
Illinois Journal of Mathematics
Volume 47, Number 4, Winter 2003, Pages 957–976
S 0019-2082

ON THE KREIN-ŠMULIAN THEOREM FOR WEAKER
TOPOLOGIES

B. CASCALES AND R. SHVYDKOY

Abstract. We investigate possible extensions of the classical Krein-

Šmulian theorem to various weak topologies. In particular, we show
that if X is a WCG Banach space and τ is any locally convex topol-
ogy weaker than the norm-topology, then for every τ -compact norm-
bounded set H, conv τH is τ -compact. In arbitrary Banach spaces, the

norm-fragmentability assumption on H is shown to be sufficient for the
last property to hold.

A new proof to the following result is given: If a Banach space does

not contain a copy of `1[0, 1], then the Krein-Šmulian theorem holds for
every topology τ induced by a norming set of functionals. We conclude
that in such spaces a norm-bounded set is weakly compact if it is merely
compact in the topology induced by a boundary. On the other hand,

the same statement is obtained for all C(K) and `1(Γ) spaces.

1. Introduction

A well-known result that goes back to M. Krein and V. Šmulian [23] says
the following: the closed convex hull of a weakly compact subset of a Banach
space X is weakly compact. It is known that this result also holds when the
weak topology inX is replaced by any locally convex topology compatible with
the dual pair 〈X,X∗〉; see [17, Corollary 9.9.6]. For which other topologies
does this statement remain true?

Recent attention to this question is motivated by its connection with the
Boundary Problem posed by G. Godefroy [14].

Let X be a Banach space and B a boundary in the unit ball
of X∗, i.e., such that ‖x‖ = maxb∈B b(x) holds for all x ∈ X.
Denote by σ(X,B) the topology inX of pointwise convergence
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on B. Is a norm-bounded subset H of X weakly compact if
it is merely compact with respect to σ(X,B)?

In [30] S. Simons gave a partial positive answer to this question in the
case when H is a convex set. This establishes the equivalence between the
Krein-Šmulian-type theorem for topologies σ(X,B) generated by boundaries
and the Boundary Problem itself. In other words, if one can prove that in a
certain Banach space the σ(X,B)-closed convex hull of every norm-bounded
σ(X,B)-compact subset is again σ(X,B)-compact, i.e., the analogue of the
classical Krein-Šmulian Theorem holds, then by Simons’ result for σ(X,B),
the Boundary Problem is solved positively in the given Banach space.

Even though the problem remains still open, to the best of our knowledge,
considerable progress has been made by B. Cascales, G. Godefroy, G. Vera
and others in a series of papers ([3], [4], [5], [6], [8], [9]). In particular, the
Boundary Problem has been positively solved for all boundaries in spaces of
continuous functions defined on a compact space [4], and for the particular
boundary given by the set of extreme points (in the dual unit ball) for general
Banach spaces [3]. In [5] the positive solution was shown to hold also for all
Banach spaces not containing a copy of `1[0, 1]. In fact, the following more
general statement was proved.

Theorem 1.1 ([5]). Suppose X does not contain a copy of `1[0, 1] and B
is a norming subset of the unit ball of X∗. Then the σ(X,B)-closed convex
hull of every σ(X,B)-compact norm-bounded set in X is σ(X,B)-compact.

Here and in the sequel, by a norming set (also called a 1-norming set) for the
Banach space (X, ‖ · ‖) we mean a set B ⊂ BX∗ such that ‖x‖ = supb∈B b(x)
for all x ∈ X. For example, any boundary is a norming set.

So, Theorem 1.1 combined with the aforementioned result of Simons solves
the Boundary Problem, in particular, for all separable, reflexive and, more
generally, all weakly compactly generated (WCG for short) or weakly Lindelöf
Banach spaces [16].

In the first part of this paper we recall that in order for a compact set H
to have compact closed convex hull, every Radon measure on H must possess
a barycenter, and vise versa. This last condition is shown to follow from
the so-called Riemann-Lebesgue integrability of the identity mapping on H.
Using recent results by V. Kadets et. al. (see [19], [20], [29]) we immediately
obtain the Krein-Šmulian theorem for all topologies weaker than the norm
topology of a given Banach space X, provided X is either WCG or X has
an unconditional basis (possibly not countable) and fails to contain a copy of
`1(Γ) over any uncountable set Γ. Furthermore, in Theorem 2.4 we obtain the
same result for all compact sets fragmentable by the norm. This, in particular,
generalizes an earlier result in [8].
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In Section 3 we continue the discussion of the Krein-Šmulian theorem and
give an alternative geometrical proof of Theorem 1.1. Our approach is based
upon a straightforward construction of a sequence of independent functions
(much in the spirit of [28]) whenever the conclusion of the theorem is violated.
This subsequently allows us to embed a copy of `1[0, 1] into the space. Our
argument is self-contained and does not employ the non-trivial results used
in the original proof in [5].

We further observe that in spite of Theorem 1.1, the Boundary Problem
itself has positive solution in any space `1(Γ). This phenomenon is treated in
Section 4. We will find that all spaces `1(Γ) and all C(K)-spaces are angelic
in any topology generated by a boundary. In Proposition 4.3 this condition
is shown to imply a positive solution the Boundary Problem.

