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ON SURFACES WITH CONSTANT MEAN CURVATURE IN
HYPERBOLIC SPACE

RONALDO F. DE LIMA

Abstract. It is shown that for a complete surface with constant mean
curvature H > 1 in H3 with boundary and finite index the distance

function to the boundary is bounded. We apply this result to establish
a sharp height estimate for certain geodesic graphs with noncompact
boundary. We also show that a geodesically complete, embedded surface
in H3 with constant mean curvature H > 1 and bounded Gaussian
curvature is proper and has an ε−tubular neighborhood on its mean

convex side that is embedded. Finally, we use this last result to obtain
a monotonicity formula for such a surface.

1. Introduction

Surfaces of constant mean curvature in Euclidean, spherical and hyperbolic
space have been a natural object of investigation in the study of differential
geometry of submanifolds. They appear as critical points to the variational
problem of minimizing the area function for compactly supported variations
that leave constant the volume “enclosed” by the surface, and have a natural
physical interpretation as “soap bubbles”.

In the present paper, we establish some results on surfaces with constant
mean curvature in hyperbolic 3-space. They are extensions of recent results,
not yet published, obtained by Meeks-Rosenberg and Ros-Rosenberg for sur-
faces with nonzero constant mean curvature in Euclidean 3-space.

It turns out that while surfaces with constant mean curvature 1 in hyper-
bolic space share many properties with minimal surfaces in Euclidean space
(cf. [6], [9], [20]), surfaces of constant mean curvature greater than 1 in hy-
perbolic space are naturally associated with nonzero constant mean curvature
surfaces in Euclidean space (cf. [14]). So, except for Proposition 3 in Sec-
tion 3, all results in this paper are for surfaces with constant mean curvature
greater than 1.
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We prove that for a complete surface with constant mean curvature H > 1
in H3 with boundary and finite index the distance function to the boundary is
bounded (Theorem 1). In particular, if the boundary is compact, the surface
is compact. If, in addition, the surface is strongly stable, the bound for this
function is a constant that depends only on H (see Section 2 for definitions).

In 1969, Serrin [19] proved the following sharp height estimate for compact
graphs with constant mean curvature in Euclidean space. If Ω ⊂ R

2 is a
bounded domain in R2 and f : Ω → R is a smooth, positive function that
equals zero on ∂Ω and whose graph M is a surface with nonzero constant
mean curvature H in R3, then the highest point of M is within a distance at
most 1/H from Ω.

In the work mentioned above, Rosenberg and Ros proved a Euclidean ver-
sion of our Theorem 1 for nonzero constant mean curvature surfaces. By using
this result, they were able to obtain Serrin’s height estimate without assuming
Ω to be bounded.

On the other hand, in [14], Korevaar et al. generalized Serrin’s theorem to
compact geodesic graphs (see Definition 1 in Section 3) with constant mean
curvature H > 1 in hyperbolic space. They obtained the sharp height estimate
arctanh(1/H). By applying Theorem 1, we show that the height estimate
arctanh(1/H) is also valid for a general geodesic graph with constant mean
curvature H > 1 in H3 defined on an unbounded domain Ω, provided it has
finite index and boundary ∂Ω.

It should be remarked that, unlike graphs with constant mean curvature in
Euclidean space, geodesic graphs with constant mean curvature in hyperbolic
space are not always stable. In Section 3, we give an example of an unbounded
geodesic graph of constant mean curvature, defined on a non-compact domain
Ω, with infinite index and boundary ∂Ω. We also give a sufficient condition for
a geodesic graph with nonzero constant mean curvature in H3 to be (strongly)
stable (Proposition 3).

In [15] W. Meeks and H. Rosenberg obtained results on properness and
volume growth of surfaces with nonzero constant mean curvature in Euclidean
3-space. Here, we extend some of these results to surfaces with constant mean
curvature H > 1 in hyperbolic space.

We apply a corollary of Theorem 1 (previously proved by Silveira [20]) to
show that a (geodesically) complete embedded surface in H3 with constant
mean curvature H > 1 and bounded Gaussian curvature is proper. In turn,
this result is used to prove that such a surface has an ε-tubular neighborhood
on its mean convex side that is embedded. Then we apply this last property
to obtain a monotonicity formula.

The paper is organized as follows. In Section 2 we recall the definition of
stability of surfaces with constant mean curvature in hyperbolic space and
some results related to this subject. We also state the interior maximum
principle for the mean curvature equation, which is a tool frequently used



SURFACES WITH CONSTANT MEAN CURVATURE 1081

throughout the paper. In Section 3 we prove the results on stability and
height estimates for geodesic graphs with constant mean curvature H > 1.
Finally, in Section 4, after reviewing some basic facts on laminations that
will be used in the proof of the main theorem of this section, we prove the
theorems on properness and volume growth mentioned above.

Acknowledgments. The author would like to acknowledge Professor J.
Spruck for his interest and for many suggestions that improved some results in
this work. Most of all, he is especially grateful to his thesis adviser, Professor
H. Rosenberg, for his enthusiasm and for stimulating discussions during the
preparation of this paper.

