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BERGMAN PROJECTIONS ON BESOV SPACES ON BALLS

H. TURGAY KAPTANOĞLU

Abstract. Extended Bergman projections from Lebesgue classes onto

all Besov spaces on the unit ball are defined and characterized. Right
inverses and adjoints of the projections share the property that they
are imbeddings of Besov spaces into Lebesgue classes via certain com-

binations of radial derivatives. Applications to the Gleason problem at
arbitrary points in the ball, duality, and complex interpolation in Besov

spaces are obtained. The results apply, in particular, to the Hardy space
H2, the Arveson space, the Dirichlet space, and the Bloch space.

1. Introduction

The inner product and the norm in CN are 〈z, w〉 = z1w1 + · · · + zNwN
and |z| =

√
〈z, z〉, where ( ) denotes the complex conjugate (or the closure of

a set if the context requires it). We let ν be the Lebesgue (volume) measure
on the unit ball B of CN normalized with ν(B) = 1, which is the area measure
on the unit disc D when N = 1. We define on B also the measures

dνc(z) = (1− |z|2)c dν(z) (c ∈ R),

which are finite only when c > −1. Unless otherwise specified or restricted,
our main parameters are the following:

q ∈ R, 0 < p ≤ ∞, s ∈ C, σ = Re s, t ∈ C, τ = Re t.

Let H(B) denote the space of holomorphic functions on B. For q > −1, a
function f ∈ H(B) belongs to the (weighted) Bergman space Apq whenever f
lies in the Lebesgue class Lp(νq). The norm ‖f‖Apq is simply the Lp(νq) norm
of f , where we use the term norm even when 0 < p < 1. So the inclusion map
i : Apq → Lp(νq) is an isometric imbedding.
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Bergman projections are the linear operators Ps defined for σ > −(N + 1)
by

Psf(z) =
∫
B

(1− |w|2)s

(1− 〈z, w〉)N+1+s
f(w) dν(w) (z ∈ B)

for suitable f . It is clear that Psf is a member of H(B). Complex powers are
always understood to be principal branches.

The following result is classical; see [FR], [C], and [HKZ, §1.2], for example.

Theorem 1.1. For 1 ≤ p < ∞, Ps is a bounded operator from Lp(νq)
onto Apq if and only if

(1) q + 1 < p (σ + 1).

For such a value s,

(2) (Ps ◦ i)f =
N !

(1 + s)N
f (f ∈ Apq).

The inequality (1) implies σ > −1 since q > −1 for Bergman spaces. The
expression (a)b in (2) is the Pochhammer symbol given by

(3) (a)b =
Γ(a+ b)

Γ(a)

when a and a+ b are off the pole set −N of the gamma function Γ.
Besov spaces extend weighted Bergman spaces to all q. To define them, we

first take a radial differential operator Dt
s of order t and consider the linear

transformation Its defined for f ∈ H(B) by

Itsf(z) = (1− |z|2)tDt
sf(z).

We say a function f ∈ H(B) belongs to the Besov space Bpq whenever Itsf lies
in Lp(νq) for some s, t satisfying

(4)

{
q + p τ > −1 (0 < p <∞),
τ > 0 (p =∞).

The Lp(νq) norm of any one of the functions Itsf can be used as an equivalent
norm for ‖f‖Bpq . It turns out that Bpq = Apq for q > −1.

We also need an extended notion of Bergman projections in order to be
able to handle all q. Consider the kernel

(5) Hs(λ) =


1

(1− λ)N+1+s
=
∞∑
k=0

(N + 1 + s)k
k!

λk, if σ>−(N+1),

2F1(1, 1; 1−N−s;λ)
−N − s

=
∞∑
k=0

k!λk

(−N−s)k+1
, if σ≤−(N+1),
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where 2F1 is the hypergeometric function; see [BB, p. 13]. With no restriction
on s, we define the (extended) Bergman projections, also denoted by Ps, as

Psf(z) =
∫
B

Hs(〈z, w〉) (1− |w|2)s f(w) dν(w) (z ∈ B).