Our notation and terminology are standard. We borrow some standard
topological results from the books [13], [17], [21], [22], [27]. Our vector spaces
are all real. If X is a Banach space, B(X) denotes its closed unit ball, and
X∗ its topological dual space. For a locally convex space (X, τ) endowed with
the topology τ its dual is denoted, as usual, by (X, τ)∗. Whenever B is a
subset of (X, τ)∗, we write σ(X,B) to denote the locally convex topology of
convergence on functionals from B. Also we adopt the following short notation
for weak topologies: σ(X,X∗) in the usual Banach space sense is denoted by
‘w’ or ‘w(τ)’ for a general locally convex space with topology τ . Analogously,
σ(X∗, X) is denoted by w∗ or w∗(τ).

The authors are very grateful to the referee who made numerous remarks
and suggestions which substantially improved the text.

2. The Krein-Šmulian theorem and barycenters

The study of compact convex sets is closely related to the existence of
barycenters; see, for example, [10], [11], [26]. If H is a compact subset of the
locally convex space (X, τ) we denote by P(H) the set of all Radon probabil-
ities µ defined on the σ-algebra B(H) of τ -Borel subsets of H. A barycenter
of µ is said to be a vector x ∈ X such that the equality

(1) x∗(x) =
∫
H

x∗(h)dµ(h)

holds for every x∗ ∈ (X, τ)∗. Observe that the right hand side of equation (1)
is well-defined, because x∗|H is τ -continuous and bounded, hence µ-integrable.

In general, a barycenter may not exist. However, its uniqueness follows
immediately from the fact that (X, τ)∗ separates the points of X. Let us
denote by xµ the barycenter of µ ∈ P(H) whenever it exists. It is well known
that

(2) convτH = {xµ : µ ∈ P(H), µ has a barycenter};

see [26, Proposition 1.2] or [11, Theorem 2, p. 149].
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The following lemma exhibits the classical link between barycenters and
the Krein-Šmulian theorem.

Lemma 2.1. Let H be a τ -compact set in a locally convex space (X, τ).
Then convτH is τ -compact if and only if every measure µ ∈ P(H) has a
barycenter in X.

Proof. If convτH is τ -compact, then every µ ∈ P(H) has a barycenter by
[11, Theorem 1, p. 148].

Conversely, let us suppose that every measure µ ∈ P(H) has a barycenter
and let us see that convτH is τ -compact. Since the mapping ϕ : P(H)→ X
defined by ϕ(µ) = xµ is weak∗-w(τ)-continuous, we obtain that ϕ(P(H))
is w(τ)-compact. According to (2), convτH is also w(τ)-compact. The τ -
compactness of convτH (that clearly follows from the classical Krein-Smu-
lian’s theorem, [17, Corollary 9.9.6]) is recalled below for the sake of com-
pleteness; since H is τ -compact, the closed convex hull convτH is precompact
(τ -totally bounded). To prove the τ -compactness of convτH we show that
every net in this set has a converging subnet. So, let us fix a net {yα} in
convτH. The w(τ)-compactness implies the existence of a subnet {yβ} of
{yα} converging to some y ∈ convτH in the topology w(τ). In addition, the
τ -total boundedness of convτH implies that there exists a further subnet {yγ}
of {yβ} which is τ -Cauchy. Since τ has a basis of neighborhoods of the origin
consisting of w(τ)-closed sets, we conclude that actually y = τ − limγ yγ (see
[17, Theorem 3.2.4]), and the proof is complete. �

As we will see in a moment, barycenters are related to the concept of the
so-called Riemann-Lebesgue integral introduced in [20]. Let us briefly outline
the definition.

Suppose that X is a Banach space, (Ω,Σ, µ) is a probability space and
f : Ω→ X is a norm-bounded function, not necessarily measurable in any
sense. Given a partition Π = {Ai}ni=1 of Ω into measurable sets and a col-
lection T = {ti}ni=1 of sampling points, i.e., ti ∈ Ai, i = 1, n, we define the
associated Riemann-Lebesgue integral sum as follows:

S(f,Π, T ) =
n∑
i=1

f(ti)µ(Ai).

We endow {S(f,Π, T )}Π,T with a net structure by defining a partial order by
the rule: Π1 � Π2 if and only if every element of Π1 is contained in some
element of Π2. If this net converges to some element x in the norm topology,
then f is called Riemann-Lebesgue integrable, and x is then defined as its
Riemann-Lebesgue integral. We refer the reader to [2], [7], [19], [20], [29] for
detailed treatments of this and related notions.
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Notice that if f is strongly measurable then its Bochner integrability is
equivalent to the convergence of the entire net of its Riemann-Lebesgue inte-
gral sums (see [20]).

Assume now that the Banach space X is also endowed with another lo-
cally convex topology τ that is weaker than the norm topology. If H is a
τ -compact set in X and the identity map id : H → X is Riemann-Lebesgue
integrable with respect to a measure µ ∈ P(H) then its integral is the barycen-
ter of µ. More generally, if the net of the Riemann-Lebesgue integral sums of
id : H → X has a cluster point, then this point is the barycenter of µ. Indeed,
if x = limα S(id,Πα, Tα) for some subnet, then for every x∗ ∈ (X, τ)∗ we have

x∗(x) = lim
α
x∗(S(id,Πα, Tα)) = lim

α
S(x∗|H ,Πα, Tα) =

∫
H

x∗(h)dµ(h),

since the last integral converges in the conventional Lebesgue sense.
Certain geometric conditions on the Banach space are shown to guarantee

the existence of a cluster point for any measure µ. From [19, Theorem 4.1] and
[29, Theorem 2.1.2], where such conditions are formulated, we immediately
obtain the following result.

