group,
B(G) is the σ-algebra of Borel subsets of G, and λ is normalized Haar measure
on G. The dual group of G will be denoted by Γ.

Let X be a real or complex Banach space. We denote by L1(G,X) (respec-
tively, L∞(G,X)) the Banach space of (all equivalence classes of) λ-Bochner
integrable functions on G with values in X (respectively, (all equivalence
classes of) λ-measurable X-valued functions that are essentially bounded).

If µ is a countably additive X-valued measure on B(G), we say that it is
of bounded variation if sup

∑
A∈π ‖µ(A)‖ <∞, where the supremum is taken

over all finite measurable partitions of G. The measure µ is said to be of
bounded average range if there is a positive constant c so that ‖µ(A)‖ ≤ cλ(A),
for every A ∈ B(G).

We will denote by M1(G,X) the space of all X-valued measures on B(G)
that are of bounded variation, and M∞(G,X) will denote the space of all
X-valued measures on B(G) that are of bounded average range.

For γ ∈ Γ and f ∈ L1(G,X), we define the Fourier coefficient of f at γ by

f̂(γ) =
∫
G

f(t)γ(t)dλ(t).
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Similarly, if µ ∈M1(G,X), we define the Fourier coefficient of µ at γ by

µ̂(γ) =
∫
G

γ(t)dµ(t).

Let Λ be a subset of Γ. A measure µ ∈M1(G,X) will be called a Λ-measure
if µ̂(γ) = 0 for all γ /∈ Λ.

Definition 1 ([17], [15]). Let G be a compact metrizable abelian group,
let Λ be a subset of Γ, and let X be a Banach space. We say that X has type
I-Λ-Radon-Nikodym property (I-Λ-RNP) if every Λ-measure µ inM∞(G,X)
is differentiable; that is, there is a function f ∈ L1(G,X) such that µ(E) =∫
E
fdλ for all E ∈ B(G).

Definition 2 ([15]). Let G be a compact metrizable abelian group, let
Λ be a subset of Γ, and let X be a Banach space. We say that X has type
II-Λ-Radon-Nikodym property (II-Λ-RNP) if every λ-continuous, Λ-measure
in M1(G,X) is differentiable.

Remark 1. Let G be the Cantor group, that is, G = {−1, 1}N. Then
Γ = {−1, 1}(N) and Fourier coefficients of measures on B(G) with values in
a real or complex Banach space are well-defined. If Λ = Γ, then I-Λ-RNP,
II-Λ-RNP and the usual Radon-Nikodym property are all equivalent for both
real and complex Banach spaces. Since Γ is infinite and discrete, it contains
an infinite Sidon subset [41, page 126]. If Λ is such an infinite Sidon set, then
by [16] a real or complex Banach space has I-Λ-RNP if and only if it has
II-Λ-RNP if and only if it does not contain a copy of c0.

Remark 2. If G = T, the circle group, then Γ = Z. Let X be a complex
Banach space. If Λ = Z, then X has I-Λ-RNP if and only if X has II-Λ-RNP
if and only if X has the Radon-Nikodym property. If Λ = N ∪ {0}, then X
has I-Λ-RNP if and only if X has II-Λ-RNP if and only if X has the analytic
Radon-Nikodym property (see [15]). If Λ is an infinite Sidon set (for example
{2n : n ∈ N}), then X has I-Λ-RNP if and only if X has II-Λ-RNP if and only
if X does not contain a subspace isomorphic to c0 (see [16]) .

Another Radon-Nikodym property that we will deal with is the near Radon-
Nikodym property, which was introduced in [26].

Definition 3. Let X be a Banach space. A bounded linear operator
T : L1[0, 1] → X is said to be near representable if for each Dunford-Pettis
operator D : L1[0, 1]→ L1[0, 1], the composition operator T ◦D : L1[0, 1]→ X
is Bochner representable; that is, there exists g ∈ L∞([0, 1], X) such that
T ◦ D(f) =

∫
[0,1]

fg dm for all f ∈ L1[0, 1]. A Banach space X is said to
have the near Radon-Nikodym property (NRNP) if every near representable
operator from L1[0, 1] to X is Bochner representable.
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For comparison, let us recall that a Banach space X has the Radon-
Nikodym property if and only if every bounded linear operator T : L1[0, 1]→
X is Bochner representable [12, page 63].

For any Banach space X, we will denote its topological dual by X∗ and its
closed unit ball by BX . For two Banach spaces X and Y , let L(X,Y ) denote
the space of all continuous linear operators from X to Y with its operator
norm ‖ · ‖, and let X⊗̂Y denote the completion of the tensor product X ⊗ Y
with respect to the projective tensor norm. It is known that the dual of X⊗̂Y
is isometrically isomorphic to L(X,Y ∗) (see [12, page 230]).

2. Radon-Nikodym properties and boundedly complete Schauder
decompositions

Let X be a Banach space. A Schauder decomposition of X is a sequence
(Xn)∞n=1 of non-trivial closed subspaces of X such that every x ∈ X can
be expressed uniquely in the form x =

∑∞
n=1 xn, where xn ∈ Xn for every

n ∈ N. Clearly, a sequence (en)∞n=1 in X is a basis of X if and only if the
one-dimensional subspaces Xn = span{en} form a Schauder decomposition of
X.

A Schauder decomposition (Xn)∞n=1 is boundedly complete if, whenever
(
∑m
n=1 xn)∞m=1 is a bounded sequence with xn ∈ Xn for every n ∈ N, then∑∞
n=1 xn converges.
The following theorem, which is the main result of this paper, shows that

the Radon-Nikodym properties, considered in Section 1, are inherited by Ba-
nach spaces having a boundedly complete Schauder decomposition.

Recall that Dunford showed that a Banach space with a boundedly com-
plete Schauder basis has the Radon-Nikodym property [12, page 64, Theorem
6]. The proof of the following theorem is similar to Dunford’s proof.

Theorem 4. Let G be a compact metrizable abelian group and let Λ be a
subset of Γ. Let X be a Banach space having a boundedly complete Schauder
decomposition (Xn)∞n=1. Then X has I-Λ-RNP, II-Λ-RNP or, respectively,
the NRNP if each Xn, n ∈ N, has the same property.

Proof. We will first give the proof for II-Λ-RNP. The almost identical proof
for I-Λ-RNP will be omitted.

Let Pi : X −→ Xi be the coordinate projections defined by Pi(
∑
n xn) =

xi. It is well known that these projections are bounded linear operators. Since
II-Λ-RNP is invariant under equivalent renormings, we may assume, without
loss of generality, that the Schauder decomposition is monotone. This means
that for each n ∈ N ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤
∥∥∥∥∥
n+1∑
i=1

xi

∥∥∥∥∥
whenever xi ∈ Xi, for i ∈ N.
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Let µ : B(G) −→ X be a Λ-measure of bounded variation which is abso-
lutely continuous with respect to λ. For each i ∈ N, define

µi : B(G) −→ Xi

E 7−→ Pi(µ(E)).