Our main result is the following generalization of Theorem 1.1.

Theorem 1.2. For 1 ≤ p ≤ ∞, Ps is a bounded operator from Lp(νq)
onto Bpq if and only if

(6)

{
q + 1 < p (σ + 1) (1 ≤ p <∞),
σ > −1 (p =∞).

Given a number s satisfying (6), if t satisfies (4), then

(7) (Ps ◦ Its)f =
N !

(1 + s+ t)N
f = Cst f (f ∈ Bpq ).

Note that (6) no longer implies σ > −1. On the other hand, (6) and (4)
together imply σ + τ > −1 so that (1 + s+ t)N never hits a pole of Γ.

The best partial result in this direction is [P, Theorem 3.11], in which s
is restricted to s > −1; then s > −(N + 1) trivially and only the binomial
part of the kernel (5) is used. Consequently the only-if part is also missing.
The same restriction on s applies also to the right inverses given for Ps. A
very special case of (7) is [Z2, Lemma 4.2.8]. Although Hs appears in [BB]
in its full generality, this source considers only projections from differentiable
classes onto Besov spaces.

We prove Theorem 1.2 in Section 5. Our proof is entirely different from
that of [P]. We emphasize that Theorem 1.2 generalizes Theorem 1.1 also
in the sense that i in (2) can be replaced by the more general Its even when
q > −1. We also find the adjoint of Ps in this section.

Section 4 is devoted to properties of Besov spaces that place the extended
Bergman projections in context. This is required partly because the q we
use in the definition of Bpq is not standard. It is shown that Hq(〈z, w〉) is
the reproducing kernel of B2

q . The independence of Bpq of the parameters s, t
under (4) and their relation to Bergman and other spaces are established.
Equation (2) in [Kap], where some of the results in this paper are announced,
graphically shows the classification of Bpq with our q.

The operators Dt
s are introduced in Section 3. They are defined by using

coefficient multipliers on the homogeneous expansions of functions in H(B).
Section 2 introduces the notation and some preliminary formulas.
Sections 6, 7, and 8 give applications of Theorem 1.2. First we solve the

Gleason problem at an arbitrary point a ∈ B in Besov spaces. Then we study
the duality of Bpq spaces under some new pairings. Finally we investigate
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complex interpolation in these spaces and identify some linear operators that
leave them invariant.

Proofs of a few technical results are deferred to the Appendix. Particular
cases of our results refer to the Hardy space H2 = B2

−1, the Arveson space
B2
−N , and the Dirichlet space B2

−(N+1).

2. Notation and preliminaries

Constants appearing in formulas are all denoted by C, although they may
have different values. The constants may depend on various parameters, but
never on the functions in the formula in which they appear.

For fixed a, b, Stirling’s formula and (3) give

(8)
Γ(c+ a)
Γ(c+ b)

∼ ca−b, (c)a ∼ ca,
(a)c
(b)c

∼ ca−b (Re c→∞),

where x ∼ y means that |x/y| is bounded above and below by two positive
constants that are independent of any parameter present (c here).

For 1 ≤ p < ∞, the symbol p′ denotes the exponent conjugate to p; that
is, 1/p+ 1/p′ = 1. The dual space X∗ of a Banach space X is the space of all
bounded linear functionals on X.

We use multi-index notation in which α = (α1, . . . , αN ) ∈ NN is an N -tuple
of nonnegative integers, |α| = α1+· · ·+αN , α! = α1! · · ·αN !, zα = zα1

1 · · · z
αN
N ,

and 00 = 1. Then

(9) Hs(〈z, w〉) =


∑
α

(N + 1 + s)|α|
α!

zαwα, if σ > −(N + 1),∑
α

(|α|!)2

α! (−N − s)|α|+1
zαwα, if σ ≤ −(N + 1).

When s = −(N + 1), (9) sums to

(10) H−(N+1)(〈z, w〉) =
∞∑
k=0

1
k + 1

〈z, w〉k =
1
〈z, w〉

log
1

1− 〈z, w〉
.

