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ORBIT NONPROPER DYNAMICS ON LORENTZ
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ABSTRACT. An action of a topological group G on a topological space X
is orbit nonproper if, for some z € X, the map g — gz : G — X is non-
proper. We describe the collection of connected, simply connected Lie
groups admitting a locally faithful, orbit nonproper action by isometries
of a connected Lorentz manifold.
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1. Introduction

In any kind of dynamics of groups, it is basic to determine the collection
of groups that admit actions of the type under investigation. Once such a
list is complete, a second problem is to determine, for each group in the list,
all of its actions. In the rare situation where both of these problems can be
solved, one can reasonably claim to have completed an area within dynamical
systems.

This is the last in a series of papers including [AS99al, [AS99b], [Ad98a],
[Ad98Db], [Ad99a], [Ad99Db] and [Ad99c], all of which were motivated by [K094]
and [Ko096]. In this series, we have attempted to determine the collection of
groups admitting an “interesting” smooth action by isometries of a Lorentz
manifold. There is some information available limiting the possible actions of
some of these groups, but we do not deal with that question here. (See §0.8.B,
§5.4 and Corollary 5.4.A of [Gr88], Theorem 1.14 of [Ze98a], and Chapter 6
in [Ko94].)

We shall restrict ourselves to a very weak interpretation (described below)
of the word “interesting”. The surprising conclusion, observed by a number
of researchers, is that, in Lorentz dynamics, even weak dynamical hypotheses
result in strong restrictions on the list of allowable groups. (See Theorems
1 and 3 of [Zi84], [Zi86], §5.3.E of [Gr88], [K094|, [Ze98a], [ZeI8b], [AS99a],
[AS99b], and [Ad98b].)

The isometry group of a Lorentz manifold is Lie, so we restrict our attention
to real Lie groups. Discrete groups present many difficulties, so, as a first step,
it is prudent to work with connected Lie groups. Since any group can act
trivially, it seems reasonable to include faithfulness as part of the definition of
“interesting”. However, for technical reasons, we wish to be able to move from
a group to its covering groups, so we require our actions only to be locally
faithful; if we pull back a locally faithful action of a group to some covering
group, the new action is still locally faithful.

Every Lie group admits a left-invariant Lorentz metric, so, if we impose
no further dynamical conditions, then the list of groups is unrestricted. In
[Ko96], N. Kowalsky considers only simple Lie groups and shows that even
the most modest dynamical requirement causes a dramatic reduction in the
list of groups: She shows that, if a connected simple Lie group G with finite
center admits a nontrivial nonproper action on a connected Lorentz manifold,
then, for some integer n > 3, G is locally isomorphic to SO(n — 1,1) or to
SO(n,2).

In moving beyond simple Lie groups with finite center, because of technical
complications, it is helpful to make two minor modifications to the problem.
First, we replace nonproperness by a slightly stronger condition: We say that
an action of a locally compact topological group G on a locally compact
topological space X is orbit nonproper if there exists x € X such that the
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map g — gr : G — X is nonproper. This condition is still very weak,
compared with most dynamical conditions one might consider. For example,
an action with an orbit that is not closed is a fortiori orbit nonproper. Second,
we consider only connected Lie groups with simply connected nilradical. This
class includes all connected, simply connected Lie groups. So, in particular,
we have a classification of the Lie algebras of Lie groups admitting a locally
faithful, orbit nonproper action on a connected Lorentz manifold.
Our main theorem (proved after Lemma 22.1) is:

THEOREM 1.1. Let G be a connected Lie group with simply connected
nilradical of N. Let L be a semisimple Levi factor of G. Then G admits a
locally faithful, orbit monproper action by isometries of a connected Lorentz
manifold iff at least one of the following holds:

(1) The center Z(G) of G is noncompact.

(2) The Adjoint image Adg(G) of G is not closed in GL(g).

(3) For some integern > 2, either so(n, 1) orso(n,2) is a direct summand
of g; that is, for some Lie algebra g', we have that g is isomorphic
either to g’ @ so(n,1) or to g’ ® so(n,2).

(4) There exists a nonzero (Ad G)-invariant subspace Vi of 3(n) such that
Ady, (L) is compact.

(5) There is an integer n > 3, there is an ideal ly of | and there is
an (Ad G)-invariant subspace Vi of 3(n) such that the adjoint rep-
resentation of ly on V1 is isomorphic to the defining representation of
so(n—1,1) on R™*1

In (5), the statement that “the adjoint representation of [p on V; is iso-
morphic to the defining representation of so(n — 1,1) on R"*!” means that
there are a Lie algebra isomorphism F : [p — so(n — 1,1) and a vector space
isomorphism f : Vi — R™*! such that, for all X € [y, for all Y € V;, we have
F((ad X)Y) = (F(X))(F(Y)).

The conditions (1)—(5) are sufficiently structural in nature that, given any
reasonable presentation of a Lie group, one may determine which of them
it satisfies, if any. In particular, (4) and (5) can be effectively checked by
decomposing the adjoint representation of a semisimple Levi factor on the
center of the nilradical.

A more concise form of Theorem 1.1 is:

THEOREM 1.2. Let G be a connected Lie group with simply connected nil-
radical. Then G admits a locally faithful, orbit nonproper action by isometries
of a connected Lorentz manifold iff at least one of the following holds:

(1) The Adjoint homomorphism Ad : G — GL(g) is nonproper.
(2) For some integer n > 2, either so(n, 1) orso(n,?2) is a direct summand

of g.
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(3) Some nonzero Abelian ideal of g has an (Ad G)-conformal quadratic
form that is either positive definite or Minkowski.

By “(Ad G)-conformal quadratic form” on an ideal, we mean that the
Adjoint representation of G on the ideal is by linear transformations that are
conformal with respect to the form.

Theorem 1.2 can be proved by a slight modification to the proof of The-
orem 1.1. Alternatively, by basic Lie theoretic arguments, Theorem 1.2 and
Theorem 1.1 are equivalent. While Theorem 1.2 is shorter than Theorem 1.1,
it is (perhaps) not entirely obvious that (1) and (3) of Theorem 1.2 are easily
checked, given a specific Lie group G.

Some of the work on this paper was done while visiting I’Université Henri
Poincaré (Faculté des Sciences) in Nancy, France, and I appreciate very much
the hospitality of L. Berard-Bergery, A. Besse and my other hosts. The basic
collection of techniques used here were developed jointly with Garrett Stuck,
in February, 1997, while participating in the Research-in-Pairs Program at
Oberwolfach, sponsored by the Volkswagen-Stiftung. The research environ-
ment we found there was excellent. Over the last three years, many conversa-
tions with C. Leung, V. Reiner, J. Roberts, G. Stuck and D. Witte have been
very helpful. The proofs of some of the lemmas appearing here were found
only after a large amount of computation using various symbolic manipula-
tors. Since my skill with this software is limited, I benefited greatly from
C. Leung, V. Reiner and D. Witte who contributed significant amounts of
time helping me with these computations. Finally, this entire line of research
was inspired by the original insights of N. Kowalsky.

2. Global definitions

By a “manifold”, we shall mean a smooth (Hausdorff, second countable,
finite-dimensional) real manifold without boundary. By a “Lie group”, we
shall mean a smooth (Hausdorff, second countable, finite-dimensional) real Lie
group. By a “connected Lie subgroup” of a Lie group, we mean a subgroup
whose cosets form the leaves of a foliation of the Lie group. Such a subgroup
need not be closed. We give it the Lie topology and manifold structure. The
Lie topology may not agree with the inherited topology. By a “Lie algebra”,
we shall mean a finite-dimensional real Lie algebra, unless otherwise specified.
By an “action” of a Lie group on a manifold, we shall mean a smooth action.
By a “vector space”, we shall mean a finite-dimensional real vector space,
unless otherwise specified. A “root system” will not be assumed to be reduced.
(That is, our convention is the opposite of [Hu72|. See the second sentence
on p. 43 of [Hu72].)

Let G be a Lie group. By a “representation” of G, we mean a smooth
representation on a finite-dimensional vector space. By a “real G-module” we
mean a (real) vector space V together with a representation of G on V' by
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real linear transformations. By a “complex G-module” we mean a complex
vector space V together with a representation of G on V by complex linear
transformations.

If g is a Lie algebra, then we define real and complex g-modules in a similar
way. Some authors (see [FH91], first paragraph of §26.3, p. 444) use the terms
“real” and “complex” in a different way. If g is a complex Lie algebra, then a
“g-module” is a complex vector space together with a representation of g on
V.

Let g be a Lie algebra. For any real g-module X, let X denote the
complexification of X, so that X© is a complex g-module. For any complex
g-module X, let Xr denote the realization of X', so that Xy is a real g-module.
That is, Ax denotes the underlying real vector space of X', with g acting on
X by real linear transformations. For any complex g-module X, let X' denote
the conjugate module. That is, if J : X — X is the complex structure on X,
then the underlying real vector space of X is the same as that of X', but the
complex structure on X is —.J.

Let a group G act on a set X. The action is said to be faithful if the
intersection of the stabilizers is trivial. Assume G is a topological group.
The action is said to be locally faithful if the intersection of the stabilizers is
discrete. Assume that X is a locally compact topological space, assume that
G is locally compact and assume that the G-action on X is continuous. The
G-action on X is said to be orbit nonproper if, for some = € X, the map
g — gz : G — X is nonproper.

If V is a (real) vector space, then V* denotes the dual of V, i.e., the vector
space of homomorphisms V' — R. Similarly, if V' is a complex vector space
then V* is the vector space of homomorphisms V' — C.

Let V be a vector space and let T': V' — V be a linear transformation.
We say that T is real diagonalizable if T : V — V is diagonalizable over R.
We shall say that T is semisimple if its complexification 7€ : V€ — VC is
diagonalizable over C. We shall say that T is elliptic if T' is semisimple and
if every characteristic root of T is pure imaginary. There exist unique linear
transformations Tp : V — V, T : V — V and Ty : V — V satisfying the
following properties:

e Tp, Tk and Ty are pairwise commuting;
e T is real diagonalizable, Ty is elliptic and Ty is nilpotent; and
e I'=Tp+Tg+Tn.

We shall say that Tp, Tg and T are, respectively, the real diagonalizable,
elliptic and nilpotent parts of T. If g is a semisimple Lie algebra and if X € g,
then we say that X is real diagonalizable (vesp. semisimple, elliptic, nilpotent)
if ad X : g — g is real diagonalizable (resp. semisimple, elliptic, nilpotent).
If G is a Lie group, then G° denotes the connected component of the
identity in G. If G is a Lie group, then Z(G) denotes the center of G and
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Z°%G) == (Z(G))°. A Lie algebra will be said to be compact if it is either
zero or semisimple with negative definite Killing form. It will be said to be
noncompact otherwise.

If a group G acts on a set S and if s € S, then we denote the stabilizer in
G of s by Stabg(s). If a Lie group G acts on a set S and if s € S, then we
define Stabg(s) := (Stabg(s))°.

Let g and h be Lie algebras and let V and W be vector spaces. Let p :
g — gl(V) and o : h — gl(W) be representations. For X € g, v € V, Y € §
and w € W, we write Xv := (p(X))(v) and Yw := (¢(Y))(w). Following this
notation, we say that p is isomorphic to o if there is a Lie algebra isomorphism
F : g — b and there is a vector space isomorphism f : V — W such that, for
all X € g, for all v € V, we have f(Xv) = (F(X))(f(v)).

Let @ be a nondegenerate quadratic form on a real or complex vector space
V. Then O(Q) C GL(V) denotes the group of invertible linear transforma-
tions of V which preserve (). We define

SO(Q) = {g € O(Q) | det (9) =1} and SO°(Q) := (SO(Q))".

The Lie algebra of SOY(Q) is denoted by s0(Q). Let I : V — V be the
identity transformation. Let P := {A |\ > 0} be the collection of positive
scalar transformations on V. We define CO°(Q) := P(SO°(Q)). The Lie
algebra of CO°(Q) is denoted by co(Q).

Let g be a Lie algebra. If X, Y, T € g, then we say (X,Y,T) is a standard
sl2(R) basis of g if {X,Y, T} forms a basis of g and if

T,X]=2X, [T,Y]=-2Y and [X,Y]=T.

If X,Y € g, then we say that (X,Y) is a standard sla(R) generating set in g
if (X,Y,[X,Y]) is a standard slz(R) basis of some Lie subalgebra of g.

Let g be a Lie algebra, let V' be a real g-module and let n > 2 be an integer.
We say that V' is n-irreducible if V' is irreducible and if dim(V') = n. We shall
say that V is stably n-irreducible if there is an n-irreducible real g-submodule
Vo of V and a real g-submodule V; of V such that V' = V; + V4 and such that
the representation of g on V; is trivial.

Let s be a Lie algebra and let V be a real s-module. Let U and U’ be
subspaces of V. We say that (U,U’) is almost s-invariant if

e UU(sU) CU’; and
e the codimension in U’ of U is < 1.

We define direct summand and b |g as in §2 of [Ad98b]. We define all of
the following as in §2 of [Ad98b]: ¢g(X), ¢4(S), ng(S), G, Xnry Xom, G, S,
Qa, ordered @g-basis, Minkowski vector space, Tay®(a), a“, of, X¢, X&,
Xk, 8. Warning: Some authors use G, to denote the stabilizer in G of m
and use g,, to denote the Lie algebra of G,,; note that our conventions are
different here. For all a € G, let a® := Tay*(a —a® — a¥). For all S C G, we
define S¢ := {a® |a € S} and S* := {al|a € S}.
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Let G be a Lie group acting smoothly on a manifold M preserving a smooth
connection. Let my € M and let C be an ordered basis of T;,,M. For all
X € g, following the notation defined above, X&' and XZ are the first two
terms in the Taylor expansion of X¢; similarly, X, é? will denote the third term.
For all S C g, we define S§ := {X{ | X € S}, and S} = {X} | X € S},

Let V be a vector space. A quadratic form @ on V is said to be Minkowski
if there is an integer d > 2 and an isomorphism V «— R¢ such that Q
corresponds to (4. We denote the set of all Minkowski quadratic forms on V'

by Mink(V).

Fix an integer d > 1 for the rest of this section. Let D :={1,...,d}. Let
29, .. .,xg : RY — R be the coordinate projections. For all i € D, let z; be
the germ at zero of z{. Let 99, ... ,82 be the standard framing of R?, so, for

all i € D, we have 0Y = 9/0z9. For i € D, let §; € G denote the germ at
zero of 02, Let ey, ..., eq be the standard basis of R¥!. For all 4,5 € D, let
E;; denote the d x d matrix with a one in the (i, j) entry, and with zeroes
elsewhere. Define F¢ : G¢ — R¥*! and FL : gL — R4 by

C E 7§ ’ Py L E ' D — f§ ' . ,
F ajﬁj = a;€j, F a]kzjak = ajkEk].
J J gk j.k

Then F¢ : G€ — R¥1 and FL : gL' — R9*4 are both vector space isomor-
phisms. For X € G, let X¢™ := FC(XY) and X' := FL(XL). For S C G,
set SCM 1= {XY™| X € S} and ST™ := {XI™| X € S}. The superscript
“m” means “matrix form”.

In the remainder of this section, the subscripts “E”, “H” and “P” stand
for the words “elliptic”, “hyperbolic” and “parabolic”, respectively. Assume,
for the remainder of this section, that d > 2.

Let N7 := E11 — E4q. Let M}E be the collection of all matrices ) a;; E;;
in R4*? guch that

o forall i € {1,d}, for all j € {1,...,d}, we have a;; = 0; and
o forall 4,5 € D, we have a;; = —a;;.

Let ML = N; + ML,

If d = 2, then we define M% = {0}, M} := 0, M% = {0}. Assume,
for the remainder of this section, that d > 3. For j € D\{1,d}, let N; :=
E1; — Ejq. Let M2 be the collection of all matrices Y a;;F;; in R¥? such
that

o for all i € {1,2,d}, for all j € D, we have a;; = 0; and
o foralli,j € D, we have a;; = —aj;.

Let Mb := Ny + M2, Let M% :=RNy + -+ RN;_1.
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3. Basic facts

LEMMA 3.1. Let Q be a Minkowski form on a vector space V. Let T €
50(Q). Let S be a nondegenerate subspace of (V,Q). Assume that T(S) C S
and that T%(S) = {0}. Then T(S) = {0}.

Proof. Tf Q|S is positive definite, then the only nilpotent element of so(Q|S)
is zero, and so we are done. We therefore assume that Q|S is not positive
definite. Then, as Q]S is nondegenerate, it follows that Q|S is Minkowski.
Replacing V by S, T by T'|S and @ by Q|S, we may assume that V' = 5. We
have T2(V) = T%(S) = {0}, so (4) = (2) of Lemma 4.6 of [Ad99b] implies
that T = 0. Then T(S) = {0}. O

LEMMA 3.2. Let g be a semisimple Lie algebra and let a be a mazimal
R-split torus in g. For all a € a*, we define

9o = {Weg|VT €a, [T,W] = (a(T))W}.
Let ag € a*\{0}. Assume that go, # {0}. Let X € go,\{0}. Then there exist

TecaandY € g_q, such that (X,Y,T) is a standard sla(R) basis of some
Lie subalgebra of g.

Proof. Choose J € a such that ¢g(J) = ¢g(a). Then [J, X] = (ap(J))X. By
Lemma 3.7, p. 622, of [Ko96] (with H replaced by T'), choose T € g such that
[T,X] = 2X, such that T € (ad X)g and such that [T, J] = 0. By Lemma
IX.7.6, p. 433, of [He78] (with H replaced by T' and Y replaced by Y), choose
Y € g such that [T, Y] = —2Y and such that [X,Y] =T.

Let s := RX +RY +RT. Then s is a Lie subalgebra of g. Moreover, s is Lie
algebra isomorphic to sla(R). Moreover, ad T : s — s is real diagonalizable.
By Lemma 7.6 of [Ad99b], we see that ad T': g — g is real diagonalizable as
well. We have [T,J] =0, so T € ¢5(J) = ¢g(a). Then RT + a is an R-split
torus in g, so, by maximality of a, T" € a.

We have g = P, ¢+ ga- For all a € a*, let p, : g — go be the projection
map. Let ¥ := {a € a* | g, # {0}}. For all a € ¥, define Y,, := po(Y). Then
Y = Y acw Y,. As X € go,\{0}, we see that g, # {0}, so ap € U.