It is easy to show that µi is a Λ-measure of bounded variation which is ab-
solutely continuous with respect to λ, for each i ∈ N. Since each Xi has
II-Λ-RNP, there exists fi ∈ L1(G,Xi) such that

µi(E) =
∫
E

fi dλ , E ∈ B(G), i = 1, 2, . . . .

For each n ∈ N, define

f̃n : G −→ X
t 7−→

∑n
i=1 fi(t).

Since each fi ∈ L1(G,Xi) and each Xi is a subspace of X, each fi ∈ L1(G,X),
and hence f̃n ∈ L1(G,X) for each n ∈ N. Now define

µ̃n : B(G) −→ X
E 7−→

∑n
i=1 µi(E).

Furthermore, since (Xn)∞n=1 is monotone,

‖µ̃n(E)‖ =

∥∥∥∥∥
n∑
i=1

µi(E)

∥∥∥∥∥ ≤
∥∥∥∥∥
∞∑
i=1

µi(E)

∥∥∥∥∥ = ‖µ(E)‖.

Therefore,
|µ̃n|(E) ≤ |µ|(E), E ∈ B(G), n = 1, 2, . . . .

Now for each E ∈ B(G) and each i, n ∈ N with i ≤ n,

Pi(µ̃n(E)) = µi(E) =
∫
E

fi(t) dλ(t)

=
∫
E

Pi(f̃n(t)) dλ(t)

= Pi

(∫
E

f̃n(t) dλ(t)
)
,

and hence

µ̃n(E) =
∫
E

f̃n(t) dλ(t), E ∈ B(G), n = 1, 2, . . . .

Thus for each E ∈ B(G) and each n ∈ N,∫
E

∥∥∥∥∥
n∑
i=1

fi(t)

∥∥∥∥∥ dλ(t) =
∫
E

‖f̃n‖ dλ = |µ̃n|(E)

≤ |µ|(E) ≤ |µ|(G) <∞.
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Note that ∥∥∥∥∥
n∑
i=1

fi(t)

∥∥∥∥∥ ≤
∥∥∥∥∥
n+1∑
i=1

fi(t)

∥∥∥∥∥ , n = 1, 2, . . . .

By the Monotone Convergence Theorem, for each E ∈ B(G),∫
E

sup
n

∥∥∥∥∥
n∑
i=1

fi(t)

∥∥∥∥∥ dλ(t) =
∫
E

lim
n

∥∥∥∥∥
n∑
i=1

fi(t)

∥∥∥∥∥ dλ(t)

= lim
n

∫
E

∥∥∥∥∥
n∑
i=1

fi(t)

∥∥∥∥∥ dλ(t)

≤ |µ|(G) <∞.

Hence

sup
n

∥∥∥∥∥
n∑
i=1

fi(t)

∥∥∥∥∥ <∞, λ-a.e. .

Since (Xn)∞n=1 is also boundedly complete, the series
∑
i fi(t) converges in X,

λ-a.e.. Now define

f̃ : G −→ X
t 7−→

∑∞
i=1 fi(t), λ-a.e. .

Note that limn f̃n(t) = f̃(t), λ-a.e. in X. Thus f̃ is λ-measurable. Further-
more, ∫

G

‖f̃(t)‖ dλ(t) =
∫
G

∥∥∥∥∥
∞∑
i=1

fi(t)

∥∥∥∥∥ dλ(t) ≤ |µ|(G) <∞.

Therefore,
f̃ ∈ L1(G,X).

Now for each E ∈ B(G) and each i ∈ N,

Pi

(∫
E

f̃(t) dλ(t)
)

=
∫
E

Pif̃(t) dλ(t) =
∫
E

fi(t) dλ(t)

= µi(E) = Pi(µ(E)),

and so

µ(E) =
∫
E

f̃(t) dλ(t), E ∈ B(G).

It follows that f̃ is a Radon-Nikodym derivative of µ, and hence X has II-Λ-
RNP. This completes the proof for II-Λ-RNP.

We will now give the proof for the NRNP. Let T : L1[0, 1]→ X be a nearly
representable operator. As in the first part of the proof of this theorem, it
is easy to show that the operators Pi ◦ T : L1[0, 1] → Xi are also nearly
representable for each i, and hence, for each i, Pi ◦T is Bochner representable
since each Xi has the NRNP. Now, just as in the first part of the proof, we
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can show that T is Bochner representable. Consequently, X has the NRNP
and the proof is complete. �

Remark 3. A special case of Theorem 4 asserts (see Remarks 1 and 2)
that X does not contain a subspace isomorphic to c0 if each of the Xn do
not contain a subspace isomorphic to c0. This result was established in [34,
Lemma 3].

3. Applications to vector-valued sequence spaces and projective
tensor products

Let U be a Banach space with a boundedly complete 1-unconditional nor-
malized basis (ei)∞i=1; the 1-unconditionality means that, for all n ∈ N, and
scalars a1, a2, . . . , an and s1, s2, . . . , sn with |si| = 1 for each 1 ≤ i ≤ n,
‖
∑n
i=1 siaiei‖ ≤ ‖

∑n
i=1 aiei‖.

It is well known and easy to verify (using the Hahn-Banach Theorem)
that for each n ∈ N, ‖

∑n
i=1 aiei‖ ≤ ‖

∑n
i=1 biei‖ whenever a1, a2, . . . , an and

b1, b2, . . . , bn are scalars with |ai| ≤ |bi| for each 1 ≤ i ≤ n.
For a sequence (Xi)∞i=1 of Banach spaces, define

U(Xi) =

{
x̄ = (xi)i : xi ∈ Xi,

∑
i

‖xi‖ei converges in U

}
,

and define the norm on U(Xi) to be

‖x̄‖U(Xi) =

∥∥∥∥∥
∞∑
i=1

‖xi‖ei

∥∥∥∥∥
U

.

Proposition 5. The space U(Xi) is a Banach space and the subspaces
{(0, . . . , 0, xi, 0, . . . ) : xi ∈ Xi}, i ∈ N, form its boundedly complete Schauder
decomposition.

Proof. Let us observe that for each x̄ = (xi)i ∈ U(Xi),

sup
m

∥∥∥∥∥
m∑
i=1

‖xi‖ei

∥∥∥∥∥
U

≤ ‖x̄‖U(Xi)

and, for each i ∈ N,

‖xi‖ =
∥∥∥∥‖xi‖ei∥∥∥∥

U

≤ ‖x̄‖U(Xi).

The last inequality shows that the coordinate projections from U(Xi) to Xi

are continuous.
To show that U(Xi) is a Banach space, consider x̄(n) = (x(n)

i )i ∈ U(Xi)
such that (x̄(n))∞n=1 is a Cauchy sequence in U(Xi). Then
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c = supn ‖x̄(n)‖U(Xi) < ∞ and for each ε > 0, there exists an n0 ∈ N such
that for n, k > n0,

(1) ‖x̄(n) − x̄(k)‖U(Xi) < ε/2 .