By (8), the coefficient of λk in (5) is ∼ kN+σ for large k. Thus (5) converges,
in particular, when λ = 〈z, w〉 with z, w ∈ B.

Let Σ be the Lebesgue (surface) measure on the boundary ∂B of B normal-
ized so that Σ(∂B) = 1. The following result extends [R, Proposition 1.4.9]
to p 6= 2 and q 6= 0. Its proof follows similar lines and is omitted.

Proposition 2.1. For a multi-index α, 0 < p <∞, and σ > −1, we have∫
∂B

|ζα|p dΣ(ζ) =
(N − 1)!

∏N
j=1 Γ(1 + αjp/2)

Γ(N + |α|p/2)
and
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B

|zα|p (1− |z|2)s dν(z) =
N ! Γ(1 + s)

∏N
j=1 Γ(1 + αjp/2)

Γ(N + 1 + s+ |α|p/2)
.

Remark 2.2. The case p = 2 of the second integral is [AK1, Lemma 1].
A similar orthogonality result,

∫
B
zαzβ (1− |z|2)s dν(z) = 0 if α 6= β, appears

in [FR, Proposition 2.4].

Proposition 2.3. For any c ∈ R, L∞(νc) = L∞(ν).

Proof. It suffices to show that the null sets of the measures νc and ν are
the same. Note that νc is σ-finite. We have dν(z) = (1 − |z|2)−c dνc(z) with
z 7→ (1− |z|2)−c integrable with respect to νc, and dνc(z) = (1− |z|2)c dν(z)
with z 7→ (1−|z|2)c locally integrable with respect to ν. Since neither measure
has atoms, it follows that either measure is absolutely continuous with respect
to the other. �

Now for a, b ∈ C and suitable g, consider the operator

V ab g(z) = (1− |z|2)a
∫
B

(1− |w|2)b

(1− 〈z, w〉)N+1+a+b
g(w) dν(w).

Theorem 2.4.

(a) For 1 ≤ p ≤ ∞, V ab is bounded on Lp(νc) if and only if

−Re a <
c+ 1
p

< Re b+ 1.

(b) For 0 < p ≤ 1, if

0 < Re b+ 1−N
(

1
p
− 1
)

and − Re a <
c+ 1
p

< Re b+ 1−N
(

1
p
− 1
)
,

then V ab is a continuous map from Lp(νc) ∩H(B) to Lp(νc).

Proof. (a) This is essentially [HKZ, Theorem 1.9] for 1 ≤ p < ∞ and
contained in [Z3, Theorem 9] for p =∞.

(b) See the Appendix. �

For σ > −(N + 1), clearly Ps is the operator V 0
s . Then the first part of

Theorem 1.1 follows immediately from Theorem 2.4 (a).

Remark 2.5. Theorem 2.4 is true also for operators of type V ab that have
the form

Mg(z) =
∫
B

k(z, w) |g(w)| dν(w),

where k(z, w) is a measurable kernel satisfying

|k(z, w)| ≤ C (1− |z|2)Re a (1− |w|2)Re b

|1− 〈z, w〉|N+1+Re a+Re b
.
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3. Radial differential operators

Let f ∈ H(B) be given by its homogeneous expansion f(z) =
∑∞
k=0 fk(z),

where fk is a homogeneous polynomial of degree k. The radial derivative at
z of f is

Rf(z) =
N∑
m=1

zm
∂f

∂zm
(z) =

∞∑
k=1

k fk(z).

In particular, R(zα) = |α|zα and R(〈z, w〉) = 〈z, w〉, where R acts on the
holomorphic variable z. What is nice about Rf is that it is also holomorphic
and dominates the derivatives of f in tangential directions; see [R, §6.4]. By
imitating the passage across σ = −(N + 1) in (5) and following [AU, §3], we
extend R to arbitrary orders.