We have T'=[X,Y] =3y [X.Ya] and T € a C ¢g(a) = go. For all
a € U, we have [X,Ya] € [gag> 0a] € Gagra- Thus, for all a € ¥, we have
[X,Ya] = Pagt+alT) € Pag+a(go). For all a € W\{—ap}, we have pagta(go) =
{0}, so [X,Y,] = 0. Then

[X»?*ao] = [Xv?*ao] + Z [X7 f/Oé] = Z[Xvifa] = [Xvi/]
aeU\{—ap} acv
Let Y :=Y 4, € g o, Then [X,Y]=[X,Y ,]=[X,Y]=T.
Recall that [T, X] = 2X. Since X € gq,, we get [T, X] = (ao(T))X, so
2X = (ao(T))X, so ag(T) = 2. Since Y € g_q,, we conclude that [T,Y] =
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(—ap(T))Y, so [T,Y] = —2Y. It remains to show that X,Y,T are linearly
independent.

Wehave X £ 0and [T, X] =2X,50T #0. WehaveT # 0and [X,Y] =T,
so Y # 0. Because X and Y are both nonzero and are elements of different
eigenspaces of ad T : g — g, we see that X and Y are linearly independent.
It remains to show that 7' ¢ RX + RY. Assume, for a contradiction, that
T € RX + RY.

Then we have 2X = [T, X] € [RX + RY, X] = R[Y, X] = RT and —2Y =
[T,Y] € [RX +RY,Y] = R[X,Y] = RT, so RX + RY C RT, so dim(RX +
RY) < 1. Since X and Y are linearly independent, we have a contradiction.

O

D. Witte pointed out to me that it suffices to prove Lemma 3.2 in the case
where the R-rank of g is 1, because the Lie subalgebra of g generated by ga,
and g_,, has R-rank 1. It is not be difficult to prove Lemma 3.2 case by case
for Lie algebras of R-rank one.

LEMMA 3.3. Let g be a semisimple Lie algebra with no compact factors.
Let N denote the set of nilpotent elements of g. Then there are an integer
k>1and Xq,..., Xy, Y1,..., Y € g such that

(1) no proper Lie subalgebra of g contains {X1,..., Xk, Y1,..., Y };

(2) for alli, (X;,Y;) is a standard sly(R) generating set in g; and

Proof. We may assume that g is simple and noncompact. Let a be a max-
imal R-split torus in g. For all o € a*, let

0o = {X €g|VT € q, [T, X] = ((T))X}.

Let @ := {a € a*\{0} | g # {0}}. As g is noncompact, a # {0}. Moreover,
® is a root system in a*. Let ¥ := ® U {0} C a*.

Let A be a base of the root system ®. Let @ (resp. ®_) denote the roots in
® that are positive (resp. negative) with respect to A. Let ny := Za@m s
and let n_:=3% s go. Then ny € N and n_ C N. Choose an integer
m > 1and Xi,..., X € Uneo, (82\{0}) such that ny =RX; +--- +RX,,.
Choose an integer n > 1 and Y{,..., Y, € U,co_ (82\{0}) such that n_ =
RY{ + --- +RY}.

By Lemma 3.2, choose Y1,...,Y,, € n_ such that, for i € {1,...,m}, we
have that (X;,Y;) is a standard slz(R) generating set in g. Using Lemma 3.2
again, choose X7,..., X! € ny such that, for i € {1,...,n}, we have that
(Y/, X]) is a standard sly(R) generating set in g; then (X/,Y/) is a standard
s[5 (R) generating set in g.

Let k := m+n. Fori € {1,...,n}, let X,,,1; := X/ and Y,,4; := Y.
By construction, (2) holds. We have RX; + -+ + RX; = ny C N and
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RY; + -+ + RY;, = n_ C N, proving (3). It remains to prove (1). Let  be
the Lie subalgebra of g generated by ny +n_. We wish to show that h = g.
Choose Ty € a such that, for all v € A, we have v(Ty) > 0. Let § := ad Tp :
g — g. Then §(g) = ny + n_. Then, by Lemma 7.14 of [Ad99b], we see that
b is an ideal of g. Since g is simple and since ny +n_ # {0}, we conclude
that h = g. O

LEMMA 34. Let E be a vector space and let (-, -) be a positive definite
symmetric bilinear form on E. Let ® be a root system in E. For allw € E,
let wbt = {w' € E|(w,w') =0}. Let W be the Weyl group of ®. Let v € E
and let W' := {f € W | f(v) = v}. Assume that v’ is spanned by ® Nvt.
Then the only W'-fizpoint in v is 0.

Proof. Fix p € v\{0}. We wish to prove that there exists f € W’ such
that f(u) # p.

As ® Nt spans vt and as vt € pt, we see that ® Nt & pt. Choose
A € ®Nvt such that A ¢ pt. Let f € W denote the orthogonal reflection
through A+ defined by f(a) = a — [2(a, A)/(A\, A)]A. Since A € v+, we have
v e M soflv) =v,s0 f € W. Since A ¢ ut, we have u ¢ A\*, so
fw) # . O

Recall, from §2, the definitions of X© and Af.

LEMMA 3.5. Let g be a Lie algebra. If X and Y are real g-modules, and
if X© and Y© are isomorphic in the category of complex g-modules, then X
and Y are isomorphic in the category of real g-modules.

Proof. We have (X®)gp = (Y©)g. We also have (X®)p = X © X and
(YOOR2Y @Y. Then X ® X 2Y @Y. So, by the Krull-Schmidt Theorem,
we get X =Y. O

LEMMA 3.6. Let gg be a reductive Lie algebra. Let V' be a vector space.
Let p : go — gl(V) be a representation. Let | := [go, go] be the semisimple
Levi factor of go. Let ly be an ideal of I. Let Q € Mink(V'). Assume that

p(lo) = 50(Q). Then p(go) € co(Q).

Proof. Let gy be an ideal of go such that lo+g1 = go and [g1, [p] = {0}. Let
I:V — V be the identity transformation. Let S := {¢tI |t € R} be the set of
scalar transformations on V. We have s0(Q) # {0}, so p(lp) # {0}. Then p(lp)
is semisimple, and so s0(Q) is semisimple. Then dim(V') > 3, so the centralizer
in gl(V) of 50(Q) is S. So, since p(lp) = s0(Q) and since [g1, o] = {0}, we get
p(g1) € S. Then p(go) = p(lo +g1) C (s50(Q)) + S = c0(Q). O

LEMMA 3.7. Let g be a Lie algebra and let | be a semisimple Levi factor
of g. Let p : g — gl(V1) be a representation. Assume p(I) # {0}. Let



ORBIT NONPROPER DYNAMICS ON LORENTZ MANIFOLDS 1201

Q@ € Mink(V7). Assume s0(Q) C p(g) C co(Q). Then, for some integer
n > 3, there is an ideal ly of [ such that plly : lo — gl(V1) is isomorphic to the
defining representation of so(n — 1,1) on R™*1,

Proof. Let n := dim(V;y). We have p(I) # {0}, so p(I) is semisimple. As
p() C p(g) C co(Q), we see that co(Q) contains a semisimple Lie subalgebra.
Then n > 3.

Let b := p(g) C gl(V1). Then p(I) is a semisimple Levi factor of h. We
have s0(Q) C h C co(Q). So, since the codimension in co(Q) of s0(Q) is 1, we
conclude either that h = s0(Q) or that h = co(Q). In either case, we see that
b is reductive and that the unique semisimple Levi factor of § is s0(Q). Then
(1) = 50(Q).

Fix a vector space isomorphism f : V; — R™*! such that Q, o f = Q.
Let Fy : s0(Q) — s0(Q,) be the corresponding Lie algebra isomorphism
defined by Fo(T) = foT o f~1. For all T € s0(Q), for all v € V4, we have
F(Tv) = (Fo(T))(f(0).

Let Fy := Fyo (p|l) : 1 — s0(Qy). Then

F(1) = Fo(p(l)) = Fo(s0(Q)) = 50(Qn)-
Let [; be the kernel of F;. Let [y be an ideal of [ such that [ is a vector space
complement in [ to [;. Let F := Fil|l : [p — s0(Q,). Then F : [y — s0(Q,,) is
an isomorphism. For all X € g, for all v € V3, let Xv := (p(X))v. Then for
all X € [, for all v € V1, we have f(Xv) = (F(X))(f(v)). O

Recall, from §2, the definition of almost s-invariant.

LEMMA 3.8. Lets be a Lie algebra and let V' be a real s-module. Let U
and U’ be subspaces of V' and assume that (U,U") is almost s-invariant. Then
both of the following are true:

(1) If W is a real s-submodule of V, then (U NW,U’' NW) is almost
s-tnvariant.

(2) If W is a real s-module and if f : V — W is a g-equivariant linear
transformation, then (f(U), f(U")) is almost s-invariant.

Proof. These both follow from the definition of almost s-invariant. O

4. Structural results about so(n, 1), Part I

Let Ry := (0,00). Let d > 2 be a positive integer. Let g := s50(Qq).
Let ML, ML ML M% and Np,...,Ny_1 be as in §2.

LEMMA 4.1. LetT € g. Assume that some characteristic root of ad T :
g — g is not pure imaginary. Then

(1) T is semisimple;
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(2) for some a > 0, the set of real eigenvalues of ad T : g — g is equal to
{-a,0,a}; and
(3) for all X € ¢g(T), we have that X is semisimple.

Proof. By Lemma 3.1 of [Ad99b], after a change of basis, we may assume
that T € (Ry ML) U ML, For any A € M1, every characteristic root
of ad A : g — g is pure imaginary. So T € Ry ML In particular, T is
semisimple, proving (1).

Choose a > 0 such that T € aML;. Then the real diagonalizable part of T’
is aNi. Then the set of real eigenvalues of ad T : g — g is the same as that of
ad(aN7) : g — g. Since the set of eigenvalues of ad N7 : g — g is {—1,0,1},
we see that (2) holds.

Moreover, because aN is the real diagonalizable part of T', we have ¢4 (T') C
cg(aN7) = ¢g(N1) = RMY. As every element of RM}, is semisimple, we see
that (3) holds. O

LEMMA 4.2. Let T,A,B € g. Assume that A # 0 # B. Assume that
[T,A] = A and that [T, B] = —B. Then [A, B] # 0.

Proof. Let Ty be the real diagonalizable part of T. Then [Ty, A] = A and
[To, B] = —B. Replacing T by Ty, we may assume that T is real diagonal-
izable. Then there exists g € SO(Qq) such that gTg~! is a diagonal matrix.
Conjugating 7', A and B by g, we may assume that T is a diagonal matrix.

The set of diagonal matrices in g is RN, so T' € RN;. Choose a € R such
that T = aNj. The set of eigenvalues of ad N7 : g — g is {—1,0,1}, so the
set of eigenvalues of ad T : g — g is {—a,0,a}. As (ad T)A = A, we see
that 1 € {—a,0,a}, so a € {—1,1}, so T € {-N7,N1}. Replacing T by —T
and interchanging A and B, if necessary, we may assume that 7' = A;. Then
(ad M7)A = A and (ad N7)B = —B.

For X € R? 4 let X! be the transpose of X. The (41)-eigenspace and
(—1)-eigenspace of ad N7 : g — g are, respectively, M% and (M%), so
A€ M% and B € (M32)!. By matrix multiplication, for all X,Y € M2%\{0},
we have [X,Y?] # 0. Thus [A, B] # 0. O

5. Structural results about so(n, 1), Part II

Let d > 3 be an integer. For any quadratic form R : R¥*! — R, let
RC : C¥! — C denote the unique extension of R to a complex quadratic
form. Let eq,...,eq be the standard basis of R%*!. Define a quadratic form
Q : R R by

Q(z1e1 + -+ xgeq) = v12q + Tag_1 + -+ + Tg—1T2 + T4T1.

Let [ := s0(Q®). Let ¢ denote the collection of diagonal matrices in [€. Then
¢ is a maximal C-split torus in [C.
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For all ¢ € GL4—2(C), let g* € GL4(C) denote the matrix whose (1,1)
entry is one, whose (d, d) entry is one, whose middle (d — 2) x (d — 2) block
is g and whose other entries are all zero. Define a proper injective Lie group
homomorphism ¢ : GLy_2(C) — GL4(C) by ¢(g) = g*.

Let Qo := Qq and [§ := 50(QS). Choose f € 1(GLg_2(C)) such that
QS o f = QF. Let F: [© — [§ be the corresponding Lie algebra isomorphism
defined by F(X) = fXf~'. Let ¢ := F(c). Then ¢q is a maximal C-split
torus in [g. We define F := Flc:¢— ¢g. Then F :¢— ¢y is a vector space
isomorphism. Let F, : ¢* — ¢} be the vector space isomorphism defined by
Fu(p)=po (F1).

Let ® C ¢* be the set of roots of ¢ on I€. Let x denote the Killing form
on [. By Corollary 8.2, p. 36, of [Hu72] and Proposition 8.3, p. 36, of [Hu72],
we find that k|c is nondegenerate. Thus x|c induces an isomorphism % : ¢ —
¢* of complex vector spaces. Let k* be the symmetric bilinear form on ¢*
corresponding to |c under this isomorphism. Let E C ¢* be the real span of
®. Let (-, -) be the restriction of k* to E. By the two paragraphs preceding
Theorem 8.5, p. 40, of [Hu72], we see that ¢* = E® /—1FE and that (-, -) is
positive definite.

In a similar way, from [§ and ¢, we define ®¢, kg, Ko, K, Fo and (-, - )o.
Under the isomorphism F : (€ — [g, we have: ® corresponds to ®q, k corre-
sponds to kg, K corresponds to kg, k* corresponds to k(j, E/ corresponds to Ejy
and (-, -) corresponds to (-, -)o,

For all w € E, let wt := {o € F|(w,w') = 0} denote the orthogonal
complement in E to w, with respect to (-, - ). For all w € Ep, let w* = {u' €
Ey | (w,w")o = 0} denote the orthogonal complement in Ey to w, with respect
to ( ty )0.

Let I := {1,...,d}. For all i,j € I, let e;; € C™? be the matrix with
a one in the (4,7) entry and with zeroes elsewhere. For all i,j € I, define
er; C?™*d — C by e;‘j(Zaklekl) = q;;. Foralli € I, let L; := ef;|c € ¢*.
Let T := €11 —eqq € ¢ and Ty := F(T) € ¢o. Let v := L; € ¢* and
vy = F.(v) €.

Let p: I — gl,(C) and pg : [§ — gl,(C) be the inclusion maps; these are
both representations. Let = C ¢* denote the set of weights of plc : ¢ — gl;(C).
Similarly, let 2 C ¢ denote the set of weights of po|co : ¢ — gl;(C). Then
we have F,(Z) = Z,.

Let N:={1,2,3,...}. Given a vector space Z, a subset S C Z and m € N,
let

m

Cn(S,2) = {Z a;S;

i=1

A1y nn sy > 0, 51,...,Sm65’}.

For any vector space Z and any S C Z, let C(S,Z) :=J Cn (S, 2).

meN
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LEMMA 5.1. Let Iy := {(i,§) € I?|i # j and i+ j # d + 1}. All of the

following are true:

(1) For alli eI, we have Ly = —Lg_;41.

(2) We have {LL + Lj | (’L,j) S IQ} =0 = {Lz — Lj (’L,j) S Ig}

(3) For all (i,j) € I, we have (L;,L;) = v*(L;, L;) = 0.

(4) We have == {Ly,...,La4}.

(5) We have E=RLy +---+RL,.

(6) We have L = RLg+---+RLg_;.

Proof. Conclusions (1)—(4) are calculations and Conclusion (5) follows from
Conclusion (2), so it remains to prove Conclusion (6).

By Conclusion (1), we have Ly = —Lg4, and so it follows from Conclusion
(5) that the codimension in E of RLy + - RLg—; is < 1. As Ly # 0, it
follows that the codimension in E of Li is 1. By Conclusion (3), we have
RLy +---+RLys_; C Li. Conclusion (6) follows. O

LEMMA 5.2.  All of the following are true:

(1) We havev € E.

(2) For all ¢ € E, we have ¢(T) € R.

(3) For all ¢ € v*, we have ¢(T) = 0.

(4) We have {-v,v} CEC {-v,v} Urt.

(5) For some base A of ®, we have v € C(A, E).
(6) If d # 4, then vt is spanned by ® Nvt.

Proof of (1). Since v = Ly, this follows from Conclusion (5) of Lemma 5.1.

Proof of (2). We have T' = €11 — eqq € R™9 N ¢. Therefore, for all i € I,
we get L;(T) € L;(R?™*4 N ¢) C R. By Conclusion (5) of Lemma 5.1, we are
done.

Proof of (3). Since v = L;, Conclusion (6) of Lemma 5.1 asserts that
vt =RLy+---+RLg 1. Since T = €11 — eqq, for alli € {2,...,d — 1}, we
have L;(T) = 0. The result follows.

Proof of (4). By Conclusion (4) of Lemma 5.1, we have
{L1, La} - = - {L1,Lq} U (RLy+---+RL4_1).
So, by Conclusion (6) of Lemma 5.1, we have
{Li,Lsy <€ E € {Li,LatULi.

We have v = L;. So, by Conclusion (1) of Lemma 5.1, —v = L;. The result
follows.

Proof of (5). Let Q:=J,cq a* and let R := E\Q. Then R is dense
in E. Since L; # 0, by positive definiteness, we have (L1, L1) > 0. By (3)
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of Lemma 5.1, we have (L1, Ly) = 0. Then (Ly, Ly 4+ Ly) > 0 and (L, Ly —
Ly) > 0. Choose n € R sufficiently close to Ly that (n,L; + La) > 0 and
(n,Ly — L3) > 0. Let H := {w € E|(n,w) > 0}. Let A be the set of
indecomposable elements of ® N H. Let . denote the set of roots in ¢ that
are positive with respect to A. Then we have &, C C(A, E) and &, = PN H.
Let 0 := L1 + Ly and 7 := Ly — Lo. By (2) of Lemma 5.1, 0,7 € ®. Then
o, T€®PNH=0, CC(AE),sov=1"L =(1/2)(c+71) € C(A,E).

Proof of (6). Let E’ be the real span of ® Nvt. Then E' C v+. We
wish to show that v+ C E’. Since v = Ly, it follows from Conclusion (6) of
Lemma 5.1 that v+ = RLy+---+RLg_;. Fixi € {2,...,d—1}. We wish to
show that L; € E'.