By the continuity of coordinate projections from U(Xi) to Xi, (x(n)
i )∞n=1 is a

Cauchy sequence in Xi for each i ∈ N. Hence there is xi ∈ Xi such that

lim
n
x

(n)
i = xi , i = 1, 2, . . . .

Thus for each fixed m ∈ N, there exists an m0 ∈ N with m0 > n0 such that

(2) ‖x(m0)
i − xi‖ < ε/2m, i = 1, 2, . . . ,m.

Note that∥∥∥∥∥
m∑
i=1

‖xi‖ ei

∥∥∥∥∥
U

≤

∥∥∥∥∥
m∑
i=1

‖xi − x(m0)
i ‖ ei

∥∥∥∥∥
U

+

∥∥∥∥∥
m∑
i=1

‖x(m0)
i ‖ ei

∥∥∥∥∥
U

≤ ε/2 + ‖x̄(m0)‖U(Xi) ≤ ε/2 + c.

So

sup
m

∥∥∥∥∥
m∑
i=1

‖xi‖ ei

∥∥∥∥∥
U

≤ ε/2 + c <∞.

Since the basis (ei)∞i=1 is boundedly complete,
∑
i ‖xi‖ ei converges in U , and

hence x̄ = (xi)i ∈ U(Xi). Furthermore, by (1) and (2), for each n > n0,∥∥∥∥∥
m∑
i=1

‖x(n)
i − xi‖ ei

∥∥∥∥∥
U

≤

∥∥∥∥∥
m∑
i=1

‖x(n)
i − x(m0)

i ‖ ei

∥∥∥∥∥
U

+

∥∥∥∥∥
m∑
i=1

‖x(m0)
i − xi‖ ei

∥∥∥∥∥
U

≤ ‖x̄(n) − x̄(m0)‖U(Xi) + ε/2 ≤ ε/2 + ε/2 = ε.

Thus for each n > n0,

‖x̄(n) − x̄‖U(Xi) = sup
m

∥∥∥∥∥
m∑
i=1

‖x(n)
i − xi‖ ei

∥∥∥∥∥
U

≤ ε.

Therefore, (x̄(n))∞n=1 converges to x̄ in U(Xi). This proves that U(Xi) is a
Banach space.

To see that the subspaces {(0, . . . , 0, xi, 0, . . . ) : xi ∈ Xi}, i ∈ N, form a
Schauder decomposition for U(Xi), we denote by x̄i the element (0, . . . , 0, xi,
0, . . . ) in U(Xi), where xi ∈ Xi, and observe that, for any x̄ = (xi)i ∈ U(Xi),

(3)

∥∥∥∥∥x̄−
m∑
i=1

x̄i

∥∥∥∥∥
U(Xi)

=

∥∥∥∥∥
∞∑

i=m+1

‖xi‖ei

∥∥∥∥∥
U

→ 0 as m→∞.
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The Schauder decomposition is boundedly complete because

sup
m

∥∥∥∥∥
m∑
i=1

x̄i

∥∥∥∥∥
U(Xi)

= sup
m

∥∥∥∥∥
m∑
i=1

‖xi‖ei

∥∥∥∥∥
U

<∞

implies that
∑∞
i=1 ‖xi‖ei converges in U . Hence, x̄ = (xi)i ∈ U(Xi) and, by

(3),
∑∞
i=1 x̄i = x̄. �

Remark 4. The last part of the above proof shows that the Schauder
decomposition is a complete Schauder decomposition for the normed linear
space U(Xi). Therefore, U(Xi) is a Banach space by [25].

Theorem 4 and Proposition 5 immediately yield:

Theorem 6. The space U(Xi) has I-Λ-RNP, II-Λ-RNP or, respectively,
the NRNP if all of the Banach spaces Xi have the same property.

Remark 5. If U = `p, 1 ≤ p <∞, and (ei)∞i=1 is the unit vector basis of
U , then U(Xi) = `p(Xi) is clearly the usual `p-direct sum of Banach spaces
Xi. It is well known (see [12, page 219]) that `p(Xi) has the Radon-Nikodym
property if all the Xi have the Radon-Nikodym property. The particular case
of Theorem 6 for U(Xi), where each Xi is equal to a Banach space X and U
is an equivalent renorming of Lp[0, 1], 1 < p < ∞, with its normalized Haar
basis, was established in [5].

Let X be a Banach space with a boundedly complete Schauder decompo-
sition (Xn)∞n=1, where each of the spaces Xn are finite dimensional; such a
decomposition is called a boundedly complete FDD. Let Pi : X → Xi be the
coordinate projection defined by Pi(

∑
n xn) = xi. Let Y be a Banach space

and let IY denote the identity operator on Y . Consider the natural tensor
product of the operators Pi and IY ; πi = Pi⊗IY : X⊗̂Y → X⊗̂Y . It is easily
verified (see [21]) that (πi(X⊗̂Y ))∞i=1 is a Schauder decomposition of X⊗̂Y .
Also note that since each Xi is finite dimensional, πi(X⊗̂Y ) is isomorphic to
`
dim(Xi)
1 (Y ). Consequently, each subspace πi(X⊗̂Y ) of X⊗̂Y has I-Λ-RNP,

II-Λ-RNP or, respectively, the NRNP if Y has the same property. More-
over, in [33, Proposition 1] it is proved that if X has a boundedly complete
FDD, then (πi(X⊗̂Y ))∞i=1 is a boundedly complete Schauder decomposition
of X⊗̂Y . Therefore we immediately get from Theorem 4:

Theorem 7. Let X be a Banach space with a boundedly complete FDD
and let Y be a Banach space. Then X⊗̂Y , the projective tensor product of
X and Y , has I-Λ-RNP, II-Λ-RNP or, respectively, the NRNP if Y has the
same property.
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A specific case of Theorem 7 is when one of the spaces has a boundedly
complete basis. We explicitly state this result so we can refer back to it in
later sections.

Theorem 8. Let X be a Banach space with a boundedly complete basis
and let Y be a Banach space. Then X⊗̂Y , the projective tensor product of
X and Y , has I-Λ-RNP, II-Λ-RNP or, respectively, the NRNP if Y has the
same property.

Let us recall that a Banach space with a boundedly complete basis has the
Radon-Nikodym property.

Remark 6. The following result, giving a particular case of Theorem 8,
was proved by Holub [23] (see also [42, Proposition 4.28]): if X and Y are
Banach spaces with boundedly complete bases, then X⊗̂Y has a boundedly
complete basis.