Theorem 2.2. Let X be a Banach space satisfying either of the two con-
ditions below:

(i) X is a WCG-space.
(ii) X has an unconditional basis (possibly not countable) and fails to con-

tain a copy of `1(Γ) over uncountable Γ.
Let also τ be a locally convex topology on X weaker than the norm-topology.
Then the τ -closed convex hull of any τ -compact norm-bounded subset H of X
is τ -compact.

Although the geometric assumptions on the space X in this theorem are
obviously more restrictive than in Theorem 1.1, the conclusion holds for more
general topologies.

Next, using Lemma 2.1 and the above ideas we isolate a class of com-
pact sets (for topologies weaker than the weak topology) in a Banach space
for which the Krein-Šmulian theorem holds. We will use the notion of frag-
mentability, originally introduced by Jayne and Rogers [18] and defined as
follows.

Definition 2.3. Let (Z, τ) be a topological space and ρ a metric on Z.
We say that (Z, τ) is fragmented by ρ (or ρ-fragmented ) if for each non-empty
subset C of Z and for each ε > 0 there exists a τ -open subset U of Z such
that U ∩ C 6= ∅ and ρ− diam(U ∩ C) ≤ ε.

A great variety of sufficient conditions for norm-fragmentability of a subset
in a Banach space can be found in the literature: weakly compact sets of
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Banach spaces are norm-fragmented; see [24]. More generally, sets which are
Lindelöf for the weak topology and compact with respect to the topology
generated by a norming set of functionals are fragmented, too; see [6], [8].

Theorem 2.4. Let X be a Banach space and τ any locally convex topology
in X weaker than the norm-topology. If H ⊂ X is a τ -compact norm-bounded
set fragmented by the norm, then convτH is τ -compact. Furthermore,

convτH = conv‖·‖H.

First we show that a fragmentable set can be essentially split into subsets
of small diameter.

Lemma 2.5. Let (H, τ) be a compact space fragmented by a metric ρ and
µ ∈ P(H). Then for every ε > 0 there is a finite partition A1, A2, . . . , Am of
H in B(H) such that:

(i) ρ− diam(Ai) < ε, i = 1, 2, . . . ,m− 1.
(ii) µ(Am) < ε.

Proof. Let A = {A ∈ B(H) : ρ − diam(A) < ε} and let F be the family
consisting of finite unions of elements in A. The ρ-fragmentability of (H, τ)
implies that A is not empty. Thus F is not empty either. Let us define α =
sup{µ(B) : B ∈ F} and pick a sequence (Bn) in F such that α = limn µ(Bn).
If En =

⋃n
k=1Bk, we still have α = limn µ(En) = µ(

⋃∞
n=1En). We claim that

(3) µ

(
H \

∞⋃
n=1

En

)
= 0.

If this is not the case, then there is a compact set K ⊂ H \ (
⋃∞
n=1En)

such that µ(K) > 0. The restriction µ|K of µ to the Borel sets of K is a
Radon measure that has a non empty support F ⊂ K. The ρ-fragmentability
of (H, τ) applied to F implies that there is an open set O ⊂ H such that
O ∩ F 6= ∅ and ρ− diam(O ∩ F ) < ε. We also have µ(O ∩ F ) > 0 because F
is the support of µ|K . Consequently,

α ≥ lim
n
µ(En ∪ (O ∩ F )) = lim

n
µ(En) + µ(O ∩ F ) = α+ µ(O ∩ F ) > α

and we reach the contradiction that establishes the validity of (3). Since

lim
n
µ(H \ En) = µ

(
H \

∞⋃
n=1

En

)
= 0,

we can find an m ∈ N such that µ(H \ Em) < ε. Put Am = H \ Em. Then
Am satisfies (ii), and clearly Em can be split as required in (i). �

Let us point out that the above lemma is very much like an argument
used in the proof of Theorem 2.3 in [25]: If we assume that ρ is lower semi-
continuous with respect to τ in our lemma, then we can take A1, A2, . . . , Am−1
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to be compact (by adapting the first part of the proof of Theorem 2.3 in [25]
to this situation).

Proof of Theorem 2.4. We show that the identity mapping id : H → X is
Riemann-Lebesgue integrable with respect to any measure µ ∈ P(H). Ac-
cording to Lemma 2.1 and the preceding discussion, this implies the first part
of the theorem. Moreover, from (2) we conclude that convτH lies in the clo-
sure of all possible Riemann-Lebesgue integral sums of id, which is obviously
a subset of conv‖·‖H. This implies the second part.

So, let us fix µ ∈ P(H). Without loss of generality we can assume that H
lies in the unit ball of X. For any given k ∈ N, using Lemma 2.5 we can find
a finite partition V k1 , V

k
2 , . . . , V

k
nk

of H in B(H) such that

(4) ‖ · ‖ − diamV ki <
1

2k+1
, i = 1, nk − 1,

and

(5) µ(V knk) <
1

2k+1
.

Let us now denote Ai1i2...ik =
⋂k
j=1V

j
ij

, where 1 ≤ ij ≤ nj , 1 ≤ j ≤ k, and
define a sequence of partitions of H as follows:

Πk = {Ai1...ik : 1 ≤ ij ≤ nj , 1 ≤ j ≤ k}.

For each k ∈ N we also fix an arbitrary set of sampling points Tk = {ti1...ik :
ti1...ik ∈ Ai1...ik}. We claim that the limit limk→∞ S(id,Πk, Tk) exists in the
norm-topology, and is a limit point of the integral sums, even though the
sequence {Πk, Tk} is not a proper subnet.