Say, for this paragraph, that d = 3. Then i € {2,...,d—1} = {2},s0i = 2.
By Conclusion (1) of Lemma 5.1, we have Ly = —L3_o4y1, s0 Ly = —Lo, s0
Lo =0. ThenLi:LQZOGE’.

We may therefore assume that d # 3. By assumption, d > 3 and d # 4.
Then d > 5. Then the cardinality of {2,...,d — 1} is > 3. Choose j €
{2,...,d=1}\{i,d—i+1}. Let 0 := L;+L; and let 7 := L;—L;. By Conclusion
(2) of Lemma 5.1, we have o, 7 € ®. Moreover, 0,7 € RLy+---+RLg 1 = v+,
Therefore o,7 € ® vt C E’. Then L; = (1/2)(0c + 1) € E'. O

LEMMA 5.3.  All of the following are true:

(1) We have vy € Ej.

) For all ¢ € Ey, we have ¢(Tp) C R.

) For all ¢ € vy, we have ¢(Tp) = 0.

) We have {—vo, v} C Zo C {—vo, 10} Urg-.

) For some base Ao of ®g, we have vy € C(Ag, Ep).
) If d # 4, then vg- is spanned by ®o N vy
) We have Ty = e11 — eqq and vy = ef]co.

Proof of (1)—(6). Conclusions (1)—(6) follow from Lemma 5.2 because F :
(€ — I§ is a Lie algebra isomorphism, under which v corresponds to vy,
E corresponds to Eg, T corresponds to Tp, (-, -) corresponds to (-, -)o, =
corresponds to =g and ® corresponds to P.

Proof of (7). Since f € 1(GL4_2(C)), we have fe;1 f~! = e and feqaf ! =
eqq; moreover, for all X € C*4 et (f71Xf) = et (X).

Then we have Ty = F(T) = f(e11 — eqq)f~ = €11 — €qq. Moreover, for all
X € 1§, we have e (F~1X)) = en1 (f 71X f) = e};(X). We have vy = F.(v)
and v = L1 = efy|c. So, for all X € ¢y, we have 15(X) = v(F71(X)) =
1, (F1(X)) = €1, (X). o
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6. Special modules

Recall, from §2, the definition of Az and X. Let g be the complex Lie
algebra sly(C). Let gr be the real Lie algebra sls(C). Let

e (4) (1) (3 h)

Let N:={1,2,3,...}. For all d € N, let X; be a d-dimensional irreducible
g-module; then X, is unique up to isomorphism of g-modules. For all d € N,
let V; denote Xy, as an irreducible complex gr-module. For all d,e € N, let
Xye := Xy®c Xe, an object in the category of (g g)-modules. For all d,e € N,
let Vye := Vi ¢ Ve, an object in the category of complex ggr-modules.

If [ is a semisimple Lie algebra and if Z is a complex [-module then we shall
say that Z is special if all three of the following hold:

e Z is an irreducible complex [-module;

e Zp is a reducible real [-module; and

e for any real diagonalizable W € [\{0}, the map z — Wz : Z — Z has
exactly one positive eigenvalue.

LEMMA 6.1. If Y is an irreducible compler gr-module, then there ezist
d,e € N such that Y 1is isomorphic to Yg. in the category of compler ggr-
modules.

Proof. Let go := {(W,W)|W € g} C g& g, so go is a real Lie subalgebra
of the complex Lie algebra g @ g. We have go ® v/—1gg = g © g, which
gives a natural correspondence between (g @ g)-modules and complex go-
modules. Moreover, (W, W) +— W : gg — gg is an isomorphism of (real) Lie
algebras, which gives a natural correspondence between complex go-modules
and complex gr-modules.

Under these correspondences, for all d,e € N, we have that the (g @ g)-
module Xy corresponds to the complex gg-module V.. Let X be the (g& g)-
module corresponding to the complex gr-module ). Then X is an irreducible
(g ® g)-module. By the representation theory of the complex Lie algebra
505 (C) @ sl3(C), we choose d,e € N such that X is isomorphic to Xy in the
category of (g @ g)-modules. Then Y is isomorphic to Vg in the category of
complex gr-modules. O

LEMMA 6.2. Let e € N. Assume that e # 1. Then (V)r is an irreducible
real gr-module.

Proof. Let V := X, = ).. Let S be a g-invariant real subspace of V.
Assume that S # {0}. We wish to show that V = S.

Let I := {1,...,e}. Foralli € I, let \; := e—2i+1 and let V; :=
{v € V|Tv = A\;jv}. By the representation theory of the complex Lie algebra
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5l2(C), the complex linear transformation v — Tw : V' — V is diagonalizable,
with eigenspaces Vi,...,Ve. Then V =V; +--- 4+ V..

Since S # {0}, since T'S C S and since v — Tv : V — V is diagonalizable,
choose iy € I such that V;, NS # {0}. By the representation theory of the
complex Lie algebra sl3(C), we have X"~V = V; and, moreover, we have
that the map v — X%~y : V; — Vj is an isomorphism of complex vector
spaces. Then, because XS C S, it follows that V4 NS £ {0}.

By the representation theory of the complex Lie algebra sly(C), we have
dimc (V1) = 1, and it follows, for all v € V41\{0}, that the real span of v and
V—1Ivis Vi. Let T' := /—1T € g. For all v € V;, we have T'v = v/—1\v.
Because e # 1, we have A\; # 0. So, for all v € V41\{0}, the real span of v and
T'v is V1. So, because V4 N S # {0} and because T"S C S, we conclude that
Vi CS.

By the representation theory of the complex Lie algebra sly(C), for all i € I,
we have Y™V, = V;. So, as Y'S C S, we conclude, for all i € I, that V; C S.
Then V=Vi+---+V,.CSCV,s0V =86. O

LEMMA 6.3. Let Y be a special complex ggr-module. Then Y is isomorphic
to Yoo in the category of complex gr-modules.

Proof. Since Y is special, it follows that ) is an irreducible complex gg-
module. By Lemma 6.1, choose d,e € N such that ) is isomorphic to Vj. as
complex gr-modules. We wish to show that d =2 =e.

Let B :={(1,2),(2,1),(1,3),(3,1),(2,2)}. Because Y is special, it follows
that Vy. is special as well. Then v — Tv : V4. — Vg4 has exactly one positive
eigenvalue. Then (d,e) € E. We wish to show that d # 1 # e. We will show
that d # 1; the proof that 1 # e is similar. Assume that d = 1. We aim for a
contradiction.

Then Y. is special. Because d = 1 and because (d,e) € E, we see that
e # 1. We have V. = V1 &c Ve. Since Y is one-dimensional and gg-trivial,
it follows that ). is isomorphic to ), in the category of complex gr-modules.
Then ), is special. Since (). ) is isomorphic to ().)g in the category of real
gr-modules, it follows from the definition of special that ().)r is a reducible
real gg-module. This contradicts Lemma 6.2. (]

COROLLARY 6.4. Let [y := s0(Q4). Let V and W be special complex ly-
modules. Then V and W are isomorphic as complex lg-modules.

Proof. Since sl3(C) is isomorphic to s0(3,1) in the category of real Lie
algebras, and since Q4 has signature (3, 1), we see that slo(C) is isomorphic
to 50(Q4). That is, gg is isomorphic to [y in the category of real Lie algebras.
By Lemma 6.3, any two special complex gr-modules are both isomorphic to
Vo9, and so are isomorphic to one another. Then any two special complex
l[;-modules are isomorphic to one another. O
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7. The defining representation of so(n, 1)

Let [p be a semisimple Lie algebra. Let a be a maximal R-split torus in
lp. Let V be a vector space. Let p : [y — gl(V) be a representation. For all
B € a*, if B is a weight of a on V, then let Vg denote the B-weightspace of a
on V.

Recall, from §2, the definition of X©, A and X.

LEMMA 7.1. Let a € a*\{0}. Assume that the set of roots of a on ly is
{—a,a}. Assume that the set of weights of a on V is {—a,0,a}. Assume
that dim(V,,) = 1 = dim(V_,). Then there exists Q € Mink(V') such that
p(lo) = 50(Q).

Proof. Because the set of roots of a on [y is {—«, a}, we see that the root
system of [y is reduced and has real rank 1. It follows, for some integer d > 3,
that [y is Lie algebra isomorphic to so(d — 1,1). We may therefore assume
that d > 3 is an integer and that [p = s0(Qg).

Let Qo, [g, Co, (I)Q7 Eo, (', ')0, wL, e’{j, o, To, £o and EO all be defined as
in §5. We have [§ = [, @ /—1lyp. As RTp is a maximal R-split torus in [y, by
conjugacy of maximal R-split tori, we may assume that a = RTj.

Let W := R%*! be a real l[p-module, under the defining representation of
50(Qq) on R¥*1, Tt suffices to show that V is isomorphic to W in the category
of real lp-modules. Let V := VC and W := WC. Because [g = lp @ +—1lp,
it follows that the complex representation of Iy on V extends uniquely to a
representation of IS on V. Similarly, the complex representation of [y on W
extends uniquely to a representation of [‘g on W. Then V and W are complex
l[p-modules, and, at the same time, they are [‘g—modules. Then Zg C ¢j is
the set of weights of ¢y on W. By Lemma 3.5, it suffices to show that V is
isomorphic to W in the category of complex [p-modules.

Let U be a nonzero irreducible complex [p-submodule of V. In the category
of real [p-modules, Vg is isomorphic to V @ V, so, since Ug is a nonzero real
l[p-submodule of Vg, we conclude that Ug is isomorphic either to V or to V@ V.
Then V is a nonzero direct summand of Ug in the category of real [p-modules.
Then V is a nonzero direct summand of (Ug)® in the category of complex
[o-modules.

If X is a complex [p-module with complex structure J : X — X, then every
weightspace of a on AR is J-invariant, and therefore has even dimension. In
particular, the weightspace dimensions of a on Ug are all even. On the other
hand, by hypothesis, the weightspace V,, of a on V satisfies dim(V,,) = 1. We
conclude that V' % Ug. Then, by Lemma 3.5, we see that V % (Ug)®. So,
because V is a nonzero complex [p-submodule of (Ug)® and because (Ug)® is
isomorphic to U @ U in the category of complex [p-modules, it follows either
that V = U or that V =2 U. In particular, V is an irreducible complex [o-
module.
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Case A:d = 4. Define special asin §6. For any W € a, the set of eigenvalues
of v—Wv:V —Vis {—a(W),0,a(W)}. So, for any W € a\{0}, the map
v — Wov : V — V has exactly one positive eigenvalue. By conjugacy of
maximal R-split tori, we see, for any real diagonalizable W € [\ {0}, that the
map v — Wwov : YV — V has exactly one positive eigenvalue.

As Vg is isomorphic to V @ V', we see that Vg is reducible in the category
of real [p-modules. Moreover, we have observed that V is an irreducible com-
plex [p-module. Then V is special. As W is also special, we conclude from
Corollary 6.4 that V and W are isomorphic as complex [y-modules.

Case B: d # 4. By (2) of Lemma 5.3, we define a restriction map r : Ey —
a* by () = pla. Then r(rvg) # 0, so r # 0. By (1) of Lemma 5.3, we have
vy € Ey. By (7) of Lemma 5.3, 7(vg) = e} |a.

We compute that the set of roots of a on [y is {—ej;|a, ef;|a}. By assump-
tion, the set of roots of a on [y is {—c, a}. Then

{=r(v0),r(n)} = {—efila, ensla} = {—a, a}.

Replacing « by —a if necessary, we may assume that r(vg) = a. Let W be
the Weyl group of ® in Ey. Let W :={f e W | f(vo) = vp}.

Let p : Ey — Rigy be the orthogonal projection defined by the formula
p(p) = [(11,0)/ (vo, vo)]vo- By (3) of Lemma 5.3, we have 7(v5-) = {0}. Then
vi- C ker(r). Since vy # 0, we see that the codimension in Fy of v5 is 1. Since
r # 0, we see that the codimension in Fy of ker(r) is 1. Then ker(r) = vy
Then, for all u € Ey, for all ¢ € R, we have:

(%) r(p) = to iff p— tvg € ker(r) iff u — tvg € vg iff p € trg + vy

Let A C ¢ be the set of weights of ¢y on V. By the representation theory
of semisimple Lie algebras, we have A C Ey. For all u € A, let V,, denote
the p-weightspace of ¢g on V. Let V.C C V denote the complexification of V,.
Then dime(V.S) = dim(V,) = 1. Since a and ¢q centralize one another, we
conclude that V. is cp-invariant.

For all 4 € A, we have

rw=a = VCVo = WnVa#{0} = r=a

S0

rp)=a < V,CVy <= V.nV#{0}
Because VL is cp-invariant, choose p4 € A such that V,, NV, # {0}. Then
r(py) = a, so, by (%), we have puy € vy + vg.

For all u € A, we have: V, C VE iff 7(u) = a. So, by (x), for all u € A,
we have: V, C VC iff 4 € v + vg-. So, since dimg(V,E) = 1, it follows that
(vo + Z/OL) N A contains at most one element. Moreover, 4 € (g + uol) NA.
Then (vo + vg) N A = {uy}. Since W’ preserves both vy + v~ and A, we

conclude that py is a W'-fixpoint. Similarly, there is some u_ € Ep, such
that (—vp +vg-) N A = {u_}. Then u_ is a W'-fixpoint.
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By (6) of Lemma 5.3, vy is spanned by ® Ny, so, by Lemma 3.4, we see
that the only W'-fixpoint in 3~ is 0. Then the only W'-fixpoint in v + vy is
vo and the only W'-fixpoint in —Z/O—I—VOL is —19. Then py = vp and p_ = —1y.
Then {—vo,v0} = {p—, pt+} CA.

The set of weights of a on V' is r(A), so r(A) = {—«,0,a}. Then, by (),
we have A C (—vp + 1v57) U (vg) U (vo + vi3-). Then

AC[(=vo+15) NAJU [y ] U (vo +159) NA] = {n-} U U {us }-

Then A C {pu_, us}Uvg = {—vo, 0} Urg.

Then {—vp, 19} € A C {~vg,v0} Uyy. Define C(S, Z) as in §5. By (5) of
Lemma 5.3, let Ag be a base of ® such that vy € C(Ag, Ep). Define a partial
ordering < on Ej by:

o< T <= Vo € Ay, we have 0 < (0,7 — o).
So, as vy € C(Ag, Ep), we see, for all o, 7 € Ep, that
o<T = 0< (v, 7—0) = (vo,0) < (vo, 7).
Setting o := 1, we see, for all 7 € Ey, that
vo <7 = (vo,10) < (V0,7) =0 < (v, 7) =7 & {~1p} Urp.

Then vg is a maximal element in {—1, 9} Uvg-. By the representation theory
of semisimple Lie algebras, we know that A has a unique maximal element. So,
since {—vp, 0} € A C {—vo,v0} Uy, we see that v is the unique maximal
element in A.

Similarly, by (4) of Lemma 5.3, vy is the unique maximal element in the
set 2y of weights of ¢y on W. As representations of complex semisimple
Lie algebras are classified by highest weight, we conclude that ¥V and W are
isomorphic as [g—modules7 and therefore as complex [p-modules. O

8. Basic results about Lorentz dynamics

Let G be a Lie group acting locally faithfully by isometries of a Lorentz
manifold M. Let mg € M. Let d := dim(M).

If v; is a sequence in a vector space V and if vy, € V, then we write v; — v
if all three of the following are true:

e v; leaves compact sets in V;
® v, #0; and
e Rv; — Ruy in the projectivization of V.

Define S, M% and N> as in §2.

LEMMA 8.1. Let C' be an ordered Qq-basis of Ty M. Let A € g\{0}.
Assume that Acr € S. Then d > 3 and there exists an ordered Qg-basis C of
TonoM such that AE™ = Ns.
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Proof. By (1) of Lemma 3.6 of [Ad99a], we have AL™ € s0(Q4). Since
Acr € S, it follows that AZ™ € (s0(Qq)) N SE™ = M%, so AL™ is nilpotent.
Then Lemma 3.3 of [Ad99b] finishes the proof. O

LEMMA 8.2. Let X € g and assume X,,, = 0. Then there is an ordered
Qq-basis C of Ty M such that, for all' Y € ((ad X)g) N (¢g(X)), we have
Ye €8S.

Proof. Let H := Stab%(myg). Then X € b. Let t; be a sequence in (0, 00)
such that t; — +oo. For all i, let g; := exp(t;X), let m; := mo and let
m}, := mg. For all i, we have g; € H, so g;mg = mg, so g;m; = mj. Choose C
as in Lemma 8.1 of [Ad99b]. Fix Y € (ad X)g such that (ad X)Y = 0. We
wish to show that Yo € S.

We may assume that Y # 0. Choose W € g such that ¥ = (ad X)W.
Then, for all 4, we have (Ad ¢g;)W = W + ;Y. Then (Ad g;,)W — Y. By
Lemma 8.1 of [Ad99b], we are done. O

LEMMA 8.3. Let V be a normal Abelian connected Lie subgroup of G. Let
H = Stab?/(mo). Let X € 4. Then there is an ordered Qg-basis C of Ty M
such that ((ad X)g)ec C S.

Proof. Since X € b, we have X,,, = 0. Let C be as in Lemma 8.2. Let
Y € (ad X)g. We wish to show that Yz € S.

We have Y € [X,g] C [v,g] € v. Then (ad X)Y = [X,Y] € [v,v], so,
since V' is Abelian, we conclude that (ad X)Y = 0. By Lemma 8.2, we have
Ye €S. O

LEMMA 8.4. Let V be an Abelian connected Lie subgroup of G and let
H := Stab\,(mg). Let L denote the light cone in T, M and let w; == {X €
0| X,,, € L}. Then:

(1) b Croy;
(2) [h,ng(v)] € ro1; and
(3) if roq is a subspace of v, then the codimension in vy of b is < 1.

Proof of (1). For all X € b, we have X,,,, =0 € L, so X € wy, proving
(1).

Proof of (2). Let X € b, let P € ng(v) and let ¥ = [X, P]. We wish to
show that Y € tv;. That is, we wish to show that Y,,, € L.

Let £’ be the light cone in (R*! Qg ). As X € b, we get X,,, = 0. We
have Y = (ad X)P € (ad X)g. Choose C as in Lemma 8.2. Then Y € S, so
chm eS¢ C ) so Yo, € L.
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Proof of (3). Since (101)n,, is a lightlike subspace of T,,,M, we see that
dim((t01)m,) < 1. So, since b is the kernel of

X = Xy 1 01 — (101) 1y,
we see that the codimension in tv; of b is < 1. O

Recall, from §2, the definition of almost s-invariant.