2. Preliminaries

2.1. Stability of constant mean curvature surfaces in H3. In what
follows, we fix some notation and recall some results on the stability of con-
stant mean curvature surfaces in hyperbolic space. For further details on this
subject we refer to [3] and [20].

We use the upper half-space model for H3, i.e.,

R
3
+ =

{
(x1, x2, x3) ∈ R3;x3 > 0

}
,

endowed with the metric

〈, 〉 =
dx2

1 + dx2
2 + dx2

3

x2
3

.

Let φ : M2 → H
3 be an isometric immersion of a smooth complete orientable

surface M into the hyperbolic space H3. By complete we mean that all diver-
gent paths in M have infinite length. Thus, with this definition, M can have
nonempty boundary. As usual, sometimes we will identify M with its image
under φ, φ(M).

Let N be a unit normal vector field on M . Recall that the second funda-
mental form B of M is given by

BX = ∇XN, X ∈ TM,

where ∇ stands for the Riemannian connection of H3.
If {e1, e2} is an orthonormal frame on M , the norm of B is, by definition,

|B|2 =
2∑

i,j=1

〈∇eiN, ej〉2.

The mean curvature function and the mean curvature vector on M are given,
respectively, by

H =
1
2

trace (B) =
1
2

2∑
i=1

〈∇eiN, ei〉 and H = HN.
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Notice that, unlike the mean curvature function H, the mean curvature vector
H does not depend on the chosen orientation N. When H is not identically
zero, we say that M is oriented by its mean curvature vector if 〈H,N〉 ≥ 0.

Henceforth, we call a surface with constant mean curvature H 6= 0 an
H-surface.

Consider a bounded domain D ⊂ M and a smooth variation of D, Φ :
(−ε, ε)×D → H

3, that fixes the boundary; i.e., for each t ∈ (−ε, ε), φt = Φ(t, .)
is an immersion, φ0 = φ and, for all t, φt|∂D = φ|∂D. The area and volume
functions of Φ are

A(t) =
∫
D

dDt, V (t) =
∫

[o,t]×D
Φ∗dH3,

where dDt is the volume element of D in the metric induced by φt and Φ∗dH3

is the pull-back of the volume element of H3.
We call F = ∂Φ

∂t |t=0 the variation vector field of Φ. The variation Φ is
called normal if F is parallel to N , and volume-preserving if V (t) = V (0) for
all t. Let f = 〈F,N〉. In [3] it was shown that

dA

dt
(0) = −

∫
D

2HfdM and
dV

dt
(0) =

∫
D

fdM.

Therefore, H-surfaces are characterized as critical points to the variational
problem of minimizing the area function for volume-preserving variations that
fix the boundary. In this context, questions related to stability naturally arise.
So, if M has constant mean curvature H 6= 0, we say that D is stable if
A′′(0) ≥ 0 for all volume-preserving variations of D that fix the boundary;
otherwise we say that D is unstable. If A′′(0) ≥ 0 for all variations of D that
fix the boundary (but are not necessarily volume-preserving), we say that D
is strongly stable. M is called stable (resp. strongly stable), if all bounded
domains D ⊂M are stable (resp. strongly stable).

Let

FD =
{
f ∈ C∞(D); f |∂D ≡ 0,

∫
D

fdM = 0
}
,

GD = {f ∈ C∞(D); f |∂D ≡ 0} .

As was proved in [3], each f ∈ FD determines a volume-preserving normal
variation of D. Suppose M has constant mean curvature H 6= 0. Consider
f ∈ FD and let Φ be the variation of D determined by f . Define J(t) =
A(t) + 2HV (t), t ∈ (−ε, ε). A calculation gives

(1) J ′′(0) = −
∫
D

∂Ht

∂t
(0)fdM.

Propositions (2.5) and (2.7) in [3] give the following result.
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Proposition 1 (Barbosa-do Carmo-Eschenburg). D ⊂ M is stable if
and only if J ′′(0) ≥ 0 for all f ∈ FD. Moreover, ∂Ht

∂t (0, p) = Lf(p). Here
L = ∆ + (|B|2 − 2) is the stability operator of M and ∆ is the Laplacian on
M .

Remark 1. In [2] the identity ∂Ht
∂t (0, p) = Lf(p) was actually proved for

H-surfaces in Euclidean space. However, as the authors of [3] remarked, the
proof applies to the more general case when the ambient space is a simply-
connected complete Riemannian manifold with constant sectional curvature.

We call index of L in M (or index of M) the supremum, over compact do-
mains D ⊂M , of the number of negative eigenvalues of L acting on functions
f ∈ GD. It should be noted that the eigenvalue problem we are considering
here is Lf + λf = 0, so M is strongly stable if and only if the first eigenvalue
of L is non-negative. Also, by a result in [20], if M is stable, L has index at
most one.

The following proposition was proved in [11].

Proposition 2 (Fischer-Colbrie). If M has finite index, then there is a
compact set Ω in M so that M−Ω is strongly stable and there exists a positive
function u on M so that Lu = 0 on M − Ω.