The particular case of Theorem 8 withX = Lp[0, 1], 1 < p <∞, was proved
in [7] using a different method which, in fact, will be developed further in the
next section of this paper. This method was first used in [6] and then in
[5] to show, respectively, that `p⊗̂X and Lp[0, 1]⊗̂X, 1 < p < ∞, have the
Radon-Nikodym property whenever X has the Radon-Nikodym property.

Remark 7. A particular case of Theorem 8 (see Remarks 1 and 2) asserts
that X⊗̂Y contains no copy of c0 whenever X has a boundedly complete basis
and Y contains no copy of c0. A similar result is true for complemented copies
of c0 (see [35, Theorem 3]). Moreover (see [33, Theorem 3] and [36, Theorem
2]), if 1 ≤ p < q < ∞, then `p⊗̂X contains no (complemented) copy of
`q, whenever X contains no (complemented) copy of `q. These results were
proved, like Theorem 7, using the natural Schauder decomposition of X⊗̂Y
associated to the basis of X.

James [24] (see [29, Theorem 1.c.10]) showed that an unconditional ba-
sis for a Banach space is boundedly complete if the space contains no sub-
space isomorphic to c0. This is the case when the space has the (analytic)
Radon-Nikodym property or near Radon-Nikodym property. Therefore, from
Theorem 8 and Remarks 1 and 2, we immediately obtain:

Theorem 9. Let X and Y be Banach spaces such that one of them has
an unconditional basis. Then X⊗̂Y , the projective tensor product of X and
Y , has the Radon-Nikodym property, the analytic Radon-Nikodym property,
the near Radon-Nikodym property or, respectively, contains no subspace iso-
morphic to c0 if both X and Y have the same property.

Remark 8. It is well known that the reflexive Banach spaces have the
Radon-Nikodym property. However, Theorem 9 does not remain valid for
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reflexivity. In [33, Theorem 2], it is proved that if X and Y are reflexive
Banach spaces such that one of them has an unconditional basis, then X⊗̂Y
is reflexive if and only if it contains no complemented subspace isomorphic
to `1. (Notice, for instance, that `2⊗̂`2 contains a complemented subspace
isomorphic to `1, but `2⊗̂`3 does not (see, for example, [42, Example 2.10 and
Corollary 4.24] or [33, Theorems 4 and 5]).)

Remark 9. In general, the Radon-Nikodym property and the property of
not containing c0 isomorphically are not stable under projective tensor prod-
ucts: the Banach space X constructed by Bourgain and Pisier [3, Corollary
2.4] has the Radon-Nikodym property (and hence X contains no subspace
isomorphic to c0), but the projective tensor product X⊗̂X contains c0 iso-
morphically.

4. Semi-embeddings of U⊗̂X into U(X)

If X and Y are Banach spaces, then a mapping T : X → Y is called a
semi-embedding if T is injective and T (BX) is closed in Y . An important
result in the theory of semi-embeddings, appearing in a paper of Bourgain
and Rosenthal [4], which they attribute to F. Delbaen, is: if X is a separable
Banach space, if Y is a Banach space with the Radon-Nikodym property and
if there is a semi-embedding T : X → Y of X into Y , then X has the Radon-
Nikodym property. This result of Delbaen has been extended to other types of
Radon-Nikodym properties; to the near Radon-Nikodym property in [26], to
the type-I-Radon-Nikodym property in [15], and to the type type-II-Radon-
Nikodym property in [38].

The main result of this section is that the projective tensor product, U⊗̂X,
of the Banach spaces U and X semi-embeds in the sequence space U(X), when
U has a boundedly complete unconditional basis. Of course, the space U(X)
is the Banach space U(Xi), where all the Banach spaces Xi are equal to X.
We will then use this result to obtain an alternate proof of Theorem 9.

Throughout this section, unless otherwise stated, U will denote a Banach
space with a normalized boundedly complete 1-unconditional basis (ei)∞i=1

and X will denote an arbitrary Banach space. Then the basis (ei)∞i=1 will also
have normalized biorthogonal functionals, (e∗i )

∞
i=1; that is, ‖ei‖ = ‖e∗i ‖ = 1

for all i ∈ N and

e∗i (ej) =
{

1 if i = j,
0 if i 6= j.

It is well known that (e∗i )
∞
i=1 is an unconditional basic sequence in U∗ and

(see, for example, [29, Proposition 1.b.4]) U is isometrically isomorphic to the
dual space of V = span{e∗i : i ∈ N}; that is, U = V ∗. Since the basis (ei)∞i=1

is 1-unconditional, we immediately have the following result:

Proposition 10. Let u =
∑∞
i=1 e

∗
i (u)ei ∈ U . Then:
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(i) For each subset σ of N, ‖
∑
i∈σ e

∗
i (u)ei‖ ≤ ‖u‖.

(ii) For each choice of signs θ = (θi)∞i=1, ‖
∑∞
i=1 θie

∗
i (u)ei‖ ≤ ‖u‖.

(iii) For each λ = (λi)i ∈ `∞, ‖
∑∞
i=1 λie

∗
i (u)ei‖ ≤ ‖λ‖`∞ · ‖u‖.

Theorem 11. U⊗̂X semi-embeds in U(X).

Proof. Throughout the proof, let ε > 0 be arbitrary. Define

ψ : U⊗̂X −→ U(X)
z 7−→ (

∑∞
k=1 e

∗
i (uk)xk)i ,

where
∑∞
k=1 uk ⊗ xk is a representation of z.

Step 1. ψ is a continuous linear one-to-one map from U⊗̂X into U(X).
In fact, z ∈ U⊗̂X admits a representation z =

∑∞
k=1 uk ⊗ xk such that

∞∑
k=1

‖uk‖ · ‖xk‖ ≤ ‖z‖U⊗̂X + ε.

For each i ∈ N, choose x∗i ∈ BX∗ such that

‖ψ(z)i‖ ≤ 〈ψ(z)i, x∗i 〉+ ε/2i , i = 1, 2, . . . .

By Proposition 10, for each m ∈ N,∥∥∥∥∥
m∑
i=1

‖ψ(z)i‖ei

∥∥∥∥∥
U

≤

∥∥∥∥∥
m∑
i=1

(〈ψ(z)i, x∗i 〉+ ε/2i)ei

∥∥∥∥∥
U

≤

∥∥∥∥∥
m∑
i=1

〈
∞∑
k=1

e∗i (uk)xk, x∗i 〉ei

∥∥∥∥∥
U

+
m∑
i=1

ε/2i

≤
∞∑
k=1

∥∥∥∥∥
m∑
i=1

e∗i (uk)x∗i (xk)ei

∥∥∥∥∥
U

+ ε

≤
∞∑
k=1

‖xk‖ ·

∥∥∥∥∥
∞∑
i=1

e∗i (uk)ei

∥∥∥∥∥
U

+ ε

=
∞∑
k=1

‖xk‖ · ‖uk‖+ ε

≤ (‖z‖U⊗̂X + ε) + ε.