Indeed, in view of (4) and (5), we have∥∥S(id,Πk, Tk)− S(id,Πk+1, Tk+1)
∥∥

=

∥∥∥∥∥∥∥∥
∑

1≤j≤k
1≤ij≤nj

ti1...ikµ(Ai1...ik)−
∑

1≤j≤k+1
1≤ij≤nj

ti1...ikik+1µ(Ai1...ikik+1)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
∑

1≤j≤k
1≤ij≤nj

ti1...ik

nk+1∑
ik+1=1

µ(Ai1...ikik+1)−
∑

1≤j≤k+1
1≤ij≤nj

ti1...ikik+1µ(Ai1...ikik+1)

∥∥∥∥∥∥∥∥
≤

∑
1≤j≤k+1
1≤ij≤nj

∥∥ti1...ik − ti1...ikik+1

∥∥µ(Ai1...ikik+1) ≤ 3
2k+1

.
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So, the sequence {S(id,Πk, Tk)} converges to some vector x ∈ X. An easy
computation also gives the estimate

‖S(id,Πk, Tk)− x‖ ≤ 3
2k
, k = 1, 2, . . .

Given ε > 0 take k ∈ N so that 9/2k+1 < ε. If Π � Πk and T is any collection
of sampling points in Π, the same calculations as above show that

‖S(id,Π, T )− S(id,Πk, Tk)‖ ≤ 3
2k+1

,

and hence

‖S(id,Π, T )− x‖ ≤ 3
2k+1

+
3
2k

=
9

2k+1
< ε.

This proves the desired result and finishes the argument. �

Let us note that Theorem 2.4 applied to the spaces of Bochner integrable
functions considered in [8, Example E] yields the main results of [1] as a
consequence. Furthermore, if X is an Asplund space (i.e., X∗ has the Radon-
Nikodým property, or, equivalently, the w∗-compact subsets of X∗ are norm-
fragmented), then according to our theorem, for every w∗-compact subset H
of X∗ we have the equality convw∗H = conv‖·‖H. This gives an alternative
proof of [24, Theorem 2.3].

We conclude this section with several remarks.
First we comment on the fact that Lemma 2.5 implies strong µ-measurability

of id. Hence, id is Bochner integrable and its Riemann-Lebesgue integral x
that we found at the end of the proof of Theorem 2.4 is in fact also its Bochner
integral.

We also remark that τ -compact sets as in Theorem 2.4 are not automat-
ically norm-bounded even if τ is generated by a norming set of function-
als. Indeed, consider X = `1 and τ induced by the coordinate-axis vectors
{en}n∈N ⊂ `∞. Set H = {nen}n∈N ∪ {0} ⊂ `1. Then H is unbounded, yet
τ -compact.

3. A new proof of Theorem 1.1

In this section we give an alternative proof of Theorem 1.1 stated in the
introduction. Our approach is based on a geometric construction of an inde-
pendent sequence of functions on a τ -compact set (τ = σ(X,B)) with non-
compact convex hull. After a short argument, presented in the original proof
in [5], this implies existence of a copy of `1[0, 1] in X.

So, for the rest of this section we assume that there exists a norm-bounded
τ -compact set H in X such that convτH is not τ -compact, and we show that
X then contains a copy of `1[0, 1]. For purely technical reasons we also assume
without loss of generality that H is contained in the unit ball of X and that
the norming set B inducing τ is absolutely convex.
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In view of Lemma 2.1 there is a measure µ ∈ P(H) without a barycenter.
We can decompose µ into the sum of its purely atomic part µa and its atomless
part. The purely atomic part always has a barycenter. To see this, we recall
that the Radon probability µ has at most countably many disjoint atoms that
are singletons (hi)i. Hence, µa =

∑
i λiδhi , with λi ≥ 0 and

∑
i λi ≤ 1, and

thus xµa =
∑
i λihi is the barycenter for µa. This observation implies that

only the atomless part of µ does not have a barycenter.
So, from now on we assume that µ has no atoms. We also identify H

with the support of µ, so that every open set in H has positive measure with
respect to µ.

Our plan is to pick a sequence of functionals (fn)n∈N in B so that

(6) H
⋂( ⋂

m∈M
{fm > r + δ}

)⋂( ⋂
n∈N
{fn < r}

)
6= ∅

holds for any two disjoint sets of natural numbers M and N , and two fixed
real numbers r and δ, δ > 0. Such a sequence is called independent over H
(see [28]). Every Banach space, which contains an independent sequence over
a compact set, also contains a copy of `1[0, 1] (see Lemma B in [5]).

Our construction is based on the following lemmas.

Lemma 3.1. There exists an ε > 0 and a Borel set A in H with µ(A) > 0,
such that for every Borel subset B in A with µ(B) > 0 and every h ∈ convτH
there is an f ∈ B satisfying the following inequality:

(7) f(h) > ε+
1

µ(B)

∫
B

f(s)dµ(s).

Proof. Suppose, on the contrary, that for any ε > 0 and any measurable
A ⊂ H there is a B ⊂ A and h ∈ convτH such that

f(h) ≤ ε+
1

µ(B)

∫
B

f(s)dµ(s),

whenever f ∈ B.
Let εn = 1/2n, n ∈ N. By an exhaustion argument, using the previous

inequality for ε1 = 1/2, we can find a sequence (h1
n)n∈N ⊂ convτH and a

pairwise disjoint sequence (A1
n)n∈N in B(H) such that µ(H \

⋃∞
n=1A

1
n) = 0

and

f(h1
n) ≤ ε1 +

1
µ(A1

n)

∫
A1
n

f(s)dµ(s),

for all f ∈ B and n ∈ N. Hence, as B is absolutely convex, we have∣∣∣∣∣f(h1
n)− 1

µ(A1
n)

∫
A1
n

f(s)dµ(s)

∣∣∣∣∣ ≤ ε1,
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for all f ∈ B and n ∈ N. Letting h1 =
∑∞
n=1 µ(A1

n)h1
n and adding up the

previous inequalities we get∣∣∣∣f(h1)−
∫
H

f(s)dµ(s)
∣∣∣∣ ≤ ε1.