Remark 2. As was shown in the proof of Proposition 2 in [11], if M
is strongly stable, then the set Ω is empty. Thus, in this case, the positive
function u in the statement satisfies Lu = 0 on all of M .

2.2. The maximum principle for the mean curvature equation.
In many of the results obtained here, the interior maximum principle for the
mean curvature equation, as stated below, will play a crucial role. This prin-
ciple is based on the fact that a function f whose graph has mean curvature
H (not necessarily constant) satisfies a quasi-linear elliptic equation. Details
and proofs can be found, for example, in [10].

Suppose M1 and M2 are two smooth oriented surfaces of H3 which are
tangent at an interior point p and have at p the same oriented normal. In this
case p is called a point of common tangency, and we say that M1 lies above
M2 near p, if, when we express the surfaces M1 and M2 (near p) as graphs
of functions f1 and f2 over the common tangent plane through p, we have
f1 ≥ f2 in a neighborhood of p.

Maximum Principle. Let M1 and M2 be oriented surfaces in H3 and
H1 and H2 their respective mean curvature functions. Suppose M1 and M2

have a point p of common tangency. Then, if H1 ≤ H2 near p, it is not true
that M1 lies above M2, unless M1 coincides with M2 near p.
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3. Stability and height estimates for geodesic H-graphs

Theorem 1. Let (M,ds2) be a complete H-surface in H3, H > 1, with
possibly nonempty boundary ∂M and finite index. Then there is a constant
C > 0 such that, for all p in M ,

dist(p, ∂M) < C.

Proof. Consider the stability operator of M in H3, L = ∆ + (|B|2− 2). By
Proposition 2 in Section 2, there is a compact set Ω in M and a differentiable
function u : M → R, u > 0, such that Lu = 0 on M −Ω. Denoting by K the
intrinsic Gaussian curvature of M , we have |B|2 = 4H2 − 2(K + 1). So, on
M − Ω,

(2) Lu = ∆u− 2Ku+ (4H2 − 4)u = 0.

Given p ∈M −Ω, consider a geodesic ball BR(p) in M −Ω with center at
p and radius R such that ∂BR(p)∩∂(M −Ω) is empty. As was proved in [11],
there exists a curve γ(s) : [0, R̄] → M − Ω, from p to ∂BR(p), parametrized
by arclength in the metric ds2, that is a minimizing geodesic in the metric
u2ds2. Since Ω is compact and clearly R̄ ≥ R, it is sufficient to prove that
there exists a constant C0 > 0 satisfying R̄ < C0.

Let s̃ be the arclength parameter of γ in the metric u2ds2 and R̄0 the length
of γ in this metric. Consider a variation of γ given by fη, where η is the unit
normal of γ(s̃) and f is a differentiable function satisfying f(0) = f(R̄0) = 0.

Since γ is a minimizing geodesic in the metric u2ds2, by the second variation
formula we have

(3)
∫ R̄0

0

{(
df

ds̃

)2

− K̃f2

}
ds̃ ≥ 0,

where K̃ denotes the intrinsic Gaussian curvature of M in the u2ds2 metric.
K̃ is related to K by

(4) K̃ =
1
u2

(K −∆ lnu), ∆ = ∆ds.

Denoting by ∇ the gradient on (M,ds2), we have

(5) ∆ lnu =
1
u2

(u∆u− |∇u|2).

Since H2 −K ≥ 1, (2) and (5) give

K −∆ lnu ≥ c+
|∇u|2

u2
, c = 3(H2 − 1) > 0.
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Using this last inequality, (3), (4) and the identity df/ds̃ = u−1df/ds, we
obtain ∫ R̄

0

(
c

u
+
|∇u|2

u3

)
f2ds ≤

∫ R̄

0

(
K −∆ lnu

u

)
f2ds =

∫ R̄

0

K̃f2uds(6)

≤
∫ R̄

0

(
df

ds̃

)2

uds =
∫ R̄

0

1
u

(
df

ds

)2

ds.

Now, let ψ be such that f =
√
uψ, ψ(0) = ψ(R̄) = 0. Then,

(7)
1
u

(f ′)2 = (ψ′)2 + u−1u′ψψ′ +
1
4
u−2(u′)2ψ2,

where ′ denotes derivation with respect to the variable s. From (6),∫ R̄

0

1
u

(f ′)2ds ≥
∫ R̄

0

(
c+
|∇u|2

u2

)
ψ2ds.

Since u′(s) = 〈∇u, γ′(s)〉, we have (u′)2 ≤ |∇u|2. From this, (7), and the last
inequality above we get∫ R̄

0

(
(ψ′)2 + u−1u′ψψ′ − 3

4
u−2(u′)2ψ2 − cψ2

)
ds ≥ 0.

Applying the inequality a2 + b2 ≥ 2ab with a = (
√

6/2)u−1u′ψ and b =
(
√

6/3)ψ′ we obtain
3
4
u−2(u′)2ψ2 +

1
3

(ψ′)2 ≥ u−1u′ψψ′.

Therefore, ∫ R̄

0

(
4
3

(ψ′)2 − cψ2

)
ds ≥ 0.