Therefore,

sup
m

∥∥∥∥∥
m∑
i=1

‖ψ(z)i‖ei

∥∥∥∥∥
U

≤ ‖z‖U⊗̂X .

Since (ei)∞i=1 is a boundedly complete basis of U , the series
∑
i ‖ψ(z)i‖ei con-

verges in U , and hence ψ(z) ∈ U(X) with ‖ψ(z)‖U(X) ≤ ‖z‖U⊗̂X . Therefore,
ψ is a well-defined continuous linear map.
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To show ψ is one-to-one, suppose that ψ(z) = 0. Then z admits a repre-
sentation z =

∑∞
k=1 uk ⊗ xk such that

ψ(z)i =
∞∑
k=1

e∗i (uk)xk = 0 , i = 1, 2, . . . .

Now for each T ∈ L(U,X∗) = (U⊗̂X)∗,

〈z, T 〉 =
∞∑
k=1

〈Tuk, xk〉 =
∞∑
k=1

〈
∞∑
i=1

e∗i (uk)Tei, xk〉

=
∞∑
i=1

〈Tei,
∞∑
k=1

e∗i (uk)xk〉 = 0.

So z = 0, and hence ψ is one-to-one. Step 1 is complete.

Next we want to show ψ is a semi-embedding, that is, for a sequence
zn ∈ BU⊗̂X and an element (yi)i ∈ U(X) such that limn ψ(zn) = (yi)i in
U(X), there exists a z ∈ BU⊗̂X such that ψ(z) = (yi)i.

Step 2. If φ is defined by 〈T, φ〉 =
∑∞
i=1〈yi, T ei〉 for each T ∈ L(U,X∗),

then φ ∈ L(U,X∗)∗ with ‖φ‖ ≤ 1.
In fact, for each n ∈ N, zn ∈ U⊗̂X admits a representation

zn =
∞∑
k=1

uk,n ⊗ xk,n , n = 1, 2, . . .

such that
∞∑
k=1

‖uk,n‖ · ‖xk,n‖ ≤ ‖zn‖U⊗̂X + ε, n = 1, 2, . . . .

Since limn ψ(zn) = limn(
∑∞
k=1 e

∗
i (uk,n)xk,n)i = (yi)i in U(X),

lim
n

∞∑
k=1

e∗i (uk,n)xk,n = yi , i = 1, 2, . . . .

Fix m ∈ N. Then there exists an n0 ∈ N such that∥∥∥∥∥
∞∑
k=1

e∗i (uk,n0)xk,n0 − yi

∥∥∥∥∥ ≤ ε/m , i = 1, 2, . . . ,m.

For any T ∈ L(U,X∗), define S by Su =
∑m
i=1 θie

∗
i (u)Tei for each u ∈ U ,

where θi = sign(〈
∑∞
k=1 e

∗
i (uk,n0)xk,n0 , T ei〉). Then by Proposition 10, S ∈
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L(U,X∗) with ‖S‖ ≤ ‖T‖. So

m∑
i=1

|〈yi, T ei〉| ≤
m∑
i=1

∣∣∣∣∣〈yi −
∞∑
k=1

e∗i (uk,n0)xk,n0 , T ei〉

∣∣∣∣∣
+

m∑
i=1

∣∣∣∣∣〈
∞∑
k=1

e∗i (uk,n0)xk,n0 , T ei〉

∣∣∣∣∣
≤

m∑
i=1

ε/m · ‖Tei‖+

∣∣∣∣∣
m∑
i=1

θi〈
∞∑
k=1

e∗i (uk,n0)xk,n0 , T ei〉

∣∣∣∣∣
≤ ε‖T‖+

∣∣∣∣∣
∞∑
k=1

〈
m∑
i=1

θie
∗
i (uk,n0)Tei, xk,n0〉

∣∣∣∣∣
= ε‖T‖+

∣∣∣∣∣
∞∑
k=1

〈Suk,n0 , xk,n0〉

∣∣∣∣∣ = ε‖T‖+ |〈S, zn0〉|

≤ ε‖T‖+ ‖S‖ · ‖zn0‖ ≤ ε‖T‖+ ‖T‖.

Letting m −→∞ and ε −→ 0,
∞∑
i=1

|〈yi, T ei〉| ≤ ‖T‖.

Therefore, φ is a well-defined continuous linear functional with ‖φ‖ ≤ 1. Step
2 is complete.

Step 3. There exists a z ∈ BU⊗̂X∗∗ such that ψ(z) = (yi)i.
In fact, note that U = V ∗. So K = (BU ,weak∗) × (BX∗∗ ,weak∗) is a

compact Hausdorff space. Define J : L(U,X∗) −→ C(K) by JT (u, x∗∗) =
〈Tu, x∗∗〉 for each u ∈ BU and each x∗∗ ∈ BX∗∗ . Then ‖JT‖C(K) = ‖T‖. So
J(L(U,X∗)) is a closed subspace of C(K). Define Fφ : J(L(U,X∗)) −→ K

by Fφ(JT ) = 〈T, φ〉 for each T ∈ L(U,X∗). Then ‖Fφ‖ = ‖φ‖. By the
Hahn-Banach Theorem, Fφ can be norm-preservingly extended to C(K), and
moreover, by the Riesz Representation Theorem, there exists a regular Borel
measure µ on K such that

(4) Fφ(JT ) =
∫
K

JT (u, x∗∗) dµ(u, x∗∗) , T ∈ L(U,X∗),

and

(5) |µ|(K) = ‖Fφ‖ = ‖φ‖.

Define
g : K −→ X∗∗

(u, x∗∗) 7−→ x∗∗.
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Then g is weak∗ continuous and hence weak∗ µ-measurable. Furthermore, for
each x∗ ∈ X∗,∫

K

|x∗g| d|µ| =
∫
K

|x∗∗(x∗)| d|µ| ≤
∫
K

‖x∗‖ d|µ| ≤ ‖x∗‖ · |µ|(K) <∞.

So g is Gel’fand integrable (see [12, page 53]). Define

h : K −→ U
(u, x∗∗) 7−→ u.

Then h is weak∗ continuous and hence weak∗ µ-measurable. Note that U is
separable. By [12, page 42, Corollary 4], h is strongly µ-measurable. More-
over, ∫

K

‖h(u, x∗∗)‖ d|µ| =
∫
K

‖u‖ d|µ| ≤ |µ|(K) <∞.

So h is Bochner |µ|-integrable. It follows from [12, page 172, Lemma 3] that
there exist a sequence (uk)∞k=1 of U and a sequence (Ek)∞k=1 of Borel measur-
able subsets of K such that

h =
∞∑
k=1

ukχEk , |µ|-a.e.

and
∞∑
k=1

‖uk‖ · |µ|(Ek) ≤
∫
K

‖h‖ d|µ|+ ε ≤ |µ|(K) + ε.

