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Abstract. The braid index of a surface-knot F is the minimal num-
ber among the degrees of all simple surface braids whose closures are
ambient isotopic to F . We prove that there exists a surface-knot with
braid index k for any positive integer k. To prove it, we use colorings
of surface-knots by quandles and give lower bounds of the braid index
of surface-knots.

A surface-knot is a closed, connected, oriented surface embedded locally
flatly in R4. The notion of a surface braid was defined by Viro [17] and
extensively studied by Kamada [10]. A similar notion was also investigated
by Rudolph [14], [15]. A surface braid of degree m is a compact oriented
surface S embedded properly and locally flatly in B2

1 × B2
2 , where B2

i is a
2-disk (i = 1, 2), such that

(i) the restriction map π|S of the projection π : B2
1 × B2

2 → B2
2 is a

branched covering map of degree m, and
(ii) ∂S = Pm×∂B2

2

(
⊂ B2

1 × ∂B2
2

)
for a fixed set Pm of m distinct interior

points of B2
1 .

A surface braid S is called simple if the covering π|S is simple (i.e., the
preimage of each branch locus consists of m− 1 points).

A surface braid S of degree m is extended to a closed surface embedded
in R4, called the closure of S, by embedding the 4-disk B2

1 × B2
2 in R4 and

attaching m sheets of 2-disks along the boundary of S in R4 \ int(B2
1 × B2

2)
in the obvious way. Surface braids are closely related to surface-knots; as
an analogue of Alexander’s theorem in classical knot theory, Viro [17] and
Kamada [8] proved that any surface-knot is ambient isotopic to the closure of
a simple surface braid. We refer to [10], [2] for more details.

The braid index of a surface-knot F is defined to be the minimal number
among the degrees of all simple surface braids whose closures are ambient
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isotopic to F in R4. There exist several results on the braid index of a surface-
knot; see [7], [9], [11], for example. Surface-knots with braid index less than
three are unknotted, and those with braid index three are “ribbon” [7]. The
2-twist spun trefoil, for example, is not ribbon, and hence has braid index
four [7]. However, a braid index greater than four has never been obtained
for any specific examples of surface-knots. In this paper, we prove:

Theorem 1. For any integer k > 0 there exists a surface-knot with braid
index k.

To prove the theorem, we use colorings of surface-knots by quandles.
A quandle [3], [6], [12] is a non-empty set X equipped with a binary oper-

ation (a, b) 7→ a ∗ b such that
(i) a ∗ a = a for any a ∈ X,
(ii) the map ∗a : X → X (x 7→ x ∗ a) is bijective for each a ∈ X, and
(iii) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for any a, b, c ∈ X.

The dihedral quandle of order p, denoted by Rp, is a quandle consisting of
the set {0, 1, . . . , p − 1} with the binary operation defined by i ∗ j ≡ 2j − i
(mod p).

A diagram of a surface-knot is a generic projection image in R3, where
one of the two sheets near the double point curve is broken depending on
the relative height. This convention is similar to classical knot diagrams.
A diagram consists of broken sheets, which are mutually disjoint compact
oriented surfaces in R3, and the orientations are specified by normal vectors.
We refer to [2] for more details.

A coloring of a surface-knot diagram by a quandle X is an assignment of
an element of X to each broken sheet such that a ∗ b = c holds along each
double point curve, where a (resp. c) is the color of under-sheet that is behind
(resp. in front of) the over-sheet colored b with respect to the normal vector
of the over-sheet. We remark that the number of colorings is an invariant of
a surface-knot and that the coloring by Rp is the same as the Fox p-coloring
[4], [5].

Proposition 2. Let F be a surface-knot which is not a trivial S2-knot.
If there is a finite quandle X with n elements such that F admits at least ns

colorings by X for integers n > 1 and s > 0, then the braid index of F is at
least s+ 1.

Proof. Let m be the braid index of F . Consider a simple surface braid S of
degree m whose closure presents F . Regarding B2

1 as I1 × I2, where Ii is the
unit interval (i = 1, 2), the projection of B2

1 onto the first factor I1 induces
π′ : B2

1 ×B2
2 → I1 ×B2

2 and we obtain a diagram D of S as the projection of
S by π′. The boundary circles ∂S = Pm×∂B2

2 project to embedded circles in
I1 × ∂B2

2 by π′. Branch points appear at the end of double point curves and
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correspond to branch loci of the covering π|S . Since F is not a trivial S2-knot,
the diagram D has branch points. By definition, each coloring of D by X is
determined by a vector (x1, x2, . . . , xm) ∈ Xm such that the ith boundary
circle of D receives the color xi (i = 1, 2, . . . ,m). By [11, Lemma 12], we may
assume that the first and second boundary circles belong to the same broken
sheet; Figure 1 shows this situation, where a branch point connects the first
and second broken sheets near the boundary circles. It follows from x1 = x2

that the surface-knot F admits at most nm−1 colorings by X. Thus we obtain
ns ≤ nm−1, that is, m ≥ s+ 1. �

1st sheet
2nd sheet
3rd sheet

mth sheet

Figure 1

For the proof of Theorem 1, since it is known that there exist surface-knots
with braid index less than three, it is sufficient to prove:

Proposition 3. The connected sum of ` copies of the spun (2, p)-torus
knot has braid index `+ 2, where p is an odd integer with p ≥ 3.

Proof. Let Fp(`) be the connected sum of ` copies of the spun (2, p)-torus
knot. Since the number of colorings of Fp(1) by the dihedral quandle Rp of
order p is equal to p2, that of Fp(`) is equal to p`+1 (cf. [13]). Hence the braid
index of Fp(`) is at least `+ 2 by Proposition 2.

On the other hand, the following was proved by Kamada, Satoh and Tak-
abayashi [11, Theorem 3]: if neither F1 nor F2 is a trivial S2-knot, then the
inequality

(∗) Braid(F1#F2) ≤ Braid(F1) + Braid(F2)− 2

holds for the connected sum F1#F2 of two surface-knots F1 and F2, where
Braid(F ) is the braid index of a surface-knot F . Thus the braid index of Fp(`)
is at most `+ 2, since that of Fp(1) is three. �

We obtain the following by an argument similar to that in the proof of
Proposition 3.
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Corollary 4. The connected sum of ` copies of the spun (2, p)-torus
knot and g copies of the trivial T 2-knot has the braid index `+ 2, where p is
an odd integer with p ≥ 3.

Proof. Let T be the trivial T 2-knot, and let Fp(`)#gT be the connected
sum of Fp(`) and g copies of T . In general, the number of colorings is invari-
ant under the connected sum by a trivial surface-knot. Thus the number of
colorings of Fp(`)#gT by Rp is equal to that of Fp(`), that is, it is equal to
p`+1. Hence the braid index of Fp(`)#gT is at least ` + 2 by Proposition 2.
On the other hand, since the braid index of T is two, that of Fp(`)#gT is at
most `+ 2 by Proposition 3 and inequality (∗). �

If p′ is less than p, then we can show by a direct calculation that the
number of colorings of Fp′(`)#gT by Rp is less than p`+1. Hence the two
ribbon surface-knots Fp(`)#gT and Fp′(`)#gT are not ambient isotopic to
each other, and the following is a direct consequence of Proposition 3 and
Corollary 4.

Corollary 5. For each pair of integers k ≥ 3 and g ≥ 0 there exists an
infinite series of ribbon surface-knots of genus g with braid index k.

Finally, we consider the braid index of a non-ribbon surface-knot. Let G(`)
be the connected sum of the 2-twist spun trefoil and ` copies of the spun
trefoil, where ` is an integer with ` ≥ 0.

Lemma 6. For each integer ` > 0, the S2-knot G(`) is non-ribbon and the
braid index of G(`) is either `+ 3 or `+ 4.

Proof. It follows, from the quandle cocycle invariant [1] of G(`) associated
with a certain 3-cocycle of the dihedral quandle R3 and the coefficient group
Z3, that G(`) is non-ribbon and that the number of colorings of G(`) by
R3 is equal to 3`+2. We refer to [16, proof of Theorem 1.1] for the quandle
cocycle invariant of G(`). Hence the braid index of G(`) is at least ` + 3 by
Proposition 2. On the other hand, since the braid index of the 2-twist spun
trefoil G(0) is four [7], that of G(`) is at most ` + 4 by Proposition 3 and
inequality (∗). �

We recall here that the braid index of a non-ribbon surface-knot is greater
than three [7]. Using Lemma 6, we prove:

Proposition 7. For any integer k > 3 there exists a non-ribbon surface-
knot with braid index k.

Proof. Case 1: The braid index of G(k − 4) is k − 1. Then we take the
non-ribbon S2-knot G(k − 3). Using inequality (∗) again for G(k − 3), the
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braid index of G(k − 3) is at most k
(
= (k − 1) + 3− 2

)
. On the other hand,

we have already proved that the braid index of G(k − 3) is at least k.
Case 2: The braid index of G(k − 4) is k. In this case the non-ribbon

S2-knot G(k − 4) is what we want. �

Problem 8. For each integer ` > 0 determine the braid index of G(`)
exactly. Which is the correct value of this index, `+ 3 or `+ 4?
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