Definition 3.1. Let f ∈ H(B). We define Dt
sf =

∑∞
k=0

t
sdk fk, where

t
sdk =



(N + 1 + s+ t)k
(N + 1 + s)k

, if σ>−(N+1), σ+τ >−(N+1),

(N+1+s+t)k (−(N+s))k+1

(k!)2
, if σ≤−(N+1), σ+τ >−(N+1),

(k!)2

(N+1+s)k (−(N+s+t))k+1
, if σ>−(N+1), σ+τ≤−(N+1),

(−(N + s))k+1

(−(N + s+ t))k+1
, if σ≤−(N+1), σ+τ≤−(N+1).

Clearly, Dt
sf ∈ H(B), D0

s = I, Dt
s(1) = 1,

(11) D1
−N = R+ I, t

sdk 6= 0, and Dt
s(z

α) = t
sd|α|z

α.

Moreover, by (8),

(12) t
sdk ∼ kτ (k →∞).

Theorem 3.2. Any Dt
s is a continuous operator on H(B).

Proof. This is one direction of [Ara, Theorem 5], using the estimate (12).
�

Hence identities for Dt
s can be proved by checking their action on zα since

{zα} generates H(B). So by (5) we have the important identity

(13) Dt
sHs(〈z, w〉) = Hs+t(〈z, w〉),

where Dt
s acts on the holomorphic variable z. The properties (11), (12), and

(13) allow us to state the following result.

Proposition 3.3. Any Dt
s is a radial differential operator of order t.
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The parameter s does not affect the order and is there for convenience in
the proofs. These operators are truly differential when t is a positive integer,
and integral when t is negative. By (11), any Dt

s is a bijection on H(B) and
thus invertible. A case by case checking as in Definition 3.1 yields that

(14) Dr
s+tD

t
s = Dt+r

s .

This formula for s > −1, s+ t > −1, and r+ s+ t > −(N + 1) appears in [P,
Remark 3.6 (b)]. The two-sided inverse of Dt

s is obtained by taking D0
s = I

on the right in (14). Therefore

(15) (Dt
s)
−1 = D−ts+t.

Consequently, if f ∈ H(B) and Dt
sf ≡ 0 or Its ≡ 0 for some s, t, then f ≡ 0.

Let us note in passing that the operators Ra = (R−aI)−1 = −a−1D−1
−(N+a)

satisfy the resolvent equation Ra −Rb = (a− b)RaRb.

Theorem 3.4. Suppose b satisfies Re b > −1 and Re(u−t+b) > −(N+1).
Let f ∈ H(B). Then (1 − |z|2)u−tDu

r (f) = M(Dt
s(f)) for an operator M of

type V u−tb . In particular, Dt
r(f) = M(Dt

s(f)) for an operator M of type V 0
b .

Proof. See the Appendix. �

The parameter b can be chosen at will as long as it satisfies the two in-
equalities stated. This provides great flexibility as we show next.

4. Besov spaces

We first make sure that the Bpq spaces are well-defined.

Theorem 4.1. Suppose f ∈ H(B), q ∈ R, and r, s, t, u ∈ C.
(a) Let 0 < p <∞. For q+pRe t > −1 the function Itsf belongs to Lp(νq)

if and only if for some r and u satisfying q+pReu > −1 the function
Iur f belongs to Lp(νq), and the Lp(νq) norms of these two functions
are equivalent.

(b) Let p =∞. For Re t > 0 the function Itsf is bounded on B if and only
if for some r and Reu > 0 the function Iur f is bounded on B, and the
supremums of these two functions on B are equivalent norms for f .

Note that there is absolutely no restriction on the lower parameters r, s of
the differential operators.

Proof. (a) The relations Itsf ∈ Lp(νq) and Iur f ∈ Lp(νq) can be restated
in the forms Dt

sf ∈ Lp(νq+p τ ) and (1− |z|2)u−tDu
r f(z) ∈ Lp(νq+p τ ), respec-

tively. So we apply Theorem 2.4 (a) or (b) with c = q+p τ and a = u−t. These
values satisfy the first inequalities there since q+ pReu > −1. We take a suf-
ficiently large real b in Theorem 3.4 which also satisfies the second inequality
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in Theorem 2.4 (a) or (b). Theorem 2.4 then says that if Itsf ∈ Lp(νq), then
Iur f ∈ Lp(νq).