Finally, integration by parts gives

(8)
∫ R̄

0

(
4
3
ψ′′ + cψ

)
ψds ≤ 0.

We now take ψ(s) = sin
(
πs/R̄

)
, s ∈ [0, R̄]. Then (8) yields∫ R̄

0

(
c− 4π2

3R̄2

)
sin2

(πs
R̄

)
ds ≤ 0.

Thus we must have

c− 4π2

3R̄2
≤ 0,

that is,

R̄ ≤ 2
3

π√
H2 − 1

,

as desired. �
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Corollary 1. Let M be a complete H-surface in H3, H > 1, with finite
index and compact boundary. Then M is compact.

Remark 3. In the case when ∂M is empty the result of Corollary 1 was
obtained by Silveira [20].

In the proof of Theorem 1 above, we have shown that if R is the radius of a
geodesic ball whose closure is in M−Ω, then R is bounded by a constant that
depends only on H. From this and (the proof of) Proposition 2 in Section 3
(see Remark 2), we have the following corollary.

Corollary 2. If M is a complete, strongly stable H-surface with non-
empty boundary in H3,H > 1, then for all p ∈M

dist(p, ∂M) ≤ 2
3

π√
H2 − 1

.

Remark 4. Since Proposition 2 is still valid when M is an H-surface in
an arbitrary complete 3-manifold (see [11]), Theorem 1, as well as Corollaries
1 and 2, still hold if H3 is replaced by a complete 3-manifold with constant
sectional curvature −1.

Remark 5. We do not know if the constant C(H) = (2/3)π/
√
H2 − 1

in Corollary 2 is sharp. For example, if S is a geodesic sphere in H3 with
constant mean curvature H, it is well known that a hyperbolic hemisphere S′

of S is strongly stable. Let p ∈ S′ be the farthest point from ∂S′. An easy
calculation gives

dist(p, ∂S′) =
1
2

π√
H2 − 1

=
3
4
C(H).

Definition 1. A geodesic graph in H3 is a graph in the following system
of coordinates: Let Ω be a domain in a totally geodesic plane P and let ρ
be a real function that associates to each q ∈ Ω a point on the geodesic γq,
through q, orthogonal to P , at hyperbolic distance ρ(q) from P . A geodesic
H-graph is a geodesic graph with constant mean curvature H 6= 0.

Although H-graphs in R3 are strongly stable, the behavior of geodesic H-
graphs in H3 is quite different, as is shown by the following example.

Example 1. Consider a Euclidean cone in R3 with vertex at the origin
and axis parallel to (0, 0, 1). The part of this cone in R3

+ is a cylinder C with
constant mean curvature greater than 1 in H3. Let P be a totally geodesic
plane of H3 that intersects the axis of C orthogonally at a point O ∈ H3. C
divides H3 into two components, one of which is mean convex, namely the
component to which the mean curvature vector of C points. Let Ω be the
intersection of the mean convex component with P. Then the part of C above
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P is an unbounded geodesic graph M over Ω− {O} with boundary in P (see
Figure 1). By computing the eigenvalues of the stability operator of C, it can
be shown that M has infinite index (cf. [4]). Since on M the distance function
to the boundary is unbounded, Theorem 1 also implies that M has infinite
index.

H

M

P

M
O

Figure 1. A geodesic H-graph in H3 with infinite index.

Let C be the cylinder of the example above and C−, C+ the two con-
nected components of C determined by the vertical totally geodesic plane
Q =

{
(x1, x2, x3) ∈ H3;x2 = 0

}
⊂ H3. As was proved in [4, Prop. 1, p. 108],

each of these components is a strongly stable geodesic graph over a domain
Ω ⊂ Q. More generally, it was proved in [4] that half-Delaunay surfaces in
H
n+1 are strongly stable. Notice that C− and C+ are also Euclidean graphs

over their Euclidean orthogonal projections to Q. This motivates the following
definition and proposition.

Definition 2. Let Q ⊂ H3 be a vertical totally geodesic plane in H3.
We say that a geodesic H-graph M over a domain in Q is horizontal if M is
also a Euclidean graph over its Euclidean orthogonal projection to Q, i.e., if
there is a vector e, normal to Q, such that 〈H, e〉 > 0, where H is the mean
curvature vector of M .

Proposition 3. Let M be a horizontal geodesic H-graph in H3. Then M
is strongly stable.

Proof. Consider in M the orientation given by its mean curvature vector
H. Let D ⊂ M be a compact domain in M and λ the first eigenvalue of the
stability operator L acting on functions f ∈ GD. To prove that D is strongly
stable, it is sufficient to prove that λ ≥ 0.
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Suppose λ < 0 and let f ∈ GD be an eigenfunction of L associated to λ,
i.e., Lf+λf = 0. Let φt be the normal variation of D determined by f . Since
−f is also an eigenfunction of L associated to λ and f does not change sign
in D (see [8, p. 20]), we can assume that f is positive on D. So, for all p ∈ D
we have

(9)
∂Ht

∂t
(0, p) = Lf(p) = −λf(p) > 0.