In the same manner, for every n ∈ N we can construct an hn ∈ convτH so
that ∣∣∣∣f(hn)−

∫
H

f(s)dµ(s)
∣∣∣∣ ≤ εn,

for all f ∈ B. Since B is norming, it follows that
∥∥hn − hn+1

∥∥ ≤ εn + εn+1,
and hence the limit h = ‖ · ‖ − limn→∞ hn exists. Passing to limits in the
previous inequality we see that h is the barycenter of µ, which contradicts our
assumption. �

Note that since µ is a regular measure, A can be chosen to be closed.
Furthermore, restricting µ to the set A we can and do assume that A is in
fact the entire space H.

We say that a set K ⊂ X has a finite ε-net if there is a finite subset F of
K such that K ⊂

⋃
x∈F {y ∈ X : ‖y − x‖ ≤ ε}. It is a basic fact that every

norm-compact set has a finite ε-net for all ε > 0.
From now on, we fix ε > 0 as in Lemma 3.1.

Lemma 3.2. For any norm-compact set K ⊂ convτH, any collection of
open sets (Ui)ni=1 in H and any positive numbers (λi)ni=1 with

∑n
i=1λi = 1

there are open sets (Vi)ni=1 satisfying the following conditions:

(i) Vi ⊂ Ui, i = 1, n.
(ii) dist(K,

∑n
i=1 λivi) > ε/2, whenever vi ∈ Vi, i = 1, n.

Proof. First we find in each Ui a Borel subset Wi so that µ(Wi) = λiµ(W )
> 0, where W =

⋃n
i=1Wi and Wi∩Wj = ∅, i 6= j. Indeed, since µ is atomless,

we can pick disjoint Borel sets Ai ⊂ Ui, i = 1, n, such that µ(Ai) = µ(Aj) > 0
whenever i 6= j. By the same token, there are sets Wi ⊂ Ai such that
µ(Wi) = λiµ(Ai), i = 1, n. Clearly, these sets fulfill our requirement.

Let us fix any finite (ε/2)-net (hk)Nk=1 in K. In view of Lemma 3.1 there
is an f ∈ B verifying

f(h1) > ε+
1

µ(W )

∫
W

f(s)dµ(s)

= ε+
n∑
i=1

λi
µ(Wi)

∫
Wi

f(s)dµ(s).
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Then for every i = 1, n one can find (wij)Mj=1 ⊂Wi such that

f(h1) > ε+
n∑
i=1

λi

M∑
j=1

1
M
f(wij)

= ε+
M∑
j=1

1
M

n∑
i=1

λif(wij).

Thus,
M∑
j=1

1
M

∣∣∣∣∣f(h1)−
n∑
i=1

λif(wij)

∣∣∣∣∣ > ε.

So, for some j0 we have ∣∣∣∣∣f(h1)−
n∑
i=1

λif(wij0)

∣∣∣∣∣ > ε.

Since wij0 ∈Wi ⊂ Ui, there are open subsetsW 1
i ⊂ Ui such that the inequality∣∣∣∣∣f(h1)−

n∑
i=1

λif(wi)

∣∣∣∣∣ > ε

holds for all wi in W 1
i , i = 1, n. As a consequence, we have∥∥∥∥∥h1 −

n∑
i=1

λiwi

∥∥∥∥∥ > ε,

whenever wi ∈W 1
i , i = 1, n.

Doing the same for (W 1
i )ni=1 instead of (Ui)ni=1, and h2 instead of h1, we

obtain open sets W 2
i ⊂W 1

i with∥∥∥∥∥h2 −
n∑
i=1

λiwi

∥∥∥∥∥ > ε,

whenever wi ∈W 2
i , i = 1, n.

Continuing the process we end up with open sets Vi = WN
i . It is clear from

our construction that ∥∥∥∥∥h−
n∑
i=1

λivi

∥∥∥∥∥ > ε

2
,

for all h ∈ K and vi ∈ Vi. So, conditions (i) and (ii) are satisfied. �

Lemma 3.3. For any norm-compact set K ⊂ convτH and any collection
of open sets (Ui)ni=1 in H there are open sets (Vi)ni=1 satisfying the following
conditions:

(i) Vi ⊂ Ui, i = 1, n.
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(ii) dist(K,
∑n
i=1λivi) > ε/4, whenever vi ∈ Vi, i = 1, n, and λi ≥ 0 with∑n

i=1λi = 1.

Proof. To prove this lemma we fix a finite ε/4-net in the set{
(λ1, λ2, . . . , λn) :

n∑
i=1

λi = 1, λi ≥ 0

}
equipped with the metric ρ((λi), (νi)) =

∑n
i=1 |λi − νi|. Then we apply

Lemma 3.2 successively to all elements of the net. �

Lemma 3.4. For any collection of open sets (Ui)ni=1 in H there exist f ∈ B
and two constants a and b with b− a ≥ ε/8 such that

{f > b} ∩ Ui 6= ∅,
{f < a} ∩ Ui 6= ∅,

for all i = 1, n.