Now for each T ∈ L(U,X∗), by (4),

〈T, φ〉 = Fφ(JT ) =
∫
K

JT (u, x∗∗) dµ(u, x∗∗) =
∫
K

〈Tu, x∗∗〉 dµ(u, x∗∗).

For each i ∈ N and each x∗ ∈ X∗, plugging Ti = e∗i ⊗x∗ in the above equality,

〈yi, x∗〉 = 〈Ti, φ〉(6)

=
∫
K

〈Tiu, x∗∗〉 dµ(u, x∗∗)

=
∫
K

〈e∗i (u)x∗, x∗∗〉, dµ(u, x∗∗)

=
∫
K

x∗(g)e∗i (h) dµ(u, x∗∗)

=
∫
K

x∗(g)〈e∗i ,
∞∑
k=1

ukχEk〉 dµ(u, x∗∗)

=
∫
K

∞∑
k=1

x∗(g)e∗i (uk)χEk dµ(u, x∗∗)



RNP FOR THE PROJECTIVE TENSOR PRODUCT OF BANACH SPACES 1317

=
∞∑
k=1

e∗i (uk)
∫
Ek

x∗(g) dµ(u, x∗∗)

=
∞∑
k=1

e∗i (uk)x∗(w∗∗k ),

where

w∗∗k = Gel’fand–
∫
Ek

g dµ(u, x∗∗), k = 1, 2, . . . .

Notice that for each x∗ ∈ X∗ and each k ∈ N,

|w∗∗k (x∗)| =
∣∣∣∣∫
Ek

x∗(g) dµ
∣∣∣∣ ≤ ∫

Ek

|x∗(g)| d|µ|

≤
∫
Ek

‖x∗‖ · ‖g‖ d|µ| ≤ ‖x∗‖ · |µ|(Ek).

So

‖w∗∗k ‖ ≤ |µ|(Ek), k = 1, 2, . . . .

Thus for each i ∈ N,

∞∑
k=1

‖e∗i (uk)w∗∗k ‖ =
∞∑
k=1

|e∗i (uk)| · ‖w∗∗k ‖

≤
∞∑
k=1

‖uk‖ · |µ|(Ek) ≤ |µ|(K) + ε.

It follows that the series
∑
k e
∗
i (uk)w∗∗k converges absolutely in X∗∗ for each

i ∈ N. Therefore, by (6),

(7) yi =
∞∑
k=1

e∗i (uk)w∗∗k , i = 1, 2, . . . .

Now let z =
∑∞
k=1 uk ⊗w∗∗k . Then z ∈ U⊗̂X∗∗ and ψ(z) = (yi)i. Further-

more,

(8) ‖z‖U⊗̂X∗∗ ≤
∞∑
k=1

‖uk‖ · ‖w∗∗k ‖ ≤
∞∑
k=1

‖uk‖ · |µ|(Ek) ≤ |µ|(K) + ε.

Letting ε −→ 0,

(9) ‖z‖U⊗̂X∗∗ ≤ |µ|(K) = ‖φ‖ ≤ 1.

Step 3 is complete.
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Step 4. z ∈ BU⊗̂X .
In fact, for each n ∈ N, define z′n =

∑n
i=1 ei ⊗ yi ∈ U⊗̂X. Then for each

T ∈ L(U,X∗),

〈z′n − z, T 〉 =
n∑
i=1

〈Tei, yi〉 −
∞∑
k=1

〈Tuk, w∗∗k 〉

=
n∑
i=1

〈Tei,
∞∑
k=1

e∗i (uk)w∗∗k 〉 −
∞∑
k=1

〈Tuk, w∗∗k 〉

=
∞∑
k=1

〈
n∑
i=1

e∗i (uk)Tei, w∗∗k 〉 −
∞∑
k=1

〈Tuk, w∗∗k 〉

=
∞∑
k=1

〈T

(
n∑
i=1

e∗i (uk)ei − uk

)
, w∗∗k 〉

=
∞∑
k=1

〈
n∑
i=1

e∗i (uk)ei − uk, T ∗w∗∗k 〉 .

Since
∑∞
k=1 ‖uk‖ · ‖w∗∗k ‖ <∞, there exists a k0 ∈ N such that

∞∑
k=k0

‖uk‖ · ‖w∗∗k ‖ ≤ ε.

Since limn ‖
∑n
i=1 e

∗
i (uk)ei − uk‖ = 0 for each k ∈ N, there exists an n0 ∈ N

such that for each n > n0,∥∥∥∥∥
n∑
i=1

e∗i (uk)ei − uk

∥∥∥∥∥ ≤ ε‖uk‖ , k = 1, 2, . . . , k0.

Thus for each n > n0,

|〈z′n − z, T 〉| ≤
k0∑
k=1

∣∣∣∣∣〈
n∑
i=1

e∗i (uk)ei − uk, T ∗w∗∗k 〉

∣∣∣∣∣
+
∞∑

k=k0

∣∣∣∣∣〈
n∑
i=1

e∗i (uk)ei − uk, T ∗w∗∗k 〉

∣∣∣∣∣
≤

k0∑
k=1

∥∥∥∥∥
n∑
i=1

e∗i (uk)ei − uk

∥∥∥∥∥ · ‖T ∗w∗∗k ‖
+
∞∑

k=k0

∥∥∥∥∥
n∑
i=1

e∗i (uk)ei − uk

∥∥∥∥∥ · ‖T ∗w∗∗k ‖
≤

k0∑
k=1

ε‖uk‖ · ‖T ∗‖ · ‖w∗∗k ‖+
∞∑

k=k0

‖uk‖ · ‖T ∗‖ · ‖w∗∗k ‖
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≤ ε‖T‖
∞∑
k=1

‖uk‖ · ‖w∗∗k ‖+ ε‖T‖

≤ ε‖T‖(|µ|(K) + ε) + ε‖T‖ (from (8) and (9))

≤ ε‖T‖(1 + ε) + ε‖T‖.

So for each n > n0,

‖z′n − z‖U⊗̂X∗∗ ≤ ε(1 + ε) + ε.

By [12, page 238, Corollary 14], U⊗̂X is a subspace of U⊗̂X∗∗. So z =
limn z

′
n ∈ U⊗̂X and ‖z‖U⊗̂X = ‖z‖U⊗̂X∗∗ ≤ 1. Step 4 is complete.

Steps 1–4 complete the proof of Theorem. �

Lemma 12. Let S be a closed separable subspace of U⊗̂X. Then there is
a closed separable subspace Y of X such that S is a closed subspace of U⊗̂Y .

Proof. Let S be a closed separable subspace of U⊗̂X, and let D = (dn)∞n=1

be a countably dense subset of S. Then for each fixed m ∈ N, dn has a
representation

(10) dn =
∞∑
k=1

u
(n,m)
k ⊗ x(n,m)

k , n = 1, 2, . . .

such that

(11)
∞∑
k=1

‖u(n,m)
k ‖ · ‖x(n,m)

k ‖ ≤ ‖dn‖U⊗̂X + 1/m , n = 1, 2, . . . .