Given δ > 0, denote by Dδ the image of D under a horizontal translation of
magnitude δ in the e direction. Since M is horizontal, D and Dδ are disjoint.
Now, f > 0 and f |∂D ≡ 0. Thus there exist t and δ such that φt(D) and Dδ

have an interior point of common tangency q, with Dδ above φt(D) near q.
Therefore, since horizontal translations are isometries of H3, the maximum
principle implies H ≥ Ht(q) (see Figure 2).

On the other hand, by (9), the mean curvature of the variation φt increases
with respect to t, i.e., Ht(q) > H. This contradiction proves that λ ≥ 0 and
therefore D is strongly stable. �

D Dδ

φ
t

( D )

H   
t

( q      ) H   
q      

Figure 2

Remark 6. After ad hoc modifications in Definitions 1 and 2, Proposition
3 can be easily extended to the hyperbolic spaces Hn+1, n > 2. Therefore, it
generalizes the hyperbolic part of Proposition 1 in [4] mentioned above.
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Theorem 2. Let P be a totally geodesic plane in H3, Ω ⊂ P an unbounded
domain in P with boundary ∂Ω and ρ ∈ C∞(Ω) a positive function such that
ρ|∂Ω ≡ 0. Let M be the geodesic graph determined by ρ. If M is an H-surface
of H3, H > 1, with finite index, then

sup
Ω
ρ ≤ arctanh

(
1
H

)
.

Proof. Given p ∈ M , denote by ρ(p) the hyperbolic distance to p from
P . M has finite index and, for all p ∈ M , ρ(p) ≤ dist(p, ∂M). Hence, by
Theorem 1, ρ is bounded. Suppose there is a point p ∈ M and a constant
δ > 0 satisfying

ρ(p) = d+ δ, d = arctanh
(

1
H

)
.

After an ambient isometry, we can assume P is the plane {x2
1 + x2

2 + x2
3 = 1}

and the orthogonal projection of p on P is O = (0, 0, 1). Let γ be the vertical
geodesic through O and P ∗ the totally geodesic plane of H3, orthogonal to
γ, at a distance δ/2 from O. Clearly, the part of M above P ∗ is a geodesic
H-graph M∗ over a domain in P ∗, with p ∈ M∗ and ∂M∗ ⊂ P ∗. Moreover,
since ρ is bounded and the distance function from P ∗ to P is unbounded, M∗

is compact (see Figure 3). Then, from (the proof of) Lemma 3.3 in [14], we
obtain that all points q ∈ M∗ satisfy ρ∗(q) ≤ d, where ρ∗(q) denotes the dis-
tance to q from P ∗. But, by construction, ρ∗(p) = d+δ/2. This contradiction
shows any point p ∈M satisfies ρ(p) ≤ d and proves the theorem. �

Remark 7. The above height estimate is best possible for, given H > 1,
there exists a cylinder C in H3 with constant mean curvature H. The points
of the (strongly stable) geodesic graphs C+ and C− defined above that project
on the axis of C are within a distance d = arctanh(1/H) from Q. Hence the
assertion follows.

4. Properness and volume growth of H-surfaces in H3

4.1. Holonomy of laminations. In the proof of the main theorem of this
section, we shall deal with holonomy of laminations. We therefore summarize
some concepts and results on this subject. For a detailed presentation of this
theory, we refer the reader to Chapter 11 of [7].

Intuitively, a lamination of a smooth manifold M is a foliation of M with
some leaves removed. More precisely, let M be a smooth manifold which is
covered by a collection of open sets Ui such that, for each of these sets, there
exists a diffeomorphism ϕi : Ui → Vi ×Wi ⊂ Rk ×W , where W is a closed
subset of Rl and Vi and Wi are open in Rk and W , respectively. M is called
a smooth lamination if the overlap maps ϕjϕ−1

i are of the form

(x, λ)→ (ϕij(x, λ),Λij(λ)),
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PP *

M

*M

δ/2

d + δ/2

γ

p

O

Figure 3

where x → ϕij(x, λ) is smooth for each λ. The charts (Ui, ϕi) are called
lamination charts. We define a relation in M by saying that two points
p, q in M are related if, for any λ ∈ W, there are subsets αi = ϕ−1

i (Vi ×
λ), i = 1, . . . , n, such that p ∈ α1, q ∈ αn, and αi ∩ αi+1 is nonempty. The
equivalence classes of this relation are called the leaves of the lamination.
Thus, a lamination is defined in the same way as a foliation except that, in
local charts, where the leaves of a foliation are the submanifolds Rk×{λ}, λ ∈
R
l, the leaves of a lamination are the submanifolds Rk × {λ}, for λ in some

closed subset of Rl.
Let L be a leaf of a lamination M and p ∈M . A transversal to L through

p, Σp, is a set ϕ−1
i ({x} ×Wi), where (Ui, ϕi) is a lamination chart such that

p ∈ Ui and ϕi(p) = x. If γ is a loop in L based at p, then γ is covered by a
chain of lamination charts Ui, . . . , Un. Thus, if L′ is a leaf close enough to L
and q ∈ L′ ∩ Σp, we can use this chain to “lift” γ to a path γq, with initial
point q. Define

hγ : Σp → Σp
q → γq(1) ,

where γq(1) is the endpoint of γq. For suitably chosen Σp, hγ is a diffeomor-
phism with h−1

γ = h−γ .
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Recall that given topological spaces X,Y and g : X → Y , the germ of
g at x0 ∈ X is the equivalence class of functions that coincide with g in a
neighborhood of x0 in X.