In the opposite direction, we interchange the roles of the pairs s, t and r, u,
and use the condition q + pRe t > −1.

(b) By choosing a large enough b in Theorem 3.4 and then replacing b by
b − t, we can write Iur f = (M1 ◦ Its)f with an operator M1 of type V ub−t.
Interchanging the pair s, t with r, u, we get an operator M2 that is of type
V tb−u. We take first c = 0, a = u, and b large, and then c = 0, a = t,
and b large in Theorem 2.4(a). The inequalities on a and c are satisfied by
the hypotheses Reu > 0 and Re t > 0, respectively. Then Iur f is uniformly
bounded on B if and only if Itsf is uniformly bounded on B. �

Corollary 4.2. The space Bpq is independent of the particular choice of
s, t as long as (4) holds. The Lp(νq) norms of It1s1f and It2s2f are equivalent
as long as (4) is satisfied by t1 and t2.

Hence, if (4) holds, the map Its : Bpq → Lp(νq) is an isometric imbedding
modulo the equivalence of norms much like the map i is for Bergman spaces.

The reference [BB] uses the differential operators (R+ sI)t instead of Dt
s,

and as remarked there (p. 41), the corresponding spaces are the same. Thus
our Bpq spaces are the holomorphic Sobolev spaces Apq+pt+1,t of [BB], which
imposes the restriction q + pt + 1 > 0 as in (4). In fact, our Corollary 4.2 is
contained in [BB, Theorem 5.12 (i)], and we could have referred to it instead
of proving Theorems 3.4 and 4.1.

However, we have worked out the details because our relatively restricted
approach makes the exposition simpler and our definition of Besov spaces
uses the same parameters as those of weighted Bergman spaces, but with
respect to Itsf rather than f , thus making the roles of various functions and
parameters clearer. Also Corollary 4.2 precedes Theorem 1.2, in contrast to
many treatments of the subject; see [HKZ, Proposition 1.11] for comparison.

When q > −1 and 0 < p < ∞, (4) is satisfied by t = 0 independently of
p; then the spaces Bpq and the weighted Bergman spaces Apq coincide. On the
other hand, for such q and p, (4) is satisfied for certain t with τ < 0 too. Then
Corollary 4.2 gives a new characterization of weighted Bergman spaces using
integrals of the functions contained in them rather than their derivatives.

In contrast, when q ≤ −1 and 1 ≤ p < ∞, t = −q always satisfies (4)
independently of p. Then we see that the holomorphic Besov spaces Bp(B)
of [Z3] are our Bp−(N+1) spaces for such p. This value of t is also used in the
pairings of Theorems 7.1 and 7.2 when identifying the dual of Bpq .

When p = ∞, Corollary 4.2 combined with Proposition 2.3 says that the
spaces B∞q are the same for all q. Using t = 1, by [AFJP, Theorem 2] we see
that this space is the Bloch space B. The subspace B0 of B consisting of those
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functions f for which Itsf restricts to 0 on ∂B for some t with τ > 0 is called
the little Bloch space. These results are stated in [Z4, Theorem 5] for t > N .

Let us denote by BSVv
p the diagonal Besov spaces as defined in [AFJP,

Remark 5.2], [P, Definition 1.1], or [AC], where the expression diagonal refers
to the equality of two parameters out of three in the full Besov-space family.
A straightforward checking of parameters yields that Bpq and BSV−(q+1)/p

p ,
and conversely BSVv

p and Bp−(vp+1), coincide.
Each B2

q space, being a Hilbert space (see [BB]), is equipped with several
equivalent inner products

(16) q[f, g]ts =
∫
B

Itsf I
t
sg dνq,

one for each s, t satisfying q+ 2τ > −1. Using q[·, ·]00 is standard for Bergman
spaces (q > −1). The monomials {zα} form an orthogonal set with respect
to each of these inner products by Remark 2.2.

The following result clearly explains our choice of kernel in defining the ex-
tended Bergman projections. Hypergeometric kernels are not rare; see [Kar].