COROLLARY 8.5. Let Gy be a connected Lie subgroup of G. Let V' be an
Abelian connected Lie subgroup of G. Assume that Gy normalizes V. Let
H := Stab) (mg). Let L denote the light cone in Ty, M. Let wy == {X €
0| X, € L}. Assume that toy is a subspace of v. Then (h,t1) is almost
(ad go)-invariant.

Proof. This follows from Lemma 8.4. O

LEMMA 8.6. Let A € R\{0}. Let T,A € g and assume [T, A] = AA.
Assume that A # 0 and that A, = 0. Then d > 3 and there exists an
ordered (Qq-basis C of Ty, M such that Agm =MN>.

Proof. We have (ad A)T = —)AA, so A € (ad A)g. Moreover, we have
(ad A)A = 0. Using Lemma 8.2 (with X replaced by A, Y replaced by A and
C replaced by C’), choose an ordered Qg-basis C’ of T,,,, M such that Ac € S.
By Lemma 8.1, we are done. O

9. Killing terms in binary forms

The results in this section were found with a good deal of help from C. Le-
ung and D. Witte.

Let d > 2 be an integer. Let I := {0,...,d}. Let P be the vector space
of homogeneous polynomials R?> — R of degree d. For each v € P, let
ag’, e ,aff € R be defined as follows: for all z,y € R, we have ¢(z,y) =
ag’xd + o/facd’ly 4+ -+ ozzip_lacyd*1 + a&pyd. Foralltve I, let o; : P — R be
defined by «; () = af’. For each ¢ € P, let z(v) denote the cardinality of
{iellal =0} Let P :={y € P|2(y) > 2}.

Let S := SLy(R). Let S act on R? by matrix multiplication, after identi-
fying R? with R?*!. Let S act on P by (s¢)(v) = (s~ 'v). For all r > 0, for
all t,u € R, let

1/r 0 1 —t , 1 0
ay 1= 0 r ) ne=\ 49 1 , ne =\, 1 )

A function f : R — R will be said to be global rational if there exist
polynomials P,@ : R — R such that, for all v € R, we have Q(u) # 0 and
fu) = (P(u)/(Q(u)).

Let £ := {¢) € P|al = 0}. Forall ¢ € P\E, let t,, := —a¥/(d-ay)). Define
7 P\E — P by n(¢) = ny, 1.
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LEMMA 9.1. Lett € P\E. For alli € I, let ¢; := a;(¢p). Then
(1) ao(m(¥)) = co;
(2) ar(m(4)) = 0; and
(3) aa(m(¥)) = [(2d)cocz — (d — 1)ei]/[(2d)co].

Proof. We compute, for all ¢t € R, that
e ao(ny)) = co;
o a1(n) =c1 +d- cot; and
o as(ngp) = co + (d— 1)est + (1/2)d(d — 1)cot?.
Substituting ty, = —c1/(d - ¢o) for t, we are done. O

LEMMA 9.2. Let ¢ € P. Assume that (Sp) NE = 0. Let 1 € S¢p. For all
i €1, let ¢; .= a;(¢). For allu € R, let ¢, := w(nl). Then:
(1) for all u € R, we have 0 # ap() = co + cru + - - + cqu?;
) for all u € R, we have ay () = 0;

) u— as(thy) : R — R is global rational; and

)

if c1 =0, then (d/du)y—o(az2(y)) = 3cs.

Proof. For all u € R, set ¢* := n! 1), so that 1, = w(p*). For all i € I, for
all uw € R, let ¢ := a;(¢p*). We then compute: For all u € R,

(A) ¢ =co+cru+ -+ cqu;

(B) ¢ =1 + 2cou + 3czu? + -+ +d - cqu?t; and

(C) ¢ =[1/2][(2- Dea+ (3-2)czu+ -+ (d- (d — 1))cqui—2].
From Lemma 9.1, for all u € R, we have:

(D) ao(m(v™)) = cg;

(E) on(m(¢")) = 0; and

(F) aa(m(")) = [(2d)cgcs — (d — 1)(ct)?]/[(2d)ct]-
For all u € R, since v, € S¢, it follows that ag(v,) € ag(S¢). So, since
0 ¢ ap(S¢), we conclude, for all u € R, that ag(¢,,) # 0. Then, for all u € R,
(A) and (D) imply

(G) 0# ao(vu) = ao(m(y")) = cff = co + cru+ -+ + cqu’,
verifying (1) of Lemma 9.2. Moreover, for all u € R, we have from (E) that
o1 (V) = ag(w(®*)) = 0, verifying (2) of Lemma 9.2.

Define P: R — R and @) : R — R by

P(u) = @A)t — (d—1)(c)?  and  Q(u) = (2d)c.
Then, by (A), (B) and (C), we see that P and () are both polynomials. By

(G), for all u € R, we have Q(u) # 0. By (F), for all v € R, we have
ag(u) = az(m(y")) = (P(u))/(Qu)). So u = as(¢y) : R — R is global

rational, proving (3) of Lemma 9.2. It remains to prove (4). Assume that
¢1 = 0. We wish to show that (d/du)y—o(c2(1y)) = 3cs.

(2
(3
(4
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By (A), we have ¢ = ¢y and (d/du)y—o(cd) = ¢; = 0. By (B), we
have ¢ = ¢; = 0 and (d/du),—o(ct) = 2co. By (C), we have ¢J = cp and
(d/du)y=0(cy) = 3cs. By substitution, we compute

P(0) = (2d)copes and Q(0) = (2d)co.
By basic calculus and substitution, we compute
P'(0) = (6d)cocs and  Q'(0) =0.
From the Quotient Rule, we get

a N _ (Q(0)) - (P(0)) = (P(0)) - (Q(0))
()., ox0 Q)P |
Then (4) of Lemma 9.2 follows by substitution. O

LEMMA 9.3. Let ¢ € P. Assume 0 € ag(S¢). Then (S¢) NP’ (.

Proof. Choose s € S such that ag(s¢) = 0. For i € I, let ¢; := a;(s¢).
Then ¢ = 0. If ¢; = 0, then s¢ € P’, and we are done. We therefore assume
that ¢; # 0.

For all t € R, since ¢y = 0, we calculate that ag(nis¢) = 0 and that
ag(nesg) = ca + (d — 1)egt. Let to := co/[(1 — d)c1]. Let v := nyys¢. Then
ap(1) =0 and as(1p) = 0. Then ¢ € (S¢) NP'. O

PROPOSITION 9.4. Say d > 3. Let ¢ € P. Then (S¢) NP" # 0.

Proof. By Lemma 9.3, we may assume that 0 ¢ ag(S¢). Then we have
(Sp)NE =0. For all ¢ € S¢, for all u € R, let 1)y, := w(n,1).

Define 8 : 8¢ — R by A1) = [ao(¥)]*%as ()], For all § € P, for all
r > 0, we compute ag(a,1) = r%) and as(a,v) = ri*Y, so B(ap) = .
Therefore § is A-invariant.

Let Py := {¢p € Sé|a1(xp) = 0}. Then, by Conclusion (2) of Lemma 9.1,
w(S¢) C Py. We compute that 7|Py : Py — Py is the identity map. Then
W(S¢) = 730.

Fix ¢ € S¢ for this paragraph. For all u € R, we have ¢, € S¢, so, since
0 ¢ ap(S¢), we conclude that ag(1),) # 0. From this and from Conclusion (1)
of Lemma 9.2, we see that u — ag(t,,) : R — R is a nonvanishing polynomial.
By Conclusion (3) of Lemma 9.2, we see that u — as(1,) : R — R is global
rational. We conclude that the function u — 3(1,,) : R — R is global rational.

In particular, u — ((¢,) : R — R is global rational.

By Conclusion (2) of Lemma 9.2 (with v replaced by ¢), we see, for all
u € R, that a1(¢,) = 0. Moreover, for all u € R, we have ¢, € S¢. We
may assume, for all u € R, that as(¢,) # 0, since, otherwise, we have ¢, €
(S¢) NP, and we are done. For all v € R, we have ag(dy) # 0 # as(dy). It
follows, for all u € R, that 3(¢,,) # 0.
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If f: R — R is any global rational function and if 0 ¢ f(R), then either
or —f or f attains an absolute maximum. Let f : R — R be defined by
f(u) = B(¢u). Then f is global rational and 0 ¢ f(R). Choose v € {—23, 3}
such that u — v(¢,) : R — R attains an absolute maximum. Choose ug € R
such that y(¢u,) = sup {y(¢u) }ter. Let ¢ := ¢y,. Since ¢ € S¢, it suffices
to prove that 1) € P’.

Let ® := {¢y}uer- By Conclusion (2) of Lemma 9.2 (with ¢ replaced
by ¢), we have ® C Py. Calculation shows that Py is A-invariant. Then
A®P C Py. For all n € N, for all p € Py, we calculate that w(np) = p. Then
T(NAD) = Ad.

For all u € R, we have ¢, = w(nl,¢) € Nn!,¢. Thus N® = NN'¢. So, as
NA = AN, we get NA®P = AN®. Then NA® = ANN’'¢p. Then, because
ANN' is dense in S, we conclude that NA® is dense in S¢, so 7(NAD) is
dense in w(S¢). Recall that 7(NA®) = AP and that 7(S¢) = Py. Then AP
is dense in Py.

By Conclusion (2) of Lemma 9.2, we see that {¢,}uer C Py. We have
Y(W) = Y(buy) = sup{V(du) ucr = supy(®). As f§ is A-invariant, it follows
that 7 is A-invariant. Then ~y(¢) = supy(A®). So, as ¢y = ¢ and as AP is
dense in Py, we get v(1o) = supy(Po).

So, since {¥y tuer C Po, we get v(wo) = sup {y(Yu)}ter. That is, u —
¥(¥y) : R — R attains an absolute maximum at 0. The function u — ()
R — R is global rational, so u — y(1,) : R — R is global rational, and is
therefore smooth. Then (d/du)y—o(7y(¢h)) = 0, so (d/du)u=o(5(¢h)) = 0.

For all ¢ € I, let ¢; := «a;(¢). Then ¢y = ag(¥)) € ap(S$). So, since
0 ¢ ap(S¢), we see that ¢cg # 0. By Conclusion (2) of Lemma 9.2 (with
replaced by ¢), we have a1 (¢u,) =0, s0 ¢1 = a1 (¥) = a1 (¢y,) = 0. It suffices
to show, for some i € {2,3}, that ¢; = 0.

Define P : R — R by P(u) = ap(t),,). Define @Q : R — R by Q(u) = as ().
By substitution, we have P(0) = ¢p and Q(0) = co. By (1) and (4) of
Lemma 9.2, we have

P0)=c1=0 and  Q(0) = (d/du)u=o(az(¢u)) = 3cs.

For all u € R, we have 3(¢,) = [P(u)]*~4[Q(u)]¢. Moreover, we have 0 =
(d/du)y=0(B(1y)), so basic calculus yields

0= (4= d)[P(O)P**[P'(0)][Q(0)]* + d[Q0)]"~H[Q'(0)][P(0)]*~*.
Computing the right hand side, we get
0=0+d(ci ) (3es)cg™ = (3d)cg e es.

So, as ¢g # 0, we see either that c; = 0 or that c¢s = 0, as desired. O
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10. Structural results about s(3(R)

Let S be a connected Lie group. Assume that s is Lie algebra isomorphic
to sla(R). Let (X,Y,T) be a standard sly(R) basis of s.

LEMMA 10.1. Let a C s be a subspace and assume that dim(a) > 2. Then
there exists t € R such that {T, X} N [(exp(t ad X))a] # 0.

Proof. Since dim(a) > 2, it follows that a N (RX + RT) # {0}. Choose
a,b € R such that 0 # aX + 0T € a. If b = 0, then X € a and, setting
t := 0, we are done. We therefore assume that b # 0. Let ¢ := a/(2b),
A:=2tX+T. Then A = (1/b)(aX +bT"), s0 A € a. We have (ad X)A = —2X
and (ad X)(—2X) =0, so (exp(t ad X))A=A—2tX. Then T = A—-2tX =
(exp(t ad X))A € (exp(t ad X))a. O

LEMMA 10.2. LetV be a real s-module. Letv € V. Assume that Tv € Ro.
Assume either that XYv € Rov or that YXv € Ru. Then there exists an
irreducible real s-submodule W of V' such that v € W.

Proof. We may assume that v # 0. Replacing T' by —T and interchanging
X and Y if necessary, we may assume that XYv € Ro.

Choose A, € R such that Tv = Av and XYv = pv. Choose an integer
I > 1 and choose irreducible real s-submodules Vi,...,V; C V such that
V=V ---®V,. Choose vy € Vi,...,v; € V; such that v = vy +--- + v;.
Reordering, let k£ > 1 be an integer such that v1 # 0,...,vx # 0 and vy =
co-=wv; =0. Let K :={1,...,k}. Forall i € K, let d; := dim(V}).

Fix i € K for this paragraph. We have Tw; = Av;. It therefore follows,
from the representation theory of slz(R), that

4XYv; = (d? — (A = 1)*)v;.

On the other hand, we also have 4XYv; = 4uv;. We conclude that d? — (A —
1)2 =4pu, so d? = 4p+ (A —1)%

In particular, we have d? = 4u + (A — 1)2. So, for all i € K, we have d? =
4p+(XA—1)2 = d?, so d? = d?, so d; = dy. Then, by the representation theory
of sl5(R), choose, for each i € K, a real s-module isomorphism f; : Vi — V;.

Fix ¢ € K for this paragraph. We have Tv; = Av; and we have T'(f;(v1)) =
fi(T’Ul) = fz()\vl) = A(fz(vl)) SO, as v; # 0 # fi(’Ul), it follows from the
representation theory of slp(R) that Rv; = R(f;(v1)). Choose a; € R\{0}
such that v; = a;(fi(v1)).

Define f : V1 — V by f(v) = a1(f1(v))+- - -+ar(fx(v)). Then f is a nonzero
g-equivariant linear transformation. So, since V; is an irreducible s-module,
it follows that f(V7) an irreducible s-submodule of V. Let W := f(V;). Then
v=f(v1) € W. O
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LEMMA 10.3. Let V be an irreducible real S-module. Assume that dim(V')
> 4. Let Vy be a subspace of V. Assume that the codimension in V of Vy
is < 1. Then there exists s € S such that sVy contains two eigenvectors of
vi—=Tv:V — V with different eigenvalues.

Proof. Replacing Vj by a smaller subspace, if necessary, we may assume
that the codimension in V of Vj is 1.

Let dy := dim(V). Then dy > 4. By the classification of irreducible
representations of sl (R), we know that, up to isomorphism, there is a unique
real s-module of dimension dy. We conclude that V' and V* are isomorphic
as real s-modules, hence as real S-modules. Then V admits an S-invariant
nondegenerate bilinear form.

Let d :== dp — 1. Then d > 3. Let I := {0,...,d}. Let P denote the
vector space of homogeneous polynomials R? — R of degree d. For i € I,
define p; € P by p;(z,y) := x'y?~*. Then {po,...,pa} is a basis of P. For
cach ¢ € P, let af,...,a}) € R be defined by: for all z,y € R, we have
Y(x,y) = aowxd+oqupxd71y+ e +oz:’f_1xyd71 +afjpyd. Then, for all yp € P, we
have ¢ = ozgpd +a¥pg1+--+ ag’po. For ¢ € P, let z(v)) be the cardinality
of {i e I'la? =0}.

Let SLy(R) act on R? by matrix multiplication, after identifying R? with
R?*1. Let SLa(R) act on P by (gp)(v) = p(g~'v). By the representation
theory of sl3(R), we may assume that S = SLo(R), that V =P and that

0 1 0 0 1 0
“(oo) v=(ia) =0 4)

Let (-, ) be a nondegenerate S-invariant bilinear form on P. For all
S C P, let St :={veP|(v,S) = {0}}. Let a, be defined as in §9. For
all i € I, for all r > 0, we have a,p; = % %'p;. So, for all 4,j € I, for all
r > 0, we have (p;, p;) = (arpi,arp;) = 127272 (p;, p;). From this and from
the nondegeneracy of (-, -), we conclude, for all ¢,j € I, that (p;, p;) = 0 iff
i+j#d

Choose ¢ € V3-\{0}. Then Vy = {¢}*+. By Proposition 9.4, choose s € S
such that z(s@) > 2. Choose m,n € I such that m # n and a3 = o3¢ = 0.
Then pp,, pn € {s¢}+ = sVo. As p,, and p, are eigen-vectors of v — Tv :
P — P with different eigenvalues, we are done. O

Recall, from §2, the definition of almost s-invariant.

LEMMA 10.4. Let V be a real s-module. Let U and U’ be subspaces of
V. Assume that (U,U") is almost s-invariant. Let 4,4 € U'\U. Assume that
XaeU and that Yu € U'. Then sU' C U’.
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Proof. Since s is generated by X and Y, it suffices to show both that
XU’ C U’ and that YU’ C U’. We shall prove the former, the proof of the
latter being similar. Let v € U’. We wish to show that Xv € U’

Since the codimension in U’ of U is < 1 and since @& € U'\U, choose a € R
such that v + ati € U. So, since X4 € U’ and XU C sU C U’, we get
Xv=[X(v+at)]—[a(X)] e XU-U CU -U =U". O

11. Almost invariant pair of subspaces, Part I

Let S be a connected Lie group. Assume s is isomorphic to slz(R). Let
R denote the totality of real diagonalizable elements in s\{0}. Let V be
an irreducible real S-module. We define d := dim(V') and we define D :=
{1,...,d}. Fori e D, let \; :=d—2i+ 1.

Fix T € R for this paragraph. For all i € D, let

ENi={v eV |Tv=\v}.

By the representation theory of sla(R), V =& @ --- @ EF. For i € D, let
ql' : V — ET be the projection map. Define n? : V — {0} U D by

T(y) = max{i € D|qf (v) # 0}, if v#0;
! . 0, if v = 0.

Let U and U’ be subspaces of V. Assume that U # {0}. Assume that
(U,U’) is almost s-invariant (see §2 for the definition).