Denote by ĥγ the germ of hγ at p and let

Hp(L) =
{
ĥγ ; γ is a loop in L based at p

}
.

The set Hp(L) is easily given a group structure by composition, i.e., ĥγ ĥγ′ =
̂hγ ◦ hγ′ , and is called the holonomy group of L at p.

Now, it can be shown that if γ and γ′ are homotopic loops in L based at
p, then hγ ≡ hγ′ . Therefore, the map

ĥ : π1(L, p) → Hp(L)
〈γ〉 → ĥγ

is a group homomorphism, called the holonomy homomorphism of the leaf L
at p.

Holonomy is a natural tool to study the behavior of the leaves in a neighbor-
hood of a leaf L of a lamination. In this context, a very important result is the
Reeb stability theorem (see [7, Prop. 11.4.8, p. 301]). Applied to the particu-
lar case when the leaf under consideration is compact and simply-connected,
the Reeb stability theorem yields the following result.

Theorem 3 (Reeb). Let L be a compact simply-connected leaf of a lami-
nation M and p ∈ L. Then there is a transversal Σp through p such that all
leaves of M meeting Σp are homeomorphic to L.

4.2. Properness and volume growth. In the sequel, all complete sur-
faces inH3 are assumed to be geodesically complete, i.e., with empty boundary.

Theorem 4. Let M be a complete embedded H-surface in H3, H > 1,
with bounded Gaussian curvature. Then M is properly embedded.

Proof. Suppose that M is not proper. In this case, since M is embedded,
there is an accumulation point p of M such that p /∈M (see [13, p. 38]). We
shall show that there exists a complete embedded H-surface in H3 containing
p and disjoint from M .

Let {pk} ⊂ M be a sequence of points on M converging to p. Since M is
an H-surface with bounded Gaussian curvature, the second fundamental form
of M is bounded. Therefore there is a δ > 0 such that for all q ∈ M , M is
locally a graph over a disk of radius δ in TqM , Dδ(q), centered at the origin.
Notice that the uniform boundedness of the second fundamental form of M
gives also a C1-uniform bound for the function defining this local graph since,
in this case, the unit normal vector field of M has bounded variation. So, this
function, as well as its gradient, are bounded by a constant independent of q.
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Suppose the tangent planes TpkM converge to a (Euclidean) plane P at
p. Fix one of the two connected components of H3 − P and consider η,
the unit normal vector to P at p that points to this component. Take a
subsequence of {pk}, which we also denote by {pk}, such that 〈H(pk), η〉 has
a fixed sign; i.e., we consider only those points pk for which H(pk) points to
the same component. Since M is locally a graph over each Dδ(pk) ⊂ TpkM ,
for k sufficiently large, each of these local graphs is a graph of a function
uk on Dδ/2(p) ⊂ P . Each uk is a solution of a quasi-linear elliptic partial
differential equation of second order (the mean curvature equation) with a C1

uniform bound. Therefore there is a subsequence ukn of uk and a differentiable
function u∞ on Dδ/2(p) such that ukn converges to u∞ in the C∞-topology
and the graph of u∞ is an H-graph (see [12]). Let L be the H-graph of u∞
and notice that L is tangent to P at p. Observe that L does not depend
on the choice of the sequence pk nor on the choice of sequence of convergent
tangent planes. Indeed, if TqkM converges to a plane Q at p, Q 6= P , then Q
is transversal to P . So, for large k , the local graphs at pk and qk intersect,
which contradicts the assumption that M is embedded. Moreover, L and M
are disjoint; otherwise, by the maximum principle, L and M would intersect
transversally, which contradicts again the embeddedness of M .

Now the sequence (pk,N(pk)) is bounded in the unit normal bundle of M .
Thus there is a subsequence of TpkM that converges to a plane P at p. Since
the limit tangent plane is unique, it follows that TpkM converges.

Notice that all boundary points of L are accumulation points of M . There-
fore, by reasoning as above for these points, we obtain an H-surface in H3

that we will also denote by L, containing p and disjoint from M . Moreover, L
is geodesically complete and embedded. The embeddedness of L follows from
the embeddedness of M , for if L were not embedded in a neighborhood of a
point p̄ ∈ L, there would be local graphs of M near p̄ that would intersect.
That L is geodesically complete can be seen as follows. As we have seen, L
is covered by local graphs of functions defined on disks of radius δ/2 of their
tangent planes. Therefore, for each p̄ ∈ L, there is a lower bound l0 for the
length of the geodesic rays of L issuing from p̄ and contained in the local
graph of L at p̄. Now let γ : [0, s0)→ L be a geodesic in L, not defined at s0,
and choose s′ < s0 such that s0 − s′ < l0. Since the geodesic ray issuing from
p̄ = γ(s′) in the direction γ′(s′) has length greater than l0, it extends γ to s0.
This shows that L is geodesically complete. Thus the closure of M in H3, M ,
is a complete (not connected) embedded H-surface of H3.