Proof. Let us fix arbitrary vectors ui ∈ Ui, i = 1, n, and set K =
conv(ui)ni=1. By Lemma 3.3, there are vectors vi ∈ Ui such that if L =
conv(vi)ni=1, then dist(K,L) > ε/4.

By the geometric version of the Hahn-Banach Theorem, there exists a
g ∈ B(X∗), ‖g‖ = 1, separating K − L from the ball (ε/4)B(X), i.e.,

g(k − l) > ε

4
,

for all k ∈ K, l ∈ L. Since the w∗-closure of B coincides with the entire space
B(X∗), we can find an f ∈ B for which the inequality

f(k − l) > ε

4
holds, whenever k ∈ K and l ∈ L.

Now it is easy to see that the constants a = supl∈Lf(l) + ε/16 and b =
infk∈Kf(k)− ε/16 meet the desired conditions. �

Construction of the independent sequence. First, applying Lemma 3.4 to
U1 = U2 = · · · = Un = H we find f1 ∈ B and constants a1, b1 with b1 − a1 ≥
ε/8 such that

U1 = {f1 > b1} ∩H 6= ∅,
U2 = {f1 < a1} ∩H 6= ∅.

Then we apply Lemma 3.4 to U1, U2 and get f2 ∈ B, a2, b2 with b2−a2 ≥ ε/8
such that

{f2 > b2} ∩ Ui 6= ∅,
{f2 < a2} ∩ Ui 6= ∅,
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for i = 1, 2. It is clear how to continue the process to obtain sequences
(fn)n∈N ⊂ B and (bn, an)n∈N, bn − an ≥ ε/8, such that for all finite disjoint
sets M and N in N we have

H ∩

( ⋂
m∈M

{fm > bm}

)⋂( ⋂
n∈N
{fn < an}

)
6= ∅.

Of course we can assume that |an − a| < ε/32, for some constant a and every
n ∈ N. Then, letting δ = ε/32 and r = a+ ε/32, we finally get

H ∩

( ⋂
m∈M

{fm > r + δ}

)⋂( ⋂
n∈N
{fn < r}

)
6= ∅,

whenever M and N are finite disjoint subsets of N. The proof is complete. �

As explained in the introduction, as a consequence of Theorem 1.1 and
Simons’ result [30], we obtain the positive solution to the Boundary Problem
in spaces not containing `1[0, 1]. Surprisingly, this is also true for any space
`1(Γ) in the canonical norm. In the next section we discuss the Boundary
Problem in the classical `1(Γ) and C(K)-spaces in more detail and prove even
stronger results for these spaces.

4. Angelic spaces and the Boundary Problem

To motivate the results in this section we start with the following easy fact,
which, in particular, yields the positive solution to the Boundary Problem
under certain restrictions on the boundary.

Proposition 4.1. Let X be a Banach space, D a norming subset of
B(X∗) and H a norm bounded σ(X,D)-compact subset of X. If D is dense
in B(X∗) in the topology of uniform convergence on countable subsets of H,
then H is weakly compact.

Proof. It suffices to prove that H is weakly countably compact, which im-
plies that H is weakly compact by the Eberlein-Šmulyan Theorem. Take any
sequence (xn) in H and let x0 ∈ H be a σ(X,D)-cluster point of (xn). For
any x∗ ∈ BX∗ and ε > 0 (iii) implies that there is a point d∗ ∈ D such that

|x∗(xn)− d∗(xn)| < ε, for n = 0, 1, 2 . . .

From this we deduce that x0 is also a σ(X,X∗)-cluster point of X∗, and the
proof is complete. �

We stress that if, in the above proposition, D is moreover absolutely convex,
then the fact that H is weakly compact implies that D is dense in B(X∗) in
the topology of uniform convergence on countable subsets of H (in fact, in
the topology of uniform convergence on H), bearing in mind that the closures
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of D in the Mackey topology µ(X∗, X) and the weak∗ topology σ(X∗, X)
coincide and that D

σ(X∗,X)
= B(X∗); see [27].

It is interesting to note that the assertion of Proposition 4.1 also holds if
we assume that there is a boundary B′ ⊂ BX∗ such that:

(α) Each x∗ ∈ B′ is in the closure of D for the topology of uniform
convergence on countable subsets of H.

(β) Norm bounded and σ(X,B′)- relatively countably compact subsets of
X are weakly relatively compact.

This idea was used in [4] for X = C(K) and B′ = K ∪{−K} ⊂ B(C(K)∗)
to solve the Boundary Problem for C(K)-spaces. We now establish a purely
topological statement giving a new proof of this result, not only for C(K),
but also for all spaces `1(Γ) in their canonical norms. In fact, we prove that
those spaces are angelic (see the definition below) in the topology induced by
a boundary.

Definition 4.2 (Fremlin). A regular topological space E is angelic if
every relatively countably compact subset A of E is relatively compact and
its closure A is made up of the limits of sequences from A.

In angelic spaces the different concepts of compactness and relative com-
pactness coincide: The (relatively) countably compact, (relatively) compact
and (relatively) sequentially compact subsets are the same (see [13]). Ex-
amples of angelic spaces include C(K) endowed with the topology tp(K) of
pointwise convergence on a countably compact space K (see [15], [22]), and
all Banach spaces with their weak topologies.

The relation between angelicity and the Boundary Problem is seen from
the following proposition.