LEMMA 11.1.  Let (X,Y,T) be a standard sla(R) basis of s. For allt € R,
let hy := exp(tX). Let v € V\{0} and let m :=nT (v). Then
(1) 7" (Xv) <m;
(2) for allt € R, we have n* (hyw) = nT (v); and
(3) nT(Tv — Apv) < m.

Proof. Conclusion (1) follows from the representation theory of sly(R). For
all t € R, we have hyv = v + Xv + (1/20)(X%v) + (1/3!)(X3v) + ---, so
Conclusion (2) follows from Conclusion (1). Conclusion (3) follows from the
definition of nT. O

LEMMA 11.2.  For some T € R, for some ug € U\{0} we have Tuy € Rug
and we have n'' (up) = minnT (U\{0}).

Proof. Let (Xo,Yo,Tp) be a standard sly(R) basis of s. Then Ty € R. Let
m := min nT°(U\{0}). Choose ug € U\{0} such that n7°(ug) = m.

For all t € R, let h; := exp(tXo). Let H := {hi};er. By Conclusion (2)
of Lemma 11.1, for all ¢+ € R, for all v € V, we have that n’°(hv) = nTo(v).
That is, n7° : V' — {0} U D is H-invariant. Then m = min 0 ((HU)\{0}).

For t € R, let uy := ht_luo, let U; := ht_lU, let T} := (Ad ht_l)TO and let
at :={W € 5| Wu, € U}; then a; = (Ad h)ag = (exp(t ad Xo))ag.
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CrLAM 1. For all t € R, we have n'o = nTt.

Proof. Fix t € R and v € V. We wish to show that %0 (v) = 57t (v).
For all s € S, for all R, R’ € R, for all w,w’ € V, we have:
(Ads)R=R' and sw=u' = " w) = (w").

In the case s := h;', R := Ty, R := T}, w := hyv and w’ := v, this gives
no (hyv) = nt(v). So, by H-invariance of n7°, we have n%°(v) = Tt (v). O

Define a linear transformation f : s — V by f(W) = Wup. Then we
have f(s) = sug C sU C U’. So, since the codimension in U’ of U is < 1
and since ag = f~1(Up) = f~1(U), we see that the codimension in s of
ag is < 1. Thus dim(ag) > 2. By Lemma 10.1, choose t; € R such that
{Xo,To} n [(exp(t ad Xo))ao] # (Z) Then {Xo,To} n Az, 7& @

By H-invariance of 770, we have 770 (us,) = 770 (ug), so n70 (us,) = m.

CLAIM 2. Thue, € Ruy,.

Proof. Because {Xo,To} Nag, # 0, it follows either that X, € a;, or that
Ty € Qi -

Case A: Xo € at,. Then

Xouto S Uto = h;)lU C HU.

It follows from Conclusion (1) of Lemma 11.1 that 770 (Xqu,,) < m. So, since
m = minn? ((HU)\{0}), we conclude that Xous, = 0. Then, by the represen-
tation theory of sly(R), we conclude that u;, € 10, so Toug, = Ay, € Ruy, .

Case B: Ty € ay,. Then Touy, € Uy,. So, since u, € Uy,, we have

Touto — )\muto € Uto = ht_olU C HU.

By Conclusion (3) of Lemma 11.1, n%o(Touy, — Apug,) < m. So, since m =

min nTo ((HU)\{0}), we conclude that Tous, — Amus, = 0, 50 Tou, = Ay, €
Ruto . O

Let T := T_,,. By Claim 2, we have Tpuy, € Ruy,, so Tug € Rug. By
Claim 1, nTo = nT. So, since n7°(ug) = m = min n*°(U\{0}), we conclude
that 1" (ug) = min n” (U\{0}),

LEMMA 11.3. Let (X,Y,T) be a standard sly(R) basis of s. Assume

{ueU|Xu=0}={0}={ueU|Yu=0}
Assume, for some ug € U\{0}, that Tug € Rug. Then U’ =V.
Proof. Let E := {i € D|E C U}. From the representation theory of

sla(R), for all i € D, we have dim(£}) = 1. From the representation theory
of sl3(R), we also have

fveV|Xv=0}=€&"  and {veV]|Yv=0}=¢&L
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So, by assumption, we get & NU = {0} = &7 NU. Thus 1 ¢ E and d ¢ E.
Since T'ug € Rug, choose ig € D such that ug € EZ?S. Then 0 # ug € EZ;COU, S0,
since dim(£]) = 1, we have & C U. Then ig € E, so E # (). Let j := min E
and k:=max F. Then j,k € Fand j—1,k+1¢ E.

Cram 1. j € D\{1} and &' C U and " \{0} CU\U..

Proof. Since 1 ¢ E C D, we see that j € D\{1}. As j € E, we have
Ercu.

Fix v € £ \{0}. We wish to show that v € U’ and that v ¢ U. By
the representation theory of sly(R), we have £ | = X&]. Then v € ] | =
X&' CsUCU'. Wehave j—1¢ E, so &l | ZU. So, since dim(£]" ;) =1,
we conclude that £ | NU = {0}. Therefore, because 0 # v € £ |, we get

v¢U. O

CLAM 2. k € D\{d} and &I C U and &L, \{0} CU\U.
Proof. Similar to Claim 1, but use Y instead of X. O

Choose @ € £/ \{0} and @& € £ ,\{0}. Then, by the representation
theory of sl(R), we have X4 € & and Yu € EJ»T. Then, by Claim 1 and
Claim 2, we get 4,4 € U'\U and X4,Yu € U. Since U C U’, we conclude
that X4,Ya € U'. By Lemma 10.4, we get sU’ C U’. We have {0} # U C U’,
so U’ # {0}. Since V is s-irreducible and since U’ is nonzero and s-invariant,
we conclude that U’ = V. O

12. Almost invariant pair of subspaces, Part II

Let S be a connected Lie group. Assume that s is Lie algebra isomorphic to
5l3(R). Let V be a real s-module. Let U and U’ be subspaces of V. Assume
that (U,U’) is almost s-invariant (see §2 for the definition). In this section,
we also assume:

(%) For all real s-submodules Vi C V', we have V; NU = {0}.

LEMMA 12.1. Assume that V is reducible as a real s-module. Let u € U.
Assume that Tu € Ru. Assume either that XY u € Ru or that Y Xu € Ru.
Then v = 0.

Proof. By Lemma 10.2, choose an irreducible real s-submodule W C V
such that v € W. Since V is reducible, while W is irreducible, it follows that
W ¢ V. Then, by Assumption (x), we have W N U = {0}. Then we have
ueWnU ={0}. 0

LEMMA 12.2.  Assume, for some real s-submodule C' C V', that we have
CNU" ={0}. Then U = {0}.
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Proof. Assume that U # {0}. We aim for a contradiction.

Replacing C by a larger submodule, if necessary, we may assume that
V/C' is a nonzero irreducible real s-module. Let V; be an s-invariant vector
space complement in V' to C. Then V; is a nonzero irreducible real s-module.
Moreover, V.= Vo @ C. Let p : V — V, be the projection map. Then
ker(p) = C, so p(C) = {0}. Let C" := CNU’. Then

{oyAC’cCcVv  and  p(C') ={0}.

By Assumption (%), we have CNU = {0}, so C'NU = {0}. Because {0} #
C C V and because C is s-invariant, we conclude that V is reducible as a real
s-module.

Let (X,Y,T) be a standard sly(R) basis of s. For all A € R, we define
Fri=A{v € V|Tv = Mv}. Let Fy := @, .o Fa and F_ =P, Fa. Let
d:=dim(Vp). Let A* :=d—1and let A\, :=1—d. Let £* := F» NV} and let
&« == Fx,NVy. By the representation theory of sl2(R), we have £* # {0} # &,
and X&* = {0} =Y¢..

CLamM 1. dim(C") =1 and C'+ U =U".

Proof. Since the codimension in U’ of U is < 1, since {0} # C’ C U’ and
since C' NU = {0}, the result follows. O

Cram 2. p(U) = Vp.

Proof. Let Uy := p(U). We have CNU = {0}, so p|U : U — V} is injective.
So, since U # {0}, we see that Uy # {0}. We have sUy = p(sU) C p(U’). By
Claim 1, we have U’ = C' 4+ U. Then p(U’) = p(C'+U) = (p(C")) + (p(U)) =

{O} + Uy = Uy.
So, sUy C p(U’) = Up. That is, Uy is s-invariant. So, as Vjp is irreducible
and as {0} # Uy C Vg, we get Uy = V. Then p(U) = Vj. O

Fix v* € £*\{0} C Vy. By Claim 2, let u* € U satisfy p(u*) = v*.
Cram 3. Xu* € C' and Tu* — \*u* € C'.

Proof. Recall that X&* = {0}. Then p(Xu*) = Xv* € X&* = {0}, so
Xu* € ker(p) = C. Also, Xu* € sU CU’'. Then Xu* e CNU' =C".

As v* € & C Fy«, we get Tv* = A*v*. Then p(Tu* — A*u*) = 0, so
Tu* — Mu* € ker(p) = C. Also, Tu* — Nu* € sU —-U CU'— U’ =U’. Then
Tu* = Nu*eCnNU =C". O

CLAM 4. If Xu* #0, then C' C F,.

Proof. By Claim 3, we have Xu* € C’. By Claim 1, dim(C’) = 1. By
assumption, Xu* # 0. Then ¢’ = R(Xu*). It therefore suffices to show that
Xu* S .7:4,_.
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By the representation theory of sl3(R), the map v — Tv : V — V is real
diagonalizable, i.e., we have that V' = @, Fx. Forall A € R, let py : V —
F be the projection map. For all A € R, let u} := py(u*). Let A\g := min{\ €
Rfu} # 0}. Then u* € ) 55, Fr and u}, # 0. By the representation
theory of sly(R), we have Xu* € Y oasagr2 FA- Then py (Xu*) = 0. As
C' = R(Xu*), we get py,(C') = {0}.

By Claim 3, Tu* — A*u* € C', so px, (Tu* — A*u*) € py,(C") = {0}. For
all A € R, we have py(Tu*) = Au}. Then

)\oujo = Xy, = pao(Tu™ — X*u™) = 0.
Thus (Ao — A")u3, = 0. As u}, # 0, we get \g = A\* =d—1 2> 0. Then
XU*EZ)\Z)\0+2 ngZAzz Fa C T O
CLAIM 5. Either XC' = {0} or C' C F,.

Proof. Assume that C' Z F,. We wish to show that XC’ = {0}.

We have XTu* = TXu* — [T, X|u* = TXu* —2Xu*. By Claim 4, we have
Xu* = 0. Then XTu* = 0— 0 = 0. Therefore, we have X (Tu* — \*u*) =
XTu* — XN Xu*=0-0=0.

We have p(u*) = v* # 0, so u* # 0. Because Xu* = 0, it follows that
Y Xu* =0 € Ru*. So, as u* € U\{0}, by Lemma 12.1, we get Tu* ¢ Ru*. In
particular, we have Tu* — A*u* # 0. By Claim 3, Tu* — \*u* € C’. By Claim
1, dim(C’) = 1. Then C' = R(Tu* — A*u*).

Then XC' C R(X(Tu* — X*u*)) = {0}. O

Fix v, € £\{0} C V). By Claim 2, let u, € U satisfy p(u.) = v,.
CLAIM 6. Yu, € C' and Tu, — M\u, € C'.
Proof. Similar to Claim 3, but use Y instead of X. O

CLAIM 7. If Yu, #0, then C' C F_.
Proof. Similar to Claim 4, but use Y instead of X. O

CLAIM 8. Either YC' = {0} or ¢/ C F_.
Proof. Similar to Claim 5, but use Y instead of X. O

Cramm 9. C' C Fy + Fo.

Proof. By the representation theory of sly(R), for all v € V, we have:
Xv=0= v € FL + Fy. Thus Claim 9 follows from Claim 5. O

Cram 10. ¢/ C F_ + Fy.
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Proof. By the representation theory of sly(R), for all v € V, we have:
Yv=0=— v € F_ + Fy. Thus Claim 10 follows from Claim 8. O

Cramm 11. XC'" = {0}.

Proof. Since C' # {0}, by Claim 10, we have C’ € F,. Then, by Claim 5,
we are done. O

Cram 12. YC' = {0}.

Proof. Since C’ # {0}, by Claim 9, we have C' € F_. Then, by Claim 8,
we are done. O

CrLAamM 13. sU' C U'.

Proof. Fix ¢ € C'\{0}. Then, as C' N U = {0}, we conclude that ¢ ¢ U.
We have ¢ € ¢/ C U’. By Claim 11, we have X¢ = 0. By Claim 12, we have
Ye=0. Let & := cand % := ¢. Then 4,4 € U'\U and X4 =0 € U’ and
Y4 =0 € U'. Therefore Claim 13 follows from Lemma 10.4. O

Cramv 14. sU’' = {0}.

Proof. By Claim 13, we conclude that U’ is s-invariant. By the repre-
sentation theory of sly(R), it suffices to show that any nonzero s-irreducible
subspace U of U’ is one-dimensional.

As V is s-reducible, while U; is s-irreducible, it follows that U; C V. By
(%), we have Uy NU # {0}. So, since U; C U’ and since the codimension in
U’ of U is < 1, we conclude that dim(U;) < 1. So, as U; # {0}, we have
dim(U;) = 1. O

Fix u; € U\{0}. Then uy € U C U’. Then, by Claim 14, we conclude that
su; = {0}. Then Ru, is an irreducible real s-submodule of V. Because V is
reducible, it follows that Ru; C V. So, by (*), we have (Ru;) N U = {0}.
However, u; € U\{0}, giving a contradiction. O

LEMMA 12.3. IfU # {0}, then the real s-module V is irreducible.

Proof. Assume that U # {0} and that V is reducible as a real s-module.
We aim for a contradiction.

Let V4 be a nonzero irreducible real s-submodule of V. Let C' be an s-
invariant vector space complement in V to Vp. Then V = Vy & C. Let
p: V — V, be the projection map. Then ker(p) = C. As Vg # {0}, it follows
that C' C V. By Lemma 12.2, we have C N U’ = {0}.

Let Uy := p(U) and U}, := p(U’). As (U,U’) is almost s-invariant, we see
by Conclusion (2) of Lemma 3.8 that (Uy, Uj) is almost s-invariant. Choose
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T and ug as in Lemma 11.2 (with V replaced by Vy and (U, U’) replaced by
(Uo, Uf)). Then 0 # ug € Uy = p(U). Choose v € U such that p(u) = wp.
Since ug # 0, we conclude that u # 0.

By Lemma 11.2, we see that T is a real diagonalizable element of s\{0}.
Let d := dim(Vp). Let D :={1,...,d}. Foralli € D, we define \; := d—2i+1
and &; := {v € Vo |Tv = A\v}. Then, by the representation theory of sla(R),
we have V) = & @ --- @ & and, for all ¢ € D, we have dim(&;) = 1. For all
i € D, let ¢; : Vj — &; be the projection map. Define n: Vo — {0} U D by

n(v) == {J(r)nax{i € D|gi(v) # 0}, iz i 8,

Let m := minn(Up\{0}). By Lemma 11.2, we have Tug € Ruy and we have
n(ug) = m. Choose A\ € R such that Tug = Aug. We have p(Tu — \u) =
Tug — Aug = 0, so Tu — Au € ker(p) = C. Moreover, Tu — Au € sU — U C
U —-U' =U'. Then Tu — Au e CNU" ={0}. So Tu = Au € Ru.

Choose X,Y € s such that (X,Y,T) is a standard sly(R) basis of s.

CLAamM 1. XYu ¢ Ru and Y Xu ¢ Ru.
Proof. Since u # 0 and Tu € Ru, this follows from Lemma 12.1. O

CLAIM 2. Xug # 0.

Proof. Say, for a contradiction, that Xug = 0.
Then p(Xu) = 0, so Xu € ker(p) = C. We have Xu € sU C U’. Then
Xue CnNnU' ={0}. Then Y Xu = 0 € Ru, contradicting Claim 1. O

Cram 3. Xu e U\U.

Proof. We have uy # 0, so, by the representation theory of sly(R), we
have n(Xug) < n(up). By Claim 2, Xug # 0. Since n(Xwuo) < n(ug) = m =
min n(Up\{0}), we conclude that Xug ¢ Uy. So, since Xug = p(Xu) and since
Up = p(U), we get Xu ¢ U. Moreover, Xu € sU C U". O

Cram 4. XYu ¢ U.

Proof. Assume that XYu € U. We aim for a contradiction.
Recall that Tug = Aug. Let p := [1/4][d* — (A —1)?]. By the representation
theory of sl3(R), we have XYwuy = pug. Then

p(XYu— pu) = XYug — pug = 0,

s0 XYu — pu € ker(p) = C. Moreover, XYu € U and u € U, so XYu— pu €
U. Then XYu—pu € CNU C CNU' = {0}. Therefore XYu = pu € Ru,
contradicting Claim 1. O
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We have Xu,Yu € sU C U’. The codimension in U’ of U is < 1. So choose
(a,b) € R2\{(0,0)} such that a(Xu) + b(Yu) € U.

CLAIM 5. b # 0.
Proof. If b = 0, then, because a(Xu) + b(Yu) € U, and because (a,b) #
(0,0), it follows that Xu € U, which contradicts Claim 3. O

We have a(X?u) +b(XYu) = X(a(Xu) +b(Yu)) € sU C U'. By Claim 3,
we have Xu € U'\U. So, since the codimension in U’ of U is < 1 and since
a(X?u)+b(XYu) € U’, choose ¢ € R such that a(X?u)+b(XYu)+c(Xu) € U.
Let s := a(X?u) + b(XYu) + c¢(Xu).

Let so := p(s). Then sg = a(X%ug) +b(XYug) +c(Xug). By the represen-
tation theory of sl3(R), we have

n(X%ug) <n(uo),  n(XYug) <nlug)  and  n(Xug) < n(uo).

Then 7(so) < n(up). Recall that, for all ¢ € I, we have dim(&;) = 1. Then, by
definition of 1, we see, for all x,y € V;, that:
e if y #£ 0 and if n(z) < n(y), then, for some t € R, we have n(z + ty) <
n(y)-

So choose tg € R such that n(sg + toug) < n(ug).
As s,u € U, we get s+ tgu € U, so sg + toug € Up. So, as

n(so + toug) < nlug) =m = minn(Up\{0}),
we conclude that sg + toug = 0, so p(s + tou) = 0, so s + tou € ker(p) = C.
Then s+ tou e CNU CCNU' = {0}, so s = —tou.
For all 4 € R, let F, := {v € V|Tv = pv}. Recall that
s = a(X?u) + b(XYu) + c(Xu) € U.