We give M a lamination structure by choosing local charts (Ui, ϕi) such
that the open sets Ui are contained in the local graphs described above. It is
easily seen that these charts are lamination charts and that the leaves of this
lamination are M and the accumulation surfaces L. Let L be a leaf in M ,
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L 6= M, and consider the ε-normal bundle of L in H3,

Nε(L) =
{

(p, v); p ∈ L, v ∈ TpL⊥, |v| ≤ ε
}
.

Let ˜Nε(L) be the universal covering space of Nε(L) and notice that ˜Nε(L)
is diffeomorphic to L̃×D(ε), where L̃ is the universal covering space of L and
D(ε) is a geodesic segment of H3 of length 2ε.

Since L has bounded second fundamental form, for some ε > 0, there are
no focal points of L within a distance ε from L. Thus the projection of
˜Nε(L) in H3 via the exponential map of Nε(L) into H3 is a local immersion.

Considering in ˜Nε(L) the metric induced by this projection, we see that the

lamination M determines a lamination of ˜Nε(L) by H-surfaces.
Suppose that L̃ is stable. Then, since H > 1, by Corollary 1 (see also

Remark 4) L̃ is compact. Hence L is compact, and since L is an embedded H-
surface, by a theorem of Alexandrov [1], L is a geodesic sphere. In particular, L
is simply connected. Notice that L is not an isolated leaf since M accumulates
on L. Thus, by Theorem 3, the liftings of L via the holonomy of the lamination
to the leaves near L are homeomorphisms. Therefore these leaves are geodesic
spheres, pairwise disjoint, and of constant mean curvature H, which clearly
is a contradiction. Thus it suffices to show L̃ is stable.

Since L̃ is simply-connected, we can exhaust it by compact, simply con-
nected domains D. Consider in L̃ the orientation given by its mean curvature
vector H. As in the proof of Proposition 3, suppose that λ, the first eigenvalue
of the stability operator L of M , is negative. If f ∈ GD satisfies Lf + λf = 0,
we can assume f to be positive on D, which implies ∂H

∂t (0, p) > 0. The liftings
of D, via the holonomy of the lamination, to the leaves near D, give distinct
H-disks Di that are pairwise disjoint and which project diffeomorphically onto
D by the normal projection of ˜Nε(L) to L̃. Therefore, each Di is a graph, in
the normal bundle, of functions fi on D such that fi → 0. Suppose that, for
all i, fi > 0. Since the variation φt determined by f fixes the boundary of D,
there exist t0 and i such that φt0(D) and Di have an interior point of com-
mon tangency q, with Di above φt0(D) near q. Thus the maximum principle
implies H ≥ Ht0 at q, which contradicts the fact that the mean curvature
increases. If the functions fi are negative, we obtain a contradiction by re-
placing, in the argument above, the function f by the function −f . Therefore
L̃ is strongly stable and this concludes the proof. �

LetM be anH-surface inH3 andNε(M) the ε-normal bundle ofM . Denote
by N∗ε (M) the set of points (p, v) in Nε(M) at which 〈H(p), v〉 ≥ 0.
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Theorem 5. Let M be a complete embedded H-surface in H3, H > 1,
with bounded Gaussian curvature. Then there exists an ε > 0 such that the
exponential map

exp : N∗ε (M) → H
3

(p, v) → expp(v) ,

is an embedding.

Proof. By Theorem 4, M is proper. Suppose that for all ε > 0, the expo-
nential map from N∗ε (M) to H3 is not an embedding. Since M has bounded
Gaussian curvature, its second fundamental form is bounded. Thus there is
an ε > 0 such that exp : N∗ε (M)→ H

3, is a local immersion.
Since we are assuming exp is not an embedding, we can suppose that there

exist points pi, qi ∈ M satisfying qi = exppi(tiN(pi)) with ti → 0. Here,
N = 1

HH and ti is the smallest positive number such that exppi(tiN(pi)) is
in M (see Figure 4).

M  

p

HH

i

qi

Figure 4

Notice that M separates H3 and that the mean curvature vectors of M at
pi and qi point to the same component. Thus, for i sufficiently large we have

(10) 〈H(pi),H(qi)〉 ≤ 0.