Theorem 4.3. Each B2
q space is a reproducing kernel Hilbert space. The

reproducing kernel of B2
q is Kq(z, w) = Hq(〈z, w〉).

Proof. See [BB, pp. 13–14]. �

The spaces B2
q are known as Dirichlet-type spaces, with B2

−(N+1) being the
Dirichlet space D by (10), B2

−1 the Hardy space H2, and B2
−N the Arveson

space A. The space A is important in operator theory (see, for example, [Arv],
[AM], [AK2]) due to a universal property of its kernel in Nevanlinna-Pick in-
terpolation. A slightly different description of B2

q spaces for q ≥ −(N + 1)
that does not involve any derivatives on the functions is given in [AK3, Propo-
sition 2.1]. For similar results on bounded symmetric domains, essentially for
q > −(N + 1), see [Y].

5. Bergman projections

We start by deriving an integral formula for Dt
s.

Lemma 5.1. If σ > −1 and f ∈ H(B), then for any t,

Dt
sf(z) =

(s+ 1)N
N !

lim
r→1−

∫
B

Hs+t(〈z, w〉) (1− |w|2)s f(rw) dν(w).

Proof. This is a direct computation using f(z) = zα, (9), and Proposition
2.1. To finish the proof, we invoke Theorem 3.2. �
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Hence Its is a constant multiple of V ts on suitable f for σ > −1. The more
precise relationship (17) below complements this. The restriction on s can be
weakened using the method of [AK1, §5].

As a matter of fact, our differential operators are defined in other sources
using such integrals with binomial kernel and hence for limited t. Up to
constant multiples, Rµs of [P] is our Dµ

s for s > −1 and µ + s > −(N + 1);
Ds and Ds of [Z3] are our Ds

0 and D−ss for s > −1; Dα,β and Dα,β of [Z4] are
our Dα

β and D−αα+β for α > −1 and β > −1.

Proof of Theorem 1.2. Let ϕ ∈ Lp(νq); it is clear that Psϕ ∈ H(B). We
pick a t satisfying (4) and σ + τ > −(N + 1), and apply Its to Psϕ. By
differentiating under the integral sign and employing (13), we obtain

Its(Psϕ)(z) = (1− |z|2)t
∫
B

(1− |w|2)s

(1− 〈z, w〉)N+1+s+t
ϕ(w) dν(w) = V ts ϕ(z).

By Theorem 2.4 (a) and Corollary 4.2, Psϕ lies in Bpq if and only if (6) holds.
Now (6) and (4) together give σ + τ > −1, so that the extra assumption
σ + τ > −(N + 1) above is not necessary.

Further, ‖Psϕ‖Bpq = ‖V ts ϕ‖Lp(νq) ≤ ‖V ts ‖ ‖ϕ‖Lp(νq). So ‖Ps‖ ≤ ‖V ts ‖ when-
ever Ps is bounded.

Now let s be as above, and pick a possibly different t satisfying (4). Then

Ps(Itsf)(z) =
∫
B

(1− |w|2)s+t

(1− 〈z, w〉)N+1+s
Dt
sf(w) dν(w)

=
N !

(1 + s+ t)N
D−ts+tD

t
sf(z) =

N !
(1 + s+ t)N

f(z)

by Lemma 5.1 and (15). Lemma 5.1 applies, because (6) and (4) together
imply σ+ τ > −1, which also ensures that (1 + s+ t)N is always defined. �

Remark 5.2. The proof of Theorem 1.2 reveals the following interesting
fact. When 1 ≤ p ≤ ∞, if V ts is bounded on Lp(νq), then it factors through
Bpq as

(17) V ts = Its ◦ Ps.
Theorem 1.2 and (17) can be summarized in a commutative diagram:

Lp(νq)

Ps

��

V ts // Lp(νq)

Ps

��
Bpq

Its

::uuuuuuuuuu

CstI
// Bpq

Right inverses similar to Its appear in limited cases also in [C] and [BB,
Corollary 6.5], the latter for a different kind of projection.
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The case p =∞ is covered by Theorem 1.2, but deserves separate mention.
It is more general than [C, Theorem 2], because it provides the only-if part
and a whole family of right inverses.