By Claim 4, we have XYu ¢ U. By Claim 5, we have b # 0. Then b(XY) ¢ U.
By contrast, s € U. Then s # b(XYu). Then

a(X?u) + c¢(Xu) = s — b(XYu) #0.

Recall that Tu = Au, so u € Fy. Then, by the representation theory of sl (R),
we have

a(X?u) € Fayga and  b(XYu)€Fy and  c(Xu) € Fayo.

Then a(X?u) + ¢(Xu) € (Faya + Fara)\{0}, so a(X?u) + ¢(Xu) ¢ Fx. So,
since b(XYwu) € Fy, we conclude that s ¢ Fy. On the other hand, s = —tqu
and u € Fy, so s € Fy, a contradiction. O
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13. Representations of sl3(R), Part I

The results in this section and the next were found with a good deal of
help from V. Reiner.

Let S be a connected Lie group. Let S act locally faithfully by isometries of
a connected Lorentz manifold M. Let mg € M. Let g be the Lorentz metric
on M. Let V be the Levi-Civita connection of g.

Let d := dim(M). Let 29,...,2% : R — R be the coordinate projections.
Let I:={1,...,d}. Foralli € I, let z; be the germ at 0 of 2¥. Let 8?,...,89
be the standard framing of R?; then, for all i € I, we have 8Y = 9/92?. For
1 € I, let 0; be the germ at 0 of 8?. Let A := —200; + 240.

Let I := {(i,j) € I?|i # j}. For (i,j) € Iy, let Q); : R? — R be
the quadratic form Q¥ (ty,...,tq) = 2t;t;. For alli € I, let Q% : R* — R
be the quadratic form Qf;(t1,...,ta) = t;. For i,j € I, let Q}; denote the

translation-invariant quadratic differential on R¢ corresponding to Q?j, and
let Q;; denote the germ at 0 of Q}j.

In this section, the abbreviations LVF, QVF, CP, LP, QP, RP will stand for
“linear vector fields”, “quadratic vector fields”, “constant pairings”, “linear
pairings”, “quadratic pairings”, and “remainder pairings”, respectively. (Po-
larization allows us to think of quadratic differentials as “pairings”. We choose
to say “pairing” instead of “quadratic differential” so that QP will stand for
“quadratic pairing”, thereby avoiding the awkward phrase “quadratic qua-
dratic differential”.)

Let LVF and QVF denote the real spans of
{ziOitijer,  {mimiO i < jlijner

respectively. Let CP denote the real span of {Qp |k < l}rier. Let LP and
QP denote the real spans of

i Qri |k < l}ikier, TiTiQur |t < Jok < l}ijkier,
{2:Qu |k <1} {2izjQuli < j,k <1}

respectively. Since {x;0;}: jer is a basis of LVF, there is a unique positive
definite symmetric bilinear form o on LVF with respect to which {x;0;}; jer is
orthonormal. For all R C LVF, we let R+ denote the orthogonal complement
in LVF to R, with respect to 0. For R C QVF or R C CP or R C LP or
R C QP, we define R' similarly. The notation o 1 3 means o € {3}.
Note, for example, that if W € LVF, then “x10, 1. W” is a formal way to
express the statement that, on writing W in coordinates, we do not have a
term involving x10,.

Let G be as in §2 of [Ad99b]. In this section, we shall use L to denote
Lie derivative. Let RP denote the collection of germs h at zero of quadratic
differentials on R? such that, for all P,Q € G, we have that h, Lph and
LpLgh all vanish at zero.
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For this paragraph, let C be an ordered basis of T,,,M and let h be a
quadratic differential defined on a neighborhood of mg in M. Let ¢+ : R¢ —
Tyno M be the isomorphism which carries the standard ordered basis of R? to C.
Let U C R? be an open neighborhood of 0 such that eprL0 is defined on ¢(U),
such that Uy := expy, («(U)) is open in M and such that expy, :«(U) — U
is a diffecomorphism. Define e : U — Uy by e(u) = expy, (¢(u)). Then
e : U — U is a diffeomorphism. We shall denote by he the germ at 0 of
e*(h|Uy). By Taylor’s Theorem, choose hS € CP, hl € LP, h? € QP and
hE € RP such that he = hS + hE + hS + hE.

Let FL', M2, M% be as in §2. Let Na,...,Ny_1 be as in §2.

LEMMA 13.1.  Assume that d > 3. Let P € QVF and assume that [A, P] =
0. Then P 1 x1x20,.

Proof. Let V denote the real span of
T12201, T27202, r12402, 222404
and let W denote the real span of
T2w201, r17401, 122402, TaZd04.
Then computation shows that (ad AV =W, that ad A: V — W is a vector
space isomorphism and that (ad A)(V+) C W+,
Choose P’ € V and P” € V* such that P = P’ + P". Let
Q :=(ad A)P’ and Q" :=(ad A)P".
Then Q' € W and Q" € W+ and @ + Q" = (ad A)P = 0. Then Q' = 0 and
Q" = 0. Since (ad A)P' = Q' =0, and since ad A : V — W is a vector space

isomorphism, we have P’ = 0. So P = P”. Since P" € V* and 2,220, € V,
we get P 1 x12901. So P = P" 1 x1250,. O

LEMMA 13.2.  Assume that d > 4. Let k € {3,...,d —1}. Let P € QVF
and assume that [A, P] = 0. Then P L xox40.

Proof. Let V be the real span of zox 0. Let W be the real span of gz q0k.-
Computation shows that (a(j A)V =W, that ad A:V — W is a vector space
isomorphism and that (ad A)(V+) C W,

Choose P’ € V and P” € V+ such that P = P/ + P”. Let

Q :=(ad AP’ and Q" :=(ad A)P".
Then Q' € Wy and Q” € Wg and Q'+ Q" = (ade)P =0. Then Q' = 0 and
Q" = 0. Since (ad A)P' = Q' =0 and since ad A : V — W is a vector space
isomorphism, we have P’ = 0. So P = P”. Since P € V' and x2240; € V,
we get P 1 xowq0,. So P = P" 1 xox40. O

Recall that L denotes Lie derivative.
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LEMMA 13.3. Assume that d > 4. Let k € {3,...,d—1}. If h € QP and
if Lj(h) =0, then h L 2122Qkq.

Proof. Let V denote the real span of

IlfUQde, 172$2Q2k, zziﬁdQlk, IldeQk

and let W denote the real span of

TaTqdQ 1k, 2% aQ2k, 2222Qkd, 212dQkd-

As A = AL, it follows that L;(QP) € QP. Define L : QP — QP by
L(h) = L 4h. Then computation shows that L(V) = W, that L|V : V — W
is a vector space isomorphism and that L(V+) C W,

Choose h' € V and h” € V* such that h = b’ + h". Let

K =L}) and K= L")

Then k' € W and k” € W+ and k' + k" = L(h) = 0. Then k' = 0 and k&’ = 0.
Since L(h') = k' =0, and since L|V : V — W is a vector space isomorphism,
it follows that A’ = 0. So h = h”. Since b € V+ and z129Qrq € V, we get
h' L xla:ngd. Soh=hn"1 xlede. U

LEMMA 13.4. Assume that d > 3. If C is an ordered Qg-basis of Ty, M,
then g& = Qia+ Qa2+ -+ Qa_1,a—1 and g¢ = 0.

Proof. From the definition of “ordered Q4-basis”, we conclude that gg =
Qia+ Q22+ -+ Qa—1,4-1. By Lemma 8.2 of [AS99a], g% = 0. O

LEMMA 13.5.  Assume that d > 3. Let A, B, X € 5. Assume that [X, A] =
0. Let C be an ordered Qq-basis of Ty, M. Assume that Ac = A and that
Bé‘m € M%p Then [Xé‘,Bé’] 1 J}gal.

Proof. We have Ac = A, so AY™ = Ns. By (1) of Lemma 3.6 of [Ad99a],
we have Xt™ € s0(Qq). We have [X, A] = 0, so

[(XE™ Na] = [XE™, AE™ = [X, AlE™ = 0.

The centralizer in s0(Qg) of N3 is M% + M%, so XE™ € M% + M3,

Then FL([Xk, BE]) = [Xt™, BE™] € [M% + M3, MZ%]. 1f d = 3, then
(M2 + M2, M2 = {0}, so [XE, BE] =0 L 2201, and we are done. We may
therefore assume that d > 4.

A calculation shows that [M% + M4, M%) = RNz + -+ + RNy_1, so
(XE, Bl € (FE) "M (RN3 + -+ + RNy_q). Forall j € {3,...,d — 1}, we have
(fL)il(./\/j) = —ifjal + {Edaj 1 mgal. Then [X(?,Bé’} 1 xgal. O

Recall that I = {1,...,d}.
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LEMMA 13.6. Assume that d > 3. Let A, B, X € s. Assume that [A, B] =
0, that [X,B] = A and that [X,A] = 0. Let C be an ordered Qg-basis of
Tino M. Assume that Ac = A and that Bg € RO;. Then [XCC, Bg] 1 2901.

Proof. We assume that [X&, Bé? | £ 2201, and aim for a contradiction.

Let K := I\{2,d}. Since [X§,A] = [X&,Ac] = [X, A]S = 0, it follows
that X&' € 3, ;c R9;. Then, because [Xg,BCQ] L 2201, choose k € K such
that [0, Bg] X x901, whence Bé? L xowy0s.

We have [[l, Bég] = [Ac, BCQ} =[A, B]CQ = 0. We conclude from Lemma 13.1
that BCQ L x1220,. Therefore k # 1. So k € I\{1,2,d}, so I\{1,2,d} # 0.
Therefore d > 4 and k € I\{1,2,d} = {3,...,d — 1}. Choose a € R and
Q" € {wyx,0:}* such that Bg = a(xox01) + Q. We have Bg L woxi 01,
SO Bg #Q", 50 a#0. Let Q' := a(zax101).

By Lemma 13.2, ng 1 2owq0k. So, since Q' = a(woxydr) L xox40k, We
have Q" = B? — Q' L woxq0k. Let R := {xoxy01,x2290r}. Then Q" €
Rt*. By Lemma 13.4, we have gg = Quqa+ Qa2+ -+ Qqg—1,4—1. Since
Q' = a(zax01), we calculate that Ly (gg) = a(x2Qrd + xxQ24). We also
calculate, for all W € R, that Ly (¢8) L 22Qka. Then, because o # 0 and
because Q" € R+, we get

Lo(98) X 22Qra and  Lgi(g8) L 22Qka.

So, since Bg = Q'+ @"”, we conclude that LB? (98) £ 22Qpa-
As S acts by isometries of M, we get La.(gc) = 0 = Lp.(g9c). Then
0 = (Lpc(g9e)* = Lpg(9¢) + L (9&) + Lyo(g¢). By Lemma 13.4, we
get g&¢ = 0. Thus LBCc(g?) = —LBég (9§) L 29Qra- So, as BS € ROy, we
get Ly, (9(52) L 22Qrq. Then gCQ L 2119Qrq. However, we have LA(g?) =
La, (g?) = (La.(gc))? = 0, contradicting Lemma 13.3. O

LEMMA 13.7. Let A,B,T,X € s. Assume, for some A\ € R\{0}, that
[T,A] = MA. Assume that A # 0, that [A,B] = 0, that [X,B] = A, that
[X,A] =0 and that B € (ad A)s. Then A, # 0.

Proof. Assume that A,,, = 0. We aim for a contradiction.

Choose Y € g such that B = (ad A)Y. By Lemma 8.6, we have d > 3.
By Lemma 8.6, choose an ordered Q)4-basis C of T,,,M such that Agm = MN.
Then A% = A. By (1) of Remark 3.5 of [Ad99a], we get Ac = AL. Then
Ac = A.

We have N3 (YE™) = (AL™)(YE™) = [A,Y]§™ = BE™ and

No(BE™) = (Ag™)(BE™) = [A, Blg™ =0,

so BE™ is in both the image and the kernel of v — Npv : R¥¥1 — R4X1 | g0
BCCm € Rel, SO Bg € Ro;.
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We have [Na, YF™] = [AE™, YE™] = [A,Y]E™ = BE™ and
[N, BE™] = [Ag™, BE™] = [A, Blg™ =0,
so BL™ is in both the image and the kernel of ad Nz : 50(Qq) — $0(Qq), SO
BE™ e M3,

We have [A,X?] = [AC,XE‘?} = [/LX]? = 0. So, from Lemma 13.1 we see
that Xé2 L x12901, and therefore that [XCQ,al] 1 x50,. Since BCC € ROy, we
conclude that [Xé;), BE] L x20.

By Lemma 13.5, we get [XZ, BZ] L 220;. By Lemma 13.6, we get [X&, BCQ]
1 Igal. Then

A§ = [Xe, Bel” = [X¢, BE) + [X¢, BE] + [XE, BE] L wady.

However, AL = A= —150, + 2405 X x201, a contradiction. O

14. Representations of sl3(R), Part IT

Let G be a connected Lie group. Let S be a connected Lie subgroup of
G. Assume that s is Lie algebra isomorphic to sla(R). Let V' be an Abelian
connected Lie subgroup of G. Assume that dim(V) > 2. Assume that s
normalizes v. Assume that the adjoint representation of s on v is irreducible.

Let G act locally faithfully by isometries of a connected Lorentz manifold
M. Let mg € M.

LEMMA 14.1.  Let (X,Y,T) be a standard slo(R) basis of s. Let A € v\{0}.
Asume that [X,A] =0. Then A, # 0.

Proof. Since [X, A] = 0 and since dim(V) > 2, by the representation theory
of sl3(R), choose A, p € R\{0} such that [T, A] = AA and [X,[Y, A]] = pA.
Let B := (1/w)[Y, A]. Then [X, B] = A. Moreover, B = (ad A)((—-1/p)Y) €
(ad A)s. Then B € (ad A)s C [b,5] € v. Then [A, B] € [v,0] = {0}. By
Lemma 13.7, we are done. U

LEMMA 14.2.  Let (X,Y,T) be a standard sla(R) basis of s. Let A € v\{0}.
Assume that [Y, Al = 0. Then A, # 0.

Proof. Let Xo :=Y, let Yy := X and let Ty := —T. Then (X, Yy, 7o)
is a standard sly(R) basis of s. By Lemma 14.1 (with (X,Y,T) replaced by
(Xo,Y0,Tp)), we are done. O

15. Representations of sl3(R), Part III

Let G be a connected Lie group. Let S be a connected Lie subgroup of
G. Assume that s is Lie algebra isomorphic to sla(R). Let V' be an Abelian
connected Lie subgroup of G. Assume that S normalizes V.
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Let G act locally faithfully by isometries of a connected Lorentz manifold
M. Let mg € M. Let H := Staby(myg). Let £ be the light cone in T,,,M.
Let w; :={X € v|X,,,, € L}. Assume that w; is a subspace of v.

Recall, from §2, the definition of almost s-invariant.

LEMMA 15.1. Let v’ be an (ad s)-invariant subspace of v. Then we have
that (h Mo’ ;11 NY’) is almost s-invariant.

Proof. By Corollary 8.5 (with Gy replaced by S), we see that (h, 1) is
almost s-invariant. By Conclusion (1) of Lemma 3.8, we are done. O

LEMMA 15.2.  Let v’ be a nonzero (ad s)-irreducible subspace of b. Assume
that vy, € L. Then either dim(v') = 1 or dim(v’) = 3.

Proof. Because v;,, C L, we have v’ C 1oy, so o3 Nv’ = v’. Let ho := hNv'.
By Lemma 15.1, we see that (ho,v’) is almost s-invariant. In particular, the
codimension in v’ of by is < 1.

Let dy := dim(v’). We wish to show that dy € {1, 3}.

CLAM 1. dg # 2.

Proof. Assume, for a contradiction, that dg = 2.

Let (X,Y,T) be a standard sly(R) basis of s. By the representation theory
of sl3(R), choose A € v/\{0} such that [X, A] = 0. The codimension in v’ of
ho is < 1 and dim(v’) = dp = 2, so ho # {0}. Choose A € ho\{0}. Since
dp = 2, it follows from the representation theory of sla(R) that the Adjoint
action of S on v/\{0} is transitive. Choose s € S such that (Ad s)A = A. Let
X = (Ad s)X and Y := (Ad 5)Y and T := (Ad s)T. Then [X,A] = 0 and
Ay =0, contradicting Lemma 14.1. O

CLAIM 2. dg < 3.

Proof. Assume, for a contradiction, that dy > 4.

Let (X,Y,T) be a standard sly(R) basis of s. By Lemma 10.3 (with
(X,Y,T) replaced by (X,Y,T), V replaced by v’ and Vj replaced by hy),
choose s € S such that (Ad s)ho contains two eigenvectors of ad T : v/ — v’
with different eigenvalues. Let

X :=(Ad s™HX, Y :=(Ad sHY and T = (Ad s HT.

Then hg contains two eigenvectors of ad T : v/ — v’, with different eigenvalues.
Choose A, B € hp\{0} and A, € R such that A\ # p, such that [T, A] = \A
and such that [T, B] = puB. By interchanging A with B and A with p if
necessary, we may assume that A # 0.
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Let d := dim(M). Let C be an ordered Qg-basis of T,,,M. By (3) of
Remark 3.5 of [Ad99a], we have AL™ # 0 # BE™. By (1) of Lemma 3.6 of
[Ad99a], we have XE™ YFm TEm AL™ BI™ € 50(Qq).

Case A: ;= 0. Then [T,B] = 0. Let Ty := TF™. We have [Ty, Ai™] =
[T, AJ&™ = MAE™. Since A € R\{0}, it follows that A is not pure imaginary.
By (1) of Lemma 4.1 (with T replaced by Tp), we see that Ty is semisimple.

Let By := BE™. Then [Ty, Bo] = [TF™, Bf™] = [T, BJE™ = 0. By (3) of
Lemma 4.1 (with T replaced by T and X replaced by By), By is semisimple.
Define f : R — R¥*! and F : s0(Q4) — s0(Qa4) by f(v) = Bov and
F(R) = [By, R]. Because By is semisimple, we conclude that both f and F
are semisimple linear transformations. Then (ker f) N (f(R¥*!)) = {0} and
(ker F) 1 (F(s0(Qa))) = {0}.