Let
Y = span{x(n,m)

k : n,m, k = 1, 2, . . .}.
Then Y is a closed separable subspace of X. Moreover, from (10) and (11),
dn ∈ U⊗̂Y for each n ∈ N and

‖dn‖U⊗̂Y ≤ ‖dn‖U⊗̂X + 1/m , n = 1, 2, . . . .

Letting m −→∞,

‖dn‖U⊗̂Y ≤ ‖dn‖U⊗̂X , n = 1, 2, . . . .

Obviously,
‖dn‖U⊗̂Y ≥ ‖dn‖U⊗̂X , n = 1, 2, . . . .

So
‖dn‖U⊗̂Y = ‖dn‖U⊗̂X , n = 1, 2, . . . .

Thus (S, ‖·‖U⊗̂X) = closure of (D, ‖·‖U⊗̂X) = closure of (D, ‖·‖U⊗̂Y ) ⊆ U⊗̂Y .
Therefore, S is a closed subspace of U⊗̂Y . The proof is complete. �
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Remark 10. Notice that Y in Lemma 12 may be chosen so that U⊗̂Y
is a subspace of U⊗̂X. In fact (see [44]), any separable subspace of X is
contained in a separable closed subspace Y of X such that there exists a
linear Hahn-Banach extension operator from Y ∗ to X∗. But, in this case (see
[40, Theorem 1]), U⊗̂Y is a subspace of U⊗̂X.

Using the “semi-embeddings method” (that is, relying on Theorem 11),
we now give an alternate proof for the following important special case of
Theorem 8.

Theorem 13. Let G be a compact metrizable abelian group and let Λ be
a subset of Γ. Then U⊗̂X, the projective tensor product of U and X, has
I-Λ-RNP, II-Λ-RNP or, respectively, the NRNP if X has the same property.

Proof. From [15] and [26], we know that a Banach space has I-Λ-RNP, II-
Λ-RNP or, respectively, the NRNP if all its separable closed linear subspaces
have the same property. Also, from [15], [38] and [26] we know that if a
separable Banach space Z semi-embeds in a Banach space which has I-Λ-
RNP, II-Λ-RNP or, respectively, the NRNP then Z has the same property.

Now suppose that X has I-Λ-RNP (respectively, II-Λ-RNP or NRNP). Take
a closed separable subspace S of U⊗̂X. By Lemma 12, there is a separable
subspace Y of X such that S is a subspace of U⊗̂Y . As a subspace of X, Y has
I-Λ-RNP (respectively, II-Λ-RNP or NRNP). By Theorem 6, U(Y ) has I-Λ-
RNP (respectively, II-Λ-RNP or NRNP). Since U and Y are separable, U⊗̂Y
is separable, too. By Theorem 11, U⊗̂Y semi-embeds in U(Y ). Thus, U⊗̂Y
has I-Λ-RNP (respectively, II-Λ-RNP or NRNP). Hence, S, as a subspace
of U⊗̂Y , has I-Λ-RNP (respectively, II-Λ-RNP or NRNP), too. Therefore,
we have shown that each closed separable subspace of U⊗̂X has I-Λ-RNP
(respectively, II-Λ-RNP or NRNP), which shows that U⊗̂X has I-Λ-RNP
(respectively, II-Λ-RNP or NRNP), also. The proof is complete. �

Finally, we give an alternate

Proof of Theorem 9. Suppose that X has an unconditional basis (xn)∞n=1.
By scaling if necessary, we can assume that (xn)∞n=1 is a normalized basis.
Let (x∗n)∞n=1 denote the sequence of biorthogonal functionals associated with
(xn)∞n=1.

If X has the Radon-Nikodym property, the analytic Radon-Nikodym prop-
erty, the near Radon-Nikodym property, or does not contain a copy of c0, then
X does not contain a copy of c0. By James’s Theorem (see Section 3), the
basis (xn)∞n=1 is also boundedly complete. We can equivalently renorm X by
letting

‖x‖new = sup

{∥∥∥∥∥
m∑
i=1

βix
∗
i (x)xi

∥∥∥∥∥ : m ∈ N and |βi| ≤ 1, i ∈ N

}
, x ∈ X
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(see [45, page 463, Theorem II.16.1]). It is straightforward that ‖xn‖new =
‖xn‖ = 1 and (xn)∞n=1 is a 1-unconditional basis for (X, ‖ · ‖new). Conse-
quentially, X is isomorphic to (X, ‖ · ‖new) which has a normalized bound-
edly complete, 1-unconditional basis with normalized biorthogonal function-
als. Note that X⊗̂Y is isomorphic to (X, ‖·‖new)⊗̂Y . Therefore, by Theorem
13, (X, ‖ · ‖new)⊗̂Y , and hence X⊗̂Y , has the Radon-Nikodym property, the
analytic Radon-Nikodym property, the near Radon-Nikodym property or, re-
spectively, contains no copy of c0 if Y has the same property. This completes
the proof. �

5. Applications to concrete Banach spaces

It is well known and easy to verify that the unit vectors form a boundedly
complete unconditional basis in `p, for 1 ≤ p <∞. So we have:

Fact 1. The classical sequence space `p (1 ≤ p < ∞) has a boundedly
complete unconditional basis.

From [30, Theorem 2.c.5] we know that the Haar system forms an uncon-
ditional basis of Lp[0, 1] for 1 < p < ∞. By a classical result of James [24]
(see [29, Theorem 1.b.4]) every basis in a reflexive Banach space is boundedly
complete. So we have:

Fact 2. The classical Lebesgue function space Lp[0, 1] (1 < p <∞) has a
boundedly complete unconditional basis.

From [29, Proposition 4.a.4] we know that if M ∈ ∆2, then the unit vectors
form a boundedly complete symmetric basis of `M . Also from [29, page 113]
we know that every symmetric basis is an unconditional basis. Thus we have:

Fact 3. The Orlicz sequence space `M (M ∈ ∆2) has a boundedly com-
plete unconditional basis.

From [11, Corollary 1.46 and Theorem 1.98] we know that if M ∈ ∆2 and
M∗ ∈ ∆2, then the Orlicz function space LM [0, 1] is a reflexive space with the
Haar system as its an unconditional basis. Thus we have:

Fact 4. The Orlicz function space LM [0, 1] (M,M∗ ∈ ∆2) has a bound-
edly complete unconditional basis.