Corollary 5.3. The Bergman projection Ps maps L∞(ν) boundedly onto
B if and only if σ > −1. If also τ > 0, then (7) holds for all f ∈ B.

Let us isolate one other important case when N = 1. The operator Ps
maps L2(ν−1) boundedly onto H2 = A = B2

−1 if and only if σ > −1, and if
τ > 0, then (Ps ◦ Its)f = Cf for f ∈ H2. Letting s = 0 and t = 1, for f ∈ H2

and f(0) = 0, (7) amounts to the representation

f(z) = C

∫
D

1− |w|2

(1− 〈z, w〉)2
f ′(w) dν(w).

Our purpose now is to compute the adjoint of Ps. First, for 1 ≤ p <∞ we
have (Lp(νq))∗ = Lp

′
(νq) under the pairing q[·, ·]00, and it is shown in Theorem

7.1 below that (Bpq )∗ = Bp
′

q under the general pairings given in (20). Given s
satisfying (6) and 1 ≤ p < ∞, by an adjoint of Ps : Lp(νq) → Bpq we mean a
linear operator P ∗s : Bp

′

q → Lp
′
(νq) such that q[Psf, g]t,−q+ss,q+t = q[f, P ∗s g]00 for

some t satisfying (4) and for all f ∈ Lp(νq) and g ∈ Bp′q .

Theorem 5.4. The adjoint of Ps as defined above is P ∗s = Cst I
−q+s
q+t .

Proof. Expanding the definition of P ∗s in integrals and using (13) and Fu-
bini’s theorem, we obtain

P ∗s g(z) = (1− |z|2)−q+s
∫
B

Hs+t(〈z, w〉) (1− |w|2)s+tD−q+sq+t g(w) dν(w),

which is bounded if and only if (6) and (4) hold because of Ps. But for such
s, t, the kernel Hs+t is binomial. Thus, when P ∗s is bounded, we have

P ∗s g(z) = (1− |z|2)−q+s
∫
B

(1− |w|2)q+t

(1− 〈z, w〉)N+1+s+t
I−q+sq+t g(w) dν(w)

= V −q+sq+t (I−q+sq+t g)(z).

This form of P ∗s is entirely similar to and generalizes even for q > −1 the
one given in [C, Corollary 7]. The only notable difference is the presence of
I−q+sq+t , which is expected by our definition of Besov spaces and which can be
checked to imbed Bp

′

q into Lp
′
(νq) under (6) and (4) with p′ in place of p. The

boundedness condition of P ∗s can now be read off also directly from Theorem
2.4 (a). By factoring V −q+sq+t as in (17) and using Theorem 1.2, we obtain the
desired result. �

Note that no matter what value of t is used in the pairing of (20) to define
the adjoint, P ∗s turns out to be essentially the same since the lower parameter
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of radial derivatives is a mere technicality. We can take t = −q + s for
symmetry.

Bounded projections from Lebesgue classes keep on playing important roles
in the theory of Bergman-type spaces; see [CKY], for example.

6. The Gleason problem

Let X be a space of functions defined, say, on B. Given a ∈ B and f ∈ X,
the Gleason problem is to determine whether f1, . . . , fN ∈ X exist such that

f(z)− f(a) =
N∑
m=1

(zm − am) fm(z) (z ∈ B).

The point here is that f1, . . . , fN must be in the same space as f . Explicit
solutions are given in [Z1] and [C] in Bergman spaces Apq for 1 ≤ p < ∞ at
a = 0. In [AK3, §3], it is proved that solutions exist in Dirichlet-type spaces
B2
q at arbitrary a ∈ B. For further recent results on the Gleason problem and

their applications to interpolation see also [AK2], [CKY], and [AD].
In this section, we give explicit solutions to the Gleason problem in Bpq for

all q and 1 ≤ p ≤ ∞, including p = ∞, at an arbitrary point a ∈ B. Our