Let C := (ad X)B. Since the adjoint representation of s on v’ is irre-
ducible, since dy > 2, since (ad T')B = 0 and since B # 0, it follows from the
representation theory of sly(R) that C # 0.

Let Z := —X. Then [B,Z] = C, so (Bf™)(ZE™) = [B, Z)§™ = C§™ and
[Bf™, ZE™) = [B, Z]k™ = Ck™. Then, as By = BE™, we have

F(ZE™) = Bo(ZE™) = CE™  and  F(Zg™) = [Bo, ZE™] = C¢™.

Then C§™ € f(RY*Y) and CE™ € F(s0(Qq)).
We have B € hy C v’ C v, so C = [X, B]

[B,C] € [v,0] = {0}. Then (Bf™)(C§™) =

[B,C)E™ = 0. Then, as By = Bf™, we have

f(CE™) = BCE™ =0  and  F(CE™) =By, Ct™ =0.

Then C§™ € ker(f) and CE™ € ker(F).

Then CE™ € (ker f) N (f(R¥1)) and CL™ € (ker F) N (F(s50(Qq))), s0
C&™ =0 and Cf™ = 0. So, by (3) of Remark 3.5 of [Ad99a], we have C' = 0,
a contradiction.

Case B: ji # 0. Recall that AZ™ £ 0 # BE™. We have
[TCLm7Agm] = [T’ A}(IZJm = >‘A(IZJm7 [TCLmaBgm] = [T7 B]gm = .UB(?m'

As A € R\{0}, we see that X is not pure imaginary. So, by (2) of Lemma 4.1
(with T replaced by TZ™), we choose a > 0 such that A, u € {—a,0,a}. So,
as X\ # 0 # u # A, we conclude that A = —p.

Let Ty = (1/NTE™, let Ay = AL™ and let By := Bf™. We have
Tl,Al,Bl S 50(Qd). We have [Tl,Al] = Ay and [Tl,Bl] = —B; and 4; 7&
0 # B;. By Lemma 4.2, we have [A1, B1] # 0. On the other hand, since we
have [4, B] € [ho,ho] C [v/,0] C [0,0] = {0} and since we have [A;, Bi] =

[AL™, BE™) = [A, B]E™, it follows that [A1, B1] = 0, a contradiction. O

Since v’ # {0}, we conclude that dy > 1. So, by Claim 2, we have dy €
{1,2,3}. So, by Claim 1, we have dy € {1, 3}. O

€ [s,v] C v. Therefore, we have
[B,CIg™ = 0 and [BE™, CE™] =
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LEMMA 15.3. Let v’ be an (ad s)-irreducible subspace of v. Assume that
hNo' # {0}. Then v C ;.

Proof. If dim(v’") = 1, then, because h Nv" = {0}, we get v/ C h C vy, and
we are done. We may therefore assume that dim(v’) # 1. Since h N v’ # {0},
we conclude that v’ # {0}. Then dim(v") > 2.

Let U :=hNv’ and let U’ := w; Nv’. By Lemma 15.1, we see that (U,U")
is almost (ad s)-invariant. By Lemma 11.2 (with V replaced by v’), choose
T € s\{0} and choose ug € U\{0} such that T is real diagonalizable and
such that (ad T)ug € Rug. Choose X,Y € s such that (X,Y,T) is a standard
5l (R) basis of s.

By Lemma 14.1 and Lemma 14.2 (with v replaced by v’), we see, for all
A € U\{0}, that (ad X)A # 0 # (ad Y)A. By Lemma 11.3 (with V replaced
by v'), we get U’ = v’. Then v/ =U’ =w; Nv’ C ;. O

LEMMA 154. Assume that (ad s)to; C wy. Then the adjoint representa-
tion of s on o1 is either trivial or stably 3-irreducible.

Proof. Assume that the adjoint representation of s on tv; is nontrivial. We
wish to show that it is stably 3-irreducible.

By (3) of Lemma 8.4 we see that the codimension in tv; of § is < 1. Let §
denote the set of (Ad S)-fixpoints in ;. Let ¢ be an (ad s)-invariant vector
space complement in to; to f. Since the adjoint representation of s on to;
is nontrivial, it follows that ¢ # {0}. We wish to show that the adjoint
representation of s on ¢ is 3-irreducible.

Choose k > 1 and choose (ad s)-irreducible subspaces ¢y, ..., cx C ¢ such
that c = ¢; @ -@cy. Let K := {1,...,k}. Because fNc = {0} and because s is
semisimple, we see, for all ¢ € K, that dim(¢;) > 2. So, since the codimension
in 1y of b is < 1, we conclude, for all ¢ € K, that h N¢; # {0}.

For all i € K, by Lemma 15.3 (with v’ replaced by ¢;), we have ¢; C 1wy,
so, by Lemma 15.2 (with v’ replaced by ¢;), we see that dim(c;) € {1, 3}, so,
since dim(¢;) > 2, we conclude that dim(c;) = 3. We wish to show that k = 1.
Assume, for a contradiction, that k& > 2.

By the representation theory of sl (R), choose A; € ¢1\{0} and choose 4, €
c2\{0} such that (ad X)A; =0 and (ad X)As = 0. Since dim(c;) = 3, by the
representation theory of sly(R), we have (ad T)A; = 2A; and (ad T)Ay =
2As. The codimension in ro; of b is < 1, so (RA; + RAs) Nk #£ {0}. Choose
A € (RA; + RA2)\{0} such that A € h. Then (ad X)A =0 and (ad T)A =
2A. Then

(ad TYA=2A € RA and (ad Y)(ad X)A =0 € RA.

Then, by Lemma 10.2 (with V replaced by 1 and v replaced by A), choose
an (ad s)-irreducible subspace v’ of tv; such that A € v’. We have (ad T)A =
2A #£ 0, s0 (ad T)v" # {0}. So, since s is semisimple, it follows that dim(v’) >
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2. We have [X, 4] = 0 and A,,, = 0, contradicting Lemma 14.1 (with o
replaced by v’). O

LEMMA 15.5. Assume bt # {0}. Then there is an (ad s)-irreducible sub-
space v’ C v such that h No’ # {0}.

Proof. Let W be the collection of all (ad s)-invariant subspaces to of v
satisfying h N # {0}. Then v € W, so W # ). Choose v’ € W such that
dim(v’) = min{dim(w) |w € W}. Let U := hNv’ and let U’ := ro; Nv’. By
Lemma 15.1, (U, U’) is almost (ad s)-invariant.

Since v’ € W, it follows that U # {0}. By minimality of dim(v’), for any
(ad s)-invariant subspace V; C v’, we have V;Nh = {0}, whence V1 NU = {0}.
Then, by Lemma 12.3 (with V replaced by v’), the adjoint representation of
s on v is irreducible. O

LEMMA 15.6. Assume that (ad )b € h. Then (ad s)w; C to; and the
adjoint representation of s on 1wy is stably 3-irreducible.

Proof. Let f denote the set of all (Ad S)-fixpoints in v. Every subspace of f
is (ad s)-invariant, so, in particular, fNf is an (ad s)-invariant subspace of v.
Let ¢ be an (ad s)-invariant vector space complement in v to f M. We have
h=(FnNh) +(cnh)and wy; = (fNh) + (¢cNwy) and (cNf)N(cNh) = {0}.
Replacing v by ¢, h by cNh, to; by cNto; and §f by ¢Nf, we may assume that
fnb={0}.

Since (ad s)h Z b, we see that h # {0}. By Lemma 15.5, choose an (ad s)-
irreducible subspace v’ C v such that h N v’ # {0}. Then, as fNh = {0}, we
get v Z f. So, by the representation theory of sla(R), we get dim(v’) > 2. By
Lemma 15.3, we have v’ C to;.

Let (X,Y,T) be a standard sl3(R) basis of s. By the representation theory
of sl3(R), choose A, B € v'\{0} such that [X,A] = 0 and [Y,B] = 0. By
Lemma 14.1 and Lemma 14.2, we have A,,, # 0 # By, so A,B ¢ . On
the other hand, we have A,B € v/ C tv3. Let U := h and U’ := w;. By
Lemma 15.1 (with v’ replaced by v), we see that (U,U’) is almost (ad s)-
invariant. Let & := A and @ := B. Then 4,4 € U'\U and (ad X)i =0 € U’
and (ad Y)a = 0 € U'. By Lemma 10.4 (with V replaced by v), we get
(ad s)w; C ;.

Since h C w; and since (ad s)h Z b, we conclude that the adjoint repre-
sentation of s on tv; is nontrivial. Therefore, by Lemma 15.4, we see that the
adjoint representation of s on to; is stably 3-irreducible. (]

LEMMA 15.7.  Let (X,Y,T) be a standard sly(R) basis of 5. Assume that
(ad s)h Z b. Then (ad X)h € b and (ad Y)h Z b.

Proof. By (3) of Lemma 8.4, we see that the codimension in toy of f is < 1.
By Lemma 15.6, choose an (ad s)-invariant subspace v’ of w; such that the
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adjoint representation of s on v’ is 3-irreducible. Let (X,Y,T) be a standard
s[5 (R) basis of s.

By the representation theory of sly(R), because the adjoint representation
of s on v’ is 3-irreducible, choose B € v'\{0} such that [T, B] = 0. Let
A:=[X,B] and let C := [Y, B]. Then, by the representation theory of sl (R),
because the adjoint representation of s on v’ is 3-irreducible, it follows that
[X,A] =0and [Y,C] =0. We have A, B,C € v’ C to;.

By Lemma 14.1 (with v replaced by v’), we have A,,, # 0, s0 A ¢ . We
have B € to; and A € w;\h. So, since the codimension in oy of h is < 1,
choose r € R such that B+rA € fj. Then, because we have (ad X)(B+rA) =
A ¢ b, it follows that (ad X)h Z b.

By Lemma 14.2 (with v replaced by v’), we have C,,, # 0, so C' ¢ . We
have B € to; and C € w;\h. So, since the codimension in tv; of b is < 1,
choose t € R such that B+tC € fj. Then, because we have (ad Y)(B+tC) =
C ¢, it follows that (ad Y)h Z b. O

16. Moving from nilpotent element to nilpotent element

Let G be a connected Lie group. Let G; be a semisimple connected Lie
subgroup of G. Let V be an Abelian connected Lie subgroup of G. Assume
that GG; normalizes V.

Let G act locally faithfully by isometries of a connected Lorentz manifold
M. Let mg € M. Let H := Stab},(mg). Let £ denote the light cone in
TimoM. Let w01 :={X € 0| X,,, € L}. Assume that tv; is a subspace of v.

LEMMA 16.1. Let X € gy be nilpotent. Then either (ad X)h C b or
(ad X)m1 C to;.

Proof. By Jacobson-Morozov (Theorem 1X.7.4, p. 432, of [He78]), choose
Y, T € gsuch that (X,Y,T) is a standard sly(R) basis of some Lie subalgebra s
of g. By Lemma 15.6, we conclude either that (ad s)h C b or that (ad s)ro; C
1. Since X € s, we are done. O

LEMMA 16.2. Let N denote the set nilpotent elements of g. Let U be a
subspace of g1 such that U C N. Assume, for some Xo € U, that (ad Xo)h £
h. Then, for all X € U, we have (ad X)w; C to;.

Proof. Let X € U. Assume, for a contradiction, that (ad X)w; & ;.

Using Lemma 16.1, we have (ad Xo)w; C w; and (ad X)h C h. Let ¥V :=
(Xo+X)/2. Because (ad X)h C h and Xy € RX +RY and (ad Xo)h Z b, we
see that (ad Y)bh Z . Then, by Lemma 16.1, we have (ad Y)w; C tv;. Then,
because (ad Xp)w; C w; and X € RXy + RY, we see that (ad X))y C wy,
a contradiction. O
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LEMMA 16.3.  Assume that g1 has no compact factors. Then either (ad g1)b
- f) or (ad gl)ml C 1v;.

Proof. Assume (ad g1)b € h. We wish to show that (ad g;)m; C ;.

Choose k > 1 and X5,..., Xg, Y7,..., Y, as in Lemma 3.3 (with g replaced
by g1). Let K := {1,...,k}. For all i € K, we define s; := RX; + RY; +
R[X;,Y;]. By (2) of Lemma 3.3, for all i € K, s; is a Lie subalgebra of g; and
s; is Lie algebra isomorphic to slo(R). For ¢ € K, let S; be the connected Lie
subgroup of G corresponding to s;. As (ad g1)h € b, by (1) of Lemma 3.3,
choose ig € K such that (ad s;,)h € b. Then, by Lemma 15.7 (with S replaced
by S;,), we see both that (ad X;,)b € b and that (ad Y;,)h Z b.

By Lemma 16.2 (with U replaced by RX; + --- + RX}), we see, for all
i € K, that (ad X;)to; C to;. Similarly, by Lemma 16.2 (with U replaced by
RY; + -+ - + RY}), we see, for all i € K that (ad Y;)w; C toy. Then, by (1) of
Lemma 3.3, we conclude that (ad g1)rw; C 1o;. O

17. A fact about rank two root systems

Let (-, -) be a positive definite symmetric bilinear form on a vector space
E. Let ® be an irreducible root system in E.

For all « € @, let p, : E — Ra be the orthogonal projection defined by
pa(B) = [(o, B)/(ar, @)]a. Let N :={1,2,3,...}. Let Fy C E be a finite set.
Let x : Fo — N be a function. Let d:=}_; p Xx(f). For all a € @, define
Xa - {7047030‘} —Z by

Xa(—a) =1, Xa(0) =d -2, Xa(a) =1.
For all finite F© C a*, for all functions p : E — E, for all A € E, we
define S(F,p,\) := (p~'(\)) N F. For all finite FF C a*, for all functions
¢ F — Z, for all functions p : E — E, we define a function p(¢) : p(F) — Z

by (p(9))(A) = X ies(rpn) G(1)-

LEMMA 17.1.  Assume that dim(FE) > 2. Then there exists a € Py such
that pa(X) # Xa-

Proof. Choose 3,7 € ® such that RG # R~y and such that (5,v) # 0. Let
Ey :=RB + Ry. Let &g := EN®. Then Py is a root system in Fy. Because
dim(Ey) = 2, because 3,7 € ®g, because (3,7) # 0 and because R # Ry,
we conclude that ®¢ is irreducible.

Let ¢ : E — Ej be the orthogonal projection map. For all o € ®, we have
Do ©q = Pa, 90 Pa(q(x)) = pal(x). Let ®( be a reduced root system such that
@ C ®( and such that the real span of ®f is Fy. Replacing ® with ®f, x
with ¢(x) and E with Fy, we may assume that ® is irreducible and reduced
and that the rank of ® is two.

By the classification of irreducible reduced root systems of rank two, we
see that the type of ®¢ is As, By or Gao. (See Figure 1 on p. 44 of [Hu72], but
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keep in mind that A; x A; is reducible.) For each of these three types, basic
plane geometry yields the result. O

18. Representations of noncompact simple groups, Part I

Let [y be a noncompact simple Lie algebra. Let a be a maximal R-split
torus in lp. Let x be the Killing form on ly. Then x|a is positive definite,
and so induces an isomorphism a* «— a. Let (-, -) be the positive definite
symmetric bilinear form on a* corresponding to x|a. Let E := a*.

Let ® C F be the set of roots of a on [y. For a € FE, let p, : E — Ra be the
orthogonal projection defined by p,(8) = [(«, 8)/(a, )] For all a € @, let
at = p71(0). For any «,3 € ®, we define the a-rootstring through 3 to be
the set (Ra+ )N ®. The center of a rootstring is the average of its elements.

Let p: [p — gl(V) be a representation. In this section, we assume

(k) For any Lie subalgebra s of [y, if s is Lie algebra isomorphic
to sla(R), then p|s : s — gl(V) is stably 3-irreducible.

Let A C E be the set of weights of a on V. For all A € A, let V) denote
the \-weightspace of V. Let N:= {1,2,3,...}. Let x : A — N be defined by
A(A) = dim(V5).

Let d := dim(V). For all a € ®, and let x4 : {—«,0,a} — Z be defined
as in §17. For all finite F' C FE, for all functions ¢ : F' — Z, for all functions
p: E — E, define the function p(¢) : p(F) — 7Z as in §17.

LEMMA 18.1. For all o« € @, we have po(X) = Xa-

Proof. For all v € @, let [ denote the y-rootspace of Io.

Fix X € [§\{0}. By Lemma 3.2 (with g replaced by [y), choose T' € a and
Y € [;® such that (X,Y,T) is a standard sly(R) basis of a Lie subalgebra s
of lp. Then s is Lie algebra isomorphic to sly(R).

CraM 1. For all 3 € a*, 3(T) = 0.

Proof. Let ¢ : E — at be the orthogonal projection defined by ¢(3) =
B—pa(B). Let r : E — E be the orthogonal reflection through o defined by
r(B) = 6 — 2(pa(B)).

By Weyl-invariance of ®, any a-rootstring is invariant under the reflection
r: E — E. Thus, for all g € ®, the center of the a-rootstring through [ is
q(B). For all v € E, if ~y is the center of an a-rootstring in ®, then, by the
representation theory of sla(R), we have y(T') = 0. Thus, for all y € ¢(®), we
have v(T) = 0. Since ® spans E, it follows that ¢(®) spans a. Thus, for all
v € at, we have (T) = 0. O

CLAM 2. For all X € E, t € R, if po(N) = ta, then A\(T) = 2t.
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Proof. Let B := A\ —ta. Then p,(8) =0, so 3 € a*. Then, by Claim 1,
we have 3(T) = 0. Then A(T') = t(«(T)). We have («(T))X = [T, X] = 2X,
so a(T) = 2. We conclude that A(T) = 2t. O

For all t € R, let A, := AN (p,'(ta)). Let B := {t € R|A; # 0}. For
t € B, let Dy :=@,cp, Va- Fort € R, let & = {v € V|Tv = 2tv}. Let
C:={t e R|& # {0}}. By Claim 2, we see, for all t € B, for all A\ € Ay,
that V), C &. Thus B C C and, for all t € B, we have D; C &;. So, since
Dics Di = DByca Va =V =P, &, we conclude that B = C, and we also
conclude, for all ¢t € C, that D; = &;.