Let 1 ≤ p <∞ and let w = (wi)∞i=1 be a non-increasing sequence of positive
numbers such that w1 = 1, limi wi = 0 and

∑∞
i=1 wi =∞. The Banach space

of all sequences of scalars x = (a1, a2, . . .) for which

‖x‖ = sup
π

( ∞∑
i=1

|aπ(i)|pwi

)1/p

<∞,
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where π ranges over all the permutations of integers, is denoted by d(w, p) and
is called a Lorentz sequence space. By [8], the unit vectors form a boundedly
complete unconditional basis of d(w, 1). By [1], [19], [20], d(w, p), 1 < p <∞,
is a reflexive Banach space and the unit vectors form a symmetric basis. Thus
we have:

Fact 5. The Lorentz sequence space d(w, p) (1 ≤ p <∞) has a boundedly
complete unconditional basis.

Let m denote the Lebesgue measure on [0,1]. For a real-valued Lebesgue
measurable function f on [0,1] we denote the distribution function of |f | by
df , that is,

df (t) = m({x : |f(x)| > t});
and we denote by f∗ the decreasing rearrangement of |f |, that is,

f∗(t) = inf{x > 0 : df (x) ≤ t}.
A function w on [0,1] will be called a Lorentz weight on [0,1] if w is non-
negative, non-increasing, w(1) > 0, and

∫ 1

0
w(t) dt = 1. Given a Lorentz

weight w and 1 ≤ p < ∞, the Lorentz function space Lw,p[0, 1] is defined
to be the set of all equivalence classes of measurable functions f on [0,1] for
which ‖f‖w,p <∞, where

‖f‖w,p =
(∫ 1

0

f∗(t)pw(t) dt
)1/p

.

If w(x) ≡ 1, then Lw,p[0, 1] ≡ Lp[0, 1]. If w(x) = q
px

(q/p)−1, 1 ≤ q ≤
p < ∞, then Lw,p[0, 1] is the classical Lorentz space Lp,q[0, 1]. If w(x) =
c(p, q, α)x(q/p)−1(1 + | log x|)αq, 1 ≤ q ≤ p < ∞, 0 ≤ α < ∞, where c(p, q, α)
is a constant chosen to satisfy

∫ 1

0
w(t) dt = 1, then Lw,p[0, 1] is the so-called

Lorentz-Zygmund space Lp,q,α[0, 1] (see [2]).
Associated to a Lorentz weight w is the function S(x) =

∫ x
0
w(t) dt. The

weight w is called regular if there is a constant K > 1 such that S(2x)/S(x) ≥
K for all x with 2x ∈ [0, 1]. Note that in each of the Lorentz spaces Lp,q[0, 1]
and Lp,q,α[0, 1] mentioned above, the weight is regular (see [10, page 8]).

From [10, page 25] we know that for 1 < p <∞, the Haar system forms an
unconditional basis for Lw,p[0, 1] exactly when w is regular. Also from [31],
Lw,p[0, 1], 1 < p <∞, is reflexive. Thus we have:

Fact 6. The Lorentz function space Lw,p[0, 1] (1 < p <∞, w is regular)
has a boundedly complete unconditional basis.

From [9], [32], [47] we know that the classical Hardy space on the unit disk
in the complex plane, H1(D), has an unconditional basis. Since H1(D) is a
subspace of L1(T) and L1(T) does not contain a copy of c0, H1(D) does not
contain c0. Thus an application of James’s Theorem (see Section 3) yields:
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Fact 7. The Hardy space H1(D) has a boundedly complete unconditional
basis.

Now from Facts 1–7, and Theorem 9 or Theorem 8 together with Remarks
1 and 2, we have:

Corollary 14. Let X be any Banach space and U be `p (1 ≤ p < ∞),
Lp[0, 1] (1 < p < ∞), `M (M ∈ ∆2), LM [0, 1] (M,M∗ ∈ ∆2), d(w, p) (1 ≤
p < ∞), Lw,p[0, 1] (1 < p < ∞, w is regular), or H1(D). Then U⊗̂X,
the projective tensor product of U and X, has the Radon-Nikodym property
(respectively, the analytic Radon-Nikodym property, the near Radon-Nikodym
property, contains no copy of c0) if and only if X has the same property.

Remark 11. It is shown in [5], [6], [7] that for 1 < p < ∞, Lp[0, 1]⊗̂X
has the Radon-Nikodym property (respectively, the analytic Radon-Nikodym
property, the near Radon-Nikodym property, contains no copy of c0) whenever
X has the same property. For p = 1, it is known that L1[0, 1]⊗̂X is isometri-
cally isomorphic to the Bochner integrable function space L1([0, 1], X) which
is known to have the analytic Radon-Nikodym property (respectively, the near
Radon-Nikodym property, contain no copy of c0) whenever X has the same
property [13], [28], [39].

It follows from [14] thatH1(D)⊗̂X has the Radon-Nikodym property when-
ever X has the Radon-Nikodym property. It can also be seen that H1(D)⊗̂X
has the analytic Radon-Nikodym property (respectively, the near Radon-
Nikodym property, contains no copy of c0) whenever X has the same property,
by noting that H1(D)⊗̂X is a subspace of L1(T, X) and using the results of
the last paragraph. It should be noted that, unlike the case of L1(T)⊗̂X,
H1(D)⊗̂X is not necessarily isomorphic to the function space H1(D,X) (see
[22], [27]).

LetM be a semifinite von Neumann algebra acting on a separable Hilbert
space and let τ be a normal faithful semifinite trace on M. For 1 ≤ p < ∞,
let Lp(M, τ) be the vector space of all τ -measurable operators A, such that
τ(|A|p) < ∞, where |A| = (A∗A)1/2. The space Lp(M, τ) is a Banach space
when equipped with the norm ‖A‖p = (τ(|A|p))1/p [18]. A von Neumann
algebra M is called hyperfinite if M is the weak closure of the union of an
increasing sequence of finite dimensional von Neumann algebras. It follows
from [37], [46] that ifM is hyperfinite and 1 < p <∞, then Lp(M, τ) has an
unconditional finite dimensional decomposition. Since Lp(M, τ) is reflexive
for 1 < p < ∞, by an extension of James’s result due to Sanders [43], it
follows that the FDD of Lp(M, τ) is boundedly complete. In particular, when
M = B(`2), the space of bounded linear operators on `2, then Lp(M, τ) = Cp,
the Schatten p-classes. Since B(`2) is hyperfinite, we have that the Schatten
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p-classes Cp have a boundedly complete FDD when 1 < p < ∞. Therefore
from Theorem 7 and Remarks 1 and 2 we have:

Corollary 15. Let 1 < p <∞ and let X be Cp or Lp(M, τ), where M
is a hyperfinite von Neumann algebra acting on a separable Hilbert space and
τ is a normal faithful semifinite trace on M, and let Y be any Banach space.
Then X⊗̂Y , the projective tensor product of X and Y , has the Radon-Nikodym
property (respectively, the analytic Radon-Nikodym property, the near Radon-
Nikodym property, contains no copy of c0) if and only if Y has the same
property.

Acknowledgement. The authors thank Narcisse Randrianantoanina for
his helpful comments related to Corollary 15.
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