Proposition 4.3. Let X be a Banach space and let B ⊂ B(X∗) be a
boundary for X such that (X,σ(X,B)) is angelic. Then a subset H of X is
weakly compact if (and only if) H is norm bounded and σ(X,B)-countably
compact.

Proof. In view of the Eberlein-Šmulyan Theorem, we only have to prove
that if H is norm bounded and σ(X,B)-compact, then H is σ(X,X∗)-sequen-
tially compact. Since the space (X,σ(X,B)) is angelic, for each sequence (xn)
inH there is a subsequence (xnk) and a point x0 ∈ H such that x0 = σ(X,B)−
limk xnk . Now, Corollary 11 in [30] (alternatively, [31, Theorem on p. 70])
applies in a straightforward manner to ensure that x0 = σ(X,X∗)− limk xnk .
The proof is complete. �

It is not difficult to prove that if X is a separable Banach space then for
any boundary B ⊂ B(X∗) the space (X,σ(X,B)) is angelic, although there
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are boundaries in the nonseparable case that also provide angelic topologies,
such as the one with C(K) we mentioned above.

Another example of this phenomenon is given in the following proposition.

Proposition 4.4. Let Γ be any set and D = {−1, 1}Γ the set of the
extreme points of B(`∞(Γ)). Then:

(i) (`1(Γ), σ(`1(Γ), D)) is angelic.
(ii) If H ⊂ `1(Γ) is ‖ · ‖1-bounded and σ(`1(Γ), D)-compact then H is

weakly compact.

Proof. To prove (i) observe first that D ⊂ B(`∞(Γ)), (D,σ(`∞(Γ), `1(Γ)))
is compact and (C(D), tp(D)) is angelic; see [13]. The natural embedding

(`1(Γ), σ(`1(Γ), D))→ (C(D), tp(D))

is a homeomorphism onto its image. Then the angelicity of the space `1(Γ) in
the topology σ(`1(Γ), D) follows from the angelicity of (C(D), tp(D)). State-
ment (ii) is a straightforward consequence of Proposition 4.3. �

In Theorem 4.9 we will prove that statements such as those in Proposi-
tion 4.4 hold for all boundaries of B(`∞(Γ)). Still let us remark that (ii) was
previously obtained in [17, Theorem 10.5.2] using Schur’s Lemma for `1(Γ).

The next lemma will allow us to transfer the angelic property from one
topology to another. We will use it later in the proofs of Theorems 4.8 and
4.9.

Lemma 4.5. Let X be a non-empty set and τ , T two Hausdorff topologies
on X such that (X, τ) is regular and (X,T) is angelic. Assume that for every
sequence (xn) in X with a τ -cluster point x ∈ X, x is a T-cluster point of
(xn). Then the following assertions hold:

(i) If L ⊂ X is τ -relatively countably compact, then L is T-relatively
compact.

(ii) If L ⊂ X is τ -compact, then L is T-compact.
(iii) (X, τ) is an angelic space.

Proof. Statement (i) is a straightforward consequence of the assumptions
on τ -cluster points of sequences in X and the fact that (X,T) is angelic.

Let us prove (ii). If L ⊂ X is τ -compact, then L is T-relatively compact
by (i). To finish the proof of (ii) it will be enough to show that L is T-closed.
Pick x ∈ LT

. Using the fact that (X,T) is angelic, there is a sequence (xn)
in L with

(8) x = T− lim
n→∞

xn.

By τ -compactness, there is y ∈ L which is a τ -cluster point of (xn). Our
assumption implies that y is a T-cluster point of (xn). Hence, by (8), y = x
and thus x ∈ L. This concludes the proof of (ii).
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The proof of (iii) relies upon the following claim.

Claim 4.6. If L is a τ -relatively countably compact and countable subset
of X, then

(9) L
τ

= L
T

and the topologies τ and T coincide on L
T

.

Suppose for the moment that the claim is true and let us prove that (X, τ)
is angelic. To this end we will show that if A ⊂ X is τ -relatively countably
compact then A

τ
= A

T
is τ -compact and τ and T coincide on A

τ
. By (i) we

already know that A
T

is T-compact. Now we will prove that the identity map

id : (A
T
,T) −→ (A

T
, τ)

is continuous, that is, we will show that any τ -closed subset of A
T

is T-closed.
Indeed, take a τ -closed subset F of A

T
. Pick any x ∈ FT

. The angelicity of
(X,T) provides us with a sequence (xn) in F such that

x = T− lim
n→∞

xn.

Now for every n ∈ N we can also take (xmn) in A such that

xn = T− lim
m→∞

xmn.

If we define L = {xmn : m,n ∈ N} then the claim tells us that τ and T

coincide on L
T

and so
x = τ − lim

n→∞
xn,

which implies that x ∈ F . So A
T

is τ -compact and τ and T coincide on A
T

.
Hence, since A

T
is τ -closed, we obtain A

τ ⊂ A
T

. On the other hand, as
A ⊂ AT

, A is τ -relatively compact and so A
τ

is T-compact by (ii). Therefore
A

T ⊂ Aτ , and thus A
T

= A
τ
, and the proof is complete.

Let us now prove Claim 4.6.
From the assumptions we have L

τ ⊂ L
T

. Conversely, if we pick x in the
T-compact subset L

T
, then the angelicity of (X,T) ensures the existence of a

sequence (xn) in L such that

(10) x = T− lim
n→∞

xn.

By the τ -relatively countably compactness of L there is y ∈ L
τ

which is a
τ -cluster point of (xn). Therefore y is a T-cluster point of (xn). Hence, by
(10), y = x and thus x ∈ Lτ , which implies the equality (9).
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To prove that the topologies τ and T coincide on H := L
T

it suffices to
show, by compactness, that the identity map

id : (H,T) −→ (H, τ)

is continuous. To this end we will establish that any τ -closed subset F of H
is T-closed. Indeed, as (H, τ) is a regular topological space we have

F = ∩{Uτ : F ⊂ U ⊂ H,U is τ -open in H}.

On the other hand, for any such U we have that U
τ

= U ∩ Lτ and we can
apply the equality (9) to U ∩ L to conclude that

U ∩ Lτ = U ∩ LT
.

This implies

F = ∩{U ∩ LT
: F ⊂ U ⊂ H,U is τ -open in H}

and so F is T-closed. �

Note that the hypothesis on L in Claim 4.6, namely that L is countable and
relatively countably compact in X, does not imply (in general) that L is rela-
tively compact in X. Indeed, take βN to be the Stone-Čech compactification
of the natural numbers N and pick a point p ∈ βN \N. Take X := βN \ {p}
and L = N. It is well known that an infinite set in L cannot have a unique
cluster point in βN \N. This proves that L is relatively countably compact
in X, but its closure in X, L

X
= X, is not compact.

The lemma below can be found in [4]. Here we include a slightly different
proof that does not use the Urysohn Lemma.

Lemma 4.7. Let K be a compact space and B ⊂ B(C(K)∗) a boundary
for (C(K), ‖ · ‖∞). If (fn) is an arbitrary sequence in C(K) and x ∈ K, then
there is µ ∈ B such that

fn(x) =
∫
K

fndµ

for every n ∈ N.

Proof. If we define the continuous function g : K → [0, 1] by

g(t) := 1−
∞∑
n=1

1
2n

|fn(t)− fn(x)|
1 + |fn(t)− fn(x)|

, t ∈ K,

then

(11) F =
∞⋂
n=1

{y ∈ K; fn(y) = fn(x)} = {y ∈ K : g(y) = 1 = ‖g‖∞}.
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Since B is a boundary, there exists µ ∈ B such that
∫
K
gdµ = 1. From this

we obtain

(12) 1 = ‖µ‖ = |µ|(K) ≥
∫
K

gd|µ| ≥
∫
K

gdµ = 1.

In other words,

0 = |µ|(K)−
∫
K

gd|µ| =
∫
K

(1− g)d|µ|.

Since 1− g ≥ 0, we obtain |µ|({y ∈ K : 1− g(y) > 0}) = 0, that is, |µ|(K \F )
= 0. Therefore, for every n ∈ N we have∫

K

fndµ =
∫
F

fndµ =
∫
F

fn(x)dµ = fn(x),

because µ(F ) =
∫
F
gdµ =

∫
K
gdµ = 1 by the equalities (11) and (12). �

We naturally arrive at the following result.

Theorem 4.8 ([4]). Let K be a compact space and B ⊂ B(C(K)∗) a
boundary for C(K). Then (C(K), σ(C(K), B)) is an angelic space. Conse-
quently, if H ⊂ C(K) is norm bounded and σ(C(K), B)-countably compact,
then H is weakly compact.

Proof. The space (C(K), tp(K)) is angelic ([15], [22]; see also [13]). Bearing
this in mind, the first part of the theorem follows from Lemmas 4.7 and 4.5
applied to X = C(K), τ = σ(C(K), B) and T = tp(K).

The second part of the theorem follows from Proposition 4.3. �

The game we played with the spaces C(K) can also be played with `1(Γ).

Theorem 4.9. Let Γ be any set and B ⊂ B(`∞(Γ)) a boundary for (`1(Γ),
‖ · ‖1). Then:

(i) (`1(Γ), σ(`1(Γ), B)) is angelic.
(ii) If H ⊂ `1(Γ) is ‖ · ‖1-bounded and σ(X,B)-compact then H is weakly

compact.

Proof. The fact that B is a boundary implies that for any countable subset
A ⊂ Γ and any family of signs (yγ)γ∈A ∈ {−1, 1}A, there is (bγ)γ∈Γ in B such
that bγ = yγ , for γ ∈ A. Hence, if D = {−1, 1}Γ, d∗ ∈ D, and we take a
sequence (zn)n ∈ `1(Γ), there is b∗ ∈ B such that

d∗(zn) = b∗(zn)

for every n ∈ N. By Proposition 4.4, the space `1(Γ) is angelic in the topology
σ(`1(Γ), D). Therefore statement (i) follows from Lemma 4.5 applied to τ =
σ(`1(Γ), B) and T = σ(`1(Γ), D). Statement (ii) is now a consequence of
Proposition 4.3. �
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We finish with two questions that are still open to the best of our knowledge.
A result of Bourgain and Talagrand [3] states that if X is a Banach space

and H is a norm bounded and σ(X, extB(X∗))-countably compact subset of
X, then H is weakly compact. (Rainwater’s theorem is a weak version of
this.) Therefore, a positive solution of the problem below would imply the
Boundary Problem.

Problem 4.10. Let X be a Banach space, B ⊂ B(X∗) a boundary and
D = conv(B ∪ {−B}). Given e∗ ∈ extB(X∗), ε > 0, and a sequence (xn)n, is
there d∗ ∈ D such that

|d∗(xn)− e∗(xn)| < ε,

for every n ∈ N?

Problem 4.11. Is a Banach space X angelic in the topology σ(X,
extB(X∗)) ?
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