Since s 2 sly(R), by Assumption (xx), we see that p|s : s — gl(V) is
stably 3-irreducible. Choose real s-submodules V' and V" of V such that V’
is three-dimensional and s-irreducible, such that V" is s-trivial and such that
V=V'4+V". Then V'NV" ={0}, 50V =V'®V", so dim(V") =d—3. By
the representation theory of sl3(R), choose a basis {P, @, R} of V' such that
[T,P]=2P, [T,Q] =0, [T, R] = —2R. Since V" is s-trivial, we conclude that
[T,V"] ={0}. Then C' = {-1,0,1}, & =RP, E_; =RR and & =RQ + V"

We have po(A) = {ta|Ay # 0} = {ta|t € B} = {ta|t € C}. Then
Pa(A) = {—a,0,a}. It remains to show that (p,(x))(a) = 1, that (pa(x))(—a)
=1 and that (p.(x))(0) =d — 2.

We have Py, Vi = D1 = & = RP, 50 ) ¢y, dim(Vy) = dim(RP) =
1. By the definition of p,(x), we have (pa(x))(a) = > \cp, X(A). Then
(Pa(X)) (@) = > scn, dim(Vy) = 1. Because Py, Va=D-1 =1 =RR,
a similar argument shows that (p,(x))(—«a) = dim(RR) = 1. Finally, because
we have @, .5, Va = Do = & = RQ + V", a similar argument shows that
Pa(}))(0) =dimRQ+V")=14+(d—-3)=d—2. O

LEMMA 18.2. The root system ® is reduced.

Proof. Let a, § € ® satisfy Ra = RS. We wish to show a € {-0, §}.
By Lemma 18.1, po(X) = Xa and pg(x) = xg- We have Ra = Rf, so
Pa = Pg; 80 pa(X) = p(x). Then xo = xp. Then a € {4, }. O

LEMMA 18.3.  We have dim(a) = 1.

Proof. Since [y is noncompact, it follows that a # {0}, so dim(a) > 1. By
Lemma 18.1, for all & € ®, we have po(X) = Xa- S0, by Lemma 17.1, we have
dim(F) < 1. Then dim(a) = dim(a*) = dim(E) < 1. O

LEMMA 18.4. There exists Q € Mink(V') such that p(lp) = s0(Q).

Proof. By Lemma 18.3, we have dim(a) = 1. By Lemma 18.2, the root
system of [ is reduced. Choose a € E\{0} such that ® = {—a, a}. Because
dim(a) = 1, we conclude that p, : E — Ra is the identity map, so x = pa(x)-
By Lemma 18.1, po(x) = Xa- Then x = xq-
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Then y and x, have the same domain. That is, A = {—a, 0, a}. Moreover,
we have dim(V,,) = x(a) = xa(a@) = 1. Similarly, we have dim(V_,) =
X(—a@) = xa(—a) = 1. Therefore, Lemma 18.4 follows from Lemma 7.1. O

19. Representations of noncompact simple groups, Part II

Let G be a connected Lie group. Let Ly be a simple connected Lie subgroup
of G. Assume that Ly is noncompact. Let V be an Abelian connected Lie
subgroup of G. Assume that Ly normalizes V.

Let G act locally faithfully by isometries of a connected Lorentz manifold
M. Let mg € M. Let £ denote the light cone in T;,, M.

LEMMA 19.1.  Assume that v,,, C L. Assume (ad lp)o # {0}. Then there
exists Q € Mink(v) such that ad,(lp) = s0(Q).

Proof. Let p := ad, : [p — gl(v). By Lemma 18.4 (with V replaced by v),
it suffices to prove Assumption (xx) of §18 (with V replaced by v). Let s be
a Lie subalgebra of I such that s is Lie algebra isomorphic to sly(R). Let
p1:=p|s:s — gl(v). We wish to show that p; is stably 3-irreducible.

Let S be the connected Lie subgroup of Ly corresponding to s. Let to; :=
{X €v| X, € L}. Asv,,, C L, we conclude that w; = v. Then (ad s)rw; =
(ad s)o C v = w;. By Lemma 15.4, we conclude that p; is either trivial or
stably 3-irreducible. As (ad [p)v # {0}, it follows that p(ly) # {0}. Therefore,
by simplicity of [y, we have ker(p) = {0}, so p(s) # {0}. Thus p; is nontrivial,
and is therefore stably 3-irreducible. O

20. Representations of reductive groups, Part I

Let G be a connected Lie group. Let Gy be a reductive connected Lie
subgroup of G. Let V be an Abelian connected Lie subgroup of G. Assume
that Gy normalizes V. Let 3 := 3(go) be the solvable radical of go. Let
[ := [go, go] be the semisimple Levi factor of go. Let € and gy be ideals of [.
Assume that ¢ is compact, that g; has no compact factors and that [ = ¢ g;.
Let G be the connected Lie subgroup of Gy corresponding to g;.

Let G act locally faithfully by isometries of a connected Lorentz manifold
M. Let mg € M. Let H := Stab,(my). Let £ be the light cone in T},, M.

Recall, from §2, the definition of almost s-invariant.

LEMMA 20.1. Let to; := {X € v|X,;,, € L}. Assume that toy is a sub-
space of v. Assume that no nonzero vector in v is (Ad Gy)-fized. Then either
(ad go)h C b or (ad go)ro; C 1oy.

Proof. By Lemma 16.3, choose o € {h,to1} such that (ad g;)w C to. Tt
suffices to show that (ad(€+ 3))ro C . Fix Xy € €@ 3. Let o’ := (ad Xo)w.
We wish to show that w’ C 1, i.e., that w’ = w’ Nto.
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By Corollary 8.5, we see that (b, tv1) is almost (ad go)-invariant. Then, for
all X € go, we have (ad X)h C ;. Also, the codimension in to; of b is < 1.
So, as h C 1w C 1oy, it follows that the codimension in tv of h is < 1 and that
the codimension in tvq of to is < 1.

CramM 1. The codimension in w’ of o’ Nto is < 1.

Proof. We know either that to = h or that w = tv;.

Case A: w = h. By almost invariance, we have (ad Xo)h C ;. Then
w’ = (ad Xo)w = (ad Xo)h C oy, so w’ = v’ Ntoy. The codimension in toy
of w is < 1, so the codimension in o’ Nt; of W' Nw is < 1. That is, the
codimension in o’ of w’ Nto is < 1.

Case B: v = 7. As the codimension in to of § is < 1, we see that the
codimension in (ad Xo)w of (ad Xo)h is < 1. That is, the codimension in
w’ of (ad Xo)h is < 1. As h C tv, we have (ad Xo)h C (ad Xp)w = w’. By
almost invariance, we have (ad Xo)h C oy = w. Then

(ad Xp)h Cw' Nw C w'.

Let p := (ad Xo)h, let g := ' Nt and let v := w’. We have p C q C v and we
know that the codimension in t of p is < 1. It follows that the codimension
invof qis <1. O

As to is (ad g;)-invariant and as g; centralizes ¢ @ 3, it follows that r’
is (ad g1)-invariant. Then to’ Nt is (ad g;)-invariant, as well. Let ¢ be an
(ad g )-invariant vector space complement in w’ to w’ N . We wish to show
that ¢ = {0}.

By Claim 1, we know that dim(c) < 1. Because G; is semisimple and
because there are no nonzero (Ad G1)-fixed vectors in v, it follows that there
are no (ad gj)-invariant lines in v. So, in particular, we see that dim(c) # 1.
Then dim(c) = 0, so ¢ = {0}. O

LEMMA 20.2.  Assume that v,,, C L. Assume that the adjoint representa-
tion of go on v is irreducible. Assume that (ad g1)v # {0}. Then there exists
Q@ € Mink(v) such that s0(Q) C ady(go) C co(Q).

Proof. Let Iy be a simple ideal of g; such that (ad lp)vo # {0}. Since gy
has no compact factors, it follows that [y is noncompact. Let Ly be the
connected Lie subgroup of GG; corresponding to ly. Then L is noncompact.
By Lemma 19.1, we choose @ € Mink(v) such that ad,(lp) = s0(Q).

Then s0(Q) = ady (lp) C ady(go). Let p := ad, : go — gl(v). By Lemma 3.6
(with V replaced by v), we are done. O
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21. Representations of reductive groups, Part II

Let G be a connected Lie group. Let Gy be a reductive connected Lie
subgroup of G. Let L be the semisimple Levi factor of Gy. Let V be an
Abelian connected Lie subgroup of G. Assume Gy normalizes V.

Let G act locally faithfully by isometries of a connected Lorentz manifold
M. Let mo € M. Let H := Stab{,(my).

LEMMA 21.1. Assume that (ad go)h C h. Then Ady(L) is compact.

Proof. Assume, for a contradiction, that Ady(L) is noncompact.

Since ady (l) is noncompact and semisimple, choose a Lie subalgebra s of [
such that s is Lie algebra isomorphic to slx(R) and such that ady(s) # {0}.
Choose an (ad s)-irreducible subspace vy in h such that dim(vg) > 2. Let
(X,Y,T) be a standard sla(R) basis of s. By the representation theory of
s[5 (R), choose A € vy such that [X, A] = 0. We have A € vy C b, so A,,, = 0.
By Lemma 14.1 (with v replaced by vg), we have a contradiction. O

THEOREM 21.2.  Assume that b # {0}. Then at least one of the following
18 true:

(1) There exists a nonzero (ad go)-invariant subspace vy of v such that
Ady, (L) is compact.

(2) There is an (ad go)-irreducible subspace vy of v and there is some
Q@ € Mink(vy) such that s0(Q) C ady, (g0) C co(Q).

Proof. Replacing G by GyV, we may assume that V is normal in G.

Case A: g, is nondegenerate. For all X € ), we have
(ad X)g C [h,9] C [0,9] C v,

so (ad X)%g C (ad X)v C [h,0] C [v,0] = {0}. Let C be an ordered Q4-basis
of T, M.

Fix X € h for this paragraph. Let T := XCLm and S := ggm. Then S is
Qq-nondegenerate and T2(S) = ((ad X)?g)S™ = {0}. By Lemma 3.1 (with
(V,Q) replaced by (R% Qg)), we have T(S) = {0}. Then ((ad X)g)S™ =
T(S) = {0}, so (ad X)g  b.

We conclude that [h,g] C h. Then (ad go)bh = [g0,5] C [g,h] € h. By
Lemma 21.1, we see that (1) of Theorem 21.2 (with vy replaced by §) holds.

Case B: gy, s degenerate. Let £ be the light cone in T}, , M. Let w; :=
{X €0| X, € L}. As gy, is degenerate, it follows that £Ng,,, is a subspace
of gm,, 50 LN v,,, is a subspace of v,,,. Then tv; is a subspace of v.

Let L be the semisimple Levi factor of Gy. Let € and g; be ideals of [
such that ¢ is compact, such that g; has no compact factors and such that
[=¢tadg;. Let G; and K be the connected Lie subgroups of G corresponding
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to g1 and &, respectively. Then L = G1 K and G is a normal subgroup of Gj.
Moreover, K is compact.

Let f denote the set of (Ad G1)-fixpoints in v. Since G; is a normal sub-
group of G, we conclude that fis (Ad Gg)-invariant. Since Ad(G) is trivial,
we see that Ad¢(L) = Ad;(G1K) = Ad{(K). Then Ad;(L) is compact. So, if
f # {0}, then (1) of Theorem 21.2 (with vy replaced by f) holds. We therefore
assume that f = {0}, i.e., that no nonzero vector in v is (Ad G;)-fixed.

By Lemma 20.1, choose w € {h,1w;} such that (ad go)ro C to. Let vy
be a nonzero (ad go)-irreducible subspace of w. Then vy C 1 C vy, so
(01)me € L. Because f = {0}, we see that (ad g1)v; # {0}. By Lemma 20.2
(with v replaced by vy), we see that (2) of Theorem 21.2 holds. O

22. Proof of Theorem 1.1

If G is a Lie group and if G is a connected Lie subgroup of G, then we shall
say that (G, Go) is a nonproper pair if there exists a locally faithful action of
G by isometries of a connected Lorentz manifold M such that the action of
G on M is orbit nonproper.

LEMMA 22.1. Let G be a connected Lie group with simply connected nil-
radical. Let Vi be an Abelian ideal of g. Let S C GL(V}) be a connected Lie
subgroup. Assume Ady,(G) C S. Let G' := S x Vq. Assume (G', V1) is a
nonproper pair. Then there exists a locally faithful, orbit nonproper action of
G by isometries of a connected Lorentz manifold.

Proof. Let N := exp(V7) be the connected Lie subgroup of G corresponding
to V7. Let e := exp : V; — N. Because G has simply connected nilradical, and
because V; is an Abelian ideal of g, it follows that e is an isomorphism of Lie
groups. Define E : GL(V;) — Aut(N) by E(g) =eogoe™!. Let R:= E(S).
Let H := R x N. Since (G',V}) is a nonproper pair, it follows that (H, N) is
a nonproper pair. Define ¢ : G — Aut(N) by (¢(g))(n) = gng~!. Define 9 :
H — Aut(N) by (¢(h))(n) = hnh=!. Then ¢(G) = E(Ady, (GQ)) C E(S) =
R = ¢(H). In the notation of [Ad99c¢], Intx (G) = ¢(G) C Y(H) = Int (H).

Let H act locally faithfully by isometries of a connected Lorentz manifold
M such that the action of N on M is orbit nonproper. We define G x y M
as in the first paragraph of §1 of [Ad99c] and we let M’ := G xn M. By (2)
of Lemma 3.6 in [Ad99c|, the G-action on M’ is orbit nonproper. By (4) of
Lemma 3.6 in [Ad99c], the G-action on M’ is locally faithful. By Corollary
4.4 in [Ad99c], the G-action on M’ preserves a Lorentz metric. O

Proof of “if” part of Theorem 1.1. For (1), (2) and (3) we use the “if” part
of Theorem 1.3 of [Ad99D].

To prove (4), we let V] be a nonzero (Ad G)-irreducible subspace of V;.
Replacing V4 by V/, we may assume that the Adjoint representation of G on
V7 is irreducible.
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Let I : Vi — Vi denote the identity map. Let P := {AI |\ > 0} be the set
of positive scalar transformations of V;. Let @ := GL(V;). Then Q° = {q €
Q| det (q) > 0}. Let 7 : Q° — Q°/P be the canonical homomorphism.

Let Ly := Ady,(L). By assumption, L; is compact. Let R denote the
solvable radical of G. Let Ry := Ady,(R). Let Gy := Ady,(G). Then
G1 = L1R; C Q°. We have Ady, (N) = {I}. Therefore, by (iii) of Theorem
3.8.3, p. 206, of [Va74] we conclude that Ry C Z(G1). Then R; is Abelian.
Moreover, L1 and Ry centralize one another.

Since the representation of G; on Vj is irreducible, since L1 and R; cen-
tralize one another and since Gy = LjR;i, it follows that the representa-
tion of Ry on Vi is isotypic. By the isotypic representation theory of con-
nected Abelian Lie groups, we conclude that 7w(R;) is compact. So, as Lj
is compact, and as G; = L1R;, we see that 7w(G;) is compact. The map
7| SL(V4) : SL(V1) — Q°/P is an isomorphism, so choose a compact sub-
group K of SL(V1) such that 7(G1) = n(K). Then G; C KP. Let Q be a
positive definite symmetric bilinear form on V; such that K C SOY(Q). Let
S :=CO%Q) C GL(V;). Then

Ady,(G) =G1 C KP C (SO°(Q))P = 8.

Let G’ := S x Vi and n := dim(V;). As CO°(n) x R” is isomorphic to a
subgroup of SOO(Qn+2), we see that G’ admits a smooth isometric action on
flat (n + 2)-dimensional Minkowski space, fixing the origin. Then (G’,V7) is
a nonproper pair. So, by Lemma 22.1, we are done.

To prove (5), choose @ € Mink(V;) such that ady, (lp) = so(Q). Let
g1 := ady,(g) € gl(V1). As Vi C 3(n), it follows that n is contained in
the kernel of the surjective Lie algebra homomorphism ady, : g — g1, so g; is
reductive. Let p : g1 — gl(V1) be inclusion. By Lemma 3.6 (with go replaced
by g1, V replaced by Vi, ly replaced by ady, (Ip) and [ replaced by ady; (1)),
we have p(g1) C co(Q). Let S == CO%(Q). Then advy, (g) = g1 = pla1) C
so Ady,(G) C S. Let G’ := S x V. Let d := dim(V;). Then d = n > 3.
By Lemma 10.4 of [Ad99b] we see that (G’,V7) is a nonproper pair. So, by
Lemma 22.1, we are done. O

Proof of “only if” part of Theorem 1.1. Assume that (1), (2), (3) and (4)
of Theorem 1.1 are all false. We wish to show that (5) of Theorem 1.1 is true.

Let V := 3(n). Let Go := Ady(G). Then Gy is reductive. Define G’ :=
Go x V. Then V is a normal subgroup of G’ and, at the same time, V is an
ideal of g.

If W is a vector space and if S C GL(W) is a connected Lie subgroup, then
we shall say that S is admissible if one of the following occurs:

e S has compact semisimple Levi factor; or
e there exists @ € Mink(WW) such that s0(Q) C s C co(Q).
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Since (1), (2) and (3) of Theorem 1.1 are all false, by the “only if” part of
Theorem 1.3 of [Ad99b], we see that there exists a locally faithful action of G’
by isometries of a connected Lorentz manifold M such that some noncompact
closed connected subgroup of V' fixes a point mg € M. Let H := Stab,(my).

Then b # {0}.

By Theorem 21.2 (with G replaced by G’), we let v; be a nonzero (ad go)-
invariant subspace of v such that Ad,, (G’) is an admissible subgroup of
GL(v1). Let V; := exp(b1) be the connected Lie subgroup of V' correspond-
ing to vy. Since (4) of Theorem 1.1 is false, we conclude that Ady, (L) is
noncompact.

Let e := exp : v; — V4. Then V; is a vector subspace of V and e : v; — Vi is

a vector space isomorphism. Let E : GL(v1) — GL(V4) be the corresponding

isomorphism of Lie groups, which is defined by E(g) = eogoe™!.

Then E(Ady, (G")) = Ady, (G). So, since Ady, (G') is an admissible sub-
group of GL(v;1), we see that Ady, (G) is an admissible subgroup of GL(V7).
So, as Ady, (L) is noncompact, by definition of “admissible”, we may choose
Q@ € Mink(W) such that s0(Q) C ady,(g) C co(Q). Let p := ady, : g —
gl(V1). As p(I) = ady, (1), we see that p(l) is noncompact. In particular, we
have p(l) # {0}. By Lemma 3.7, we see that (5) of Theorem 1.1 is true. O
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