As before, the boundedness of the second fundamental form of M gives a
δ > 0 such that, for all p ∈ M , there is a neighborhood of p in M which
is a graph over the disk of radius δ in TpM centered at the origin. Fix a
point O ∈ H3 and a (Euclidean) plane P of the tangent space of H3 at O.
For each i, take an isometry of H3 that maps pi to O and TpiM to P , and
let Mi and M ′i be, respectively, the images of the local graphs at pi and qi
under this isometry. As in the proof of Theorem 4, there are H-graphs in H3,
M∞ and M ′∞, and subsequences Mik and M ′ik such that Mik

C∞→ M∞ and

M ′ik
C∞→ M ′∞. Obviously, the tangent plane of M∞ at O is P . Since M is

embedded, the same is true for M ′∞. Therefore, M∞ and M ′∞ are H-graphs
of functions f, f ′ : D ⊂ P → R, where D is a disk in P containing O, with
O as an interior point of common tangency. Now, take the mean curvature
vector of M∞ at O, H, as the positive direction for the construction of the
graphs of f and f ′, and let H ′ be the mean curvature function of M ′∞ in this
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orientation. Then, by the embeddedness of M and inequality (10), we have
on D

f ≤ f ′ and H ′ < 0 < H,

which clearly contradicts the maximum principle (see Figure 5). This shows
that for some ε > 0, N∗ε (M) embeds in H3 under the exponential map, as
claimed. �

H

H’

O

P

M’

M

8
8

Figure 5

For the proof of the next theorem, we shall use the fact that the group
of isometries of H3 has a discrete subgroup whose fundamental region has
compact closure. If Γ is a discrete subgroup of the group of isometries of H3,
a fundamental region for Γ is a connected open set R in H3 with the following
properties:

• The members of {gR; g ∈ Γ} are mutually disjoint.
• H3 =

⋃{
gR; g ∈ Γ

}
, where R is the closure of R.

Thus, if R is a fundamental region of Γ, the images of R under the ele-
ments of Γ cover H3 without interior overlappings. Such a cover is called a
tessellation of H3, and the images of R under the elements of Γ are called the
regions of the tessellation. In [5], Borel established the existence of compact
hyperbolic manifolds in all dimensions by proving, for all n, the existence of
fundamental regions with compact closures in Hn+1.

Given a surface M ⊂ H3, let MR(p) be the intersection of M with BR(p),
the geodesic ball in H3 centered at p ∈M and of radius R. As a consequence
of Theorem 5 we have the following result.
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Theorem 6. Suppose M is a complete embedded H-surface in H3, H > 1,
with bounded Gaussian curvature. Then, for all p ∈ M and sufficiently large
R > 0, there exists a constant C > 0, independent of p and R, satisfying

Vol(MR(p))
Vol(BR(p))

< C.

Proof. By the hypothesis, M has bounded second fundamental form; i.e., if
k1, k2 are the principal curvatures of M , there is a constant c0 > 0 satisfying
ki < c0, i = 1, 2. By Theorem 5, we can choose ε > 0 such that N∗ε (M)
embeds in H3 under the exponential map. Take R0 > 0 such that R0 <
min{ε, 2arcsinh(1/2c0)} and consider Ω = N∗R0/2

(MR0(p)). The volume of Ω
in H3 is given by (see [16])

Vol(Ω) =
∫ R0/2

0

∫
MR0

(cosh t− k1 sinh t)(cosh t− k2 sinh t)dMdt.

Since, for i = 1, 2 and 0 ≤ t ≤ R0/2,

cosh t− ki sinh t ≥ 1− c0 sinh(R0/2) > 1/2,

we have

Vol(Ω) ≥ 1
8
R0 Vol(MR0(p)).

Let q∗ ∈ Ω be the point of maximal distance from p in Ω and let q ∈MR0(p)
be the hyperbolic orthogonal projection of q∗ in MR0(p). Then,

d(p, q∗) ≤ d(p, q) + d(q, q∗) ≤ R0 +R0/2 = 3R0/2,

where d stands for the distance function on H3. Hence Ω ⊂ B3R0/2(p), which
implies

(11) Vol(B3R0/2(p)) ≥ 1
8
R0 Vol(MR0(p)).

Since, for all R > 0, Vol(BR(p)) is independent of p, (11) gives

(12) Vol(MR0(p)) < c1,

where c1 is a positive constant independent of p.
Consider a tessellation of H3 whose fundamental region R has compact

closure. Given R > R0, denote by Λ the set of regions of the tessellation that
intersect BR(p), and let Λ1 ⊂ Λ be the subset of Λ whose elements are the
regions contained in BR(p). Then,

#(Λ1) ≤ Vol(BR(p))
Vol(R)

,

where # denotes cardinality. Now notice that if Λ2 = Λ − Λ1 and d0 is the
diameter of R, all regions of Λ2 are contained in BR+d0(p). Moreover, it is
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easily seen that Vol(BR+d0(p))/Vol(BR(p)) is bounded above by a constant
c2 > 0, independent of p and R. Therefore,

#(Λ2) ≤ Vol(BR+d0(p))
Vol(R)

<
c2 Vol(BR(p))

Vol(R)
.

Thus we have

(13) #(Λ) = #(Λ1) + #(Λ2) < (1 + c2)
Vol (BR(p))

Vol (R)
= c3 Vol(BR(p)).

Since R has compact closure and the constant c1 in inequality (12) is
independent of p, the volume of M in each region is uniformly bounded; that
is, there is a constant c4 > 0 such that

Vol(M ∩R′) < c4

for any region R′ of the tessellation. From this and (13) we obtain

(14) Vol(MR(p)) < c4#(Λ) < c3c4 Vol(BR(p)) = C Vol(BR(p)),

as desired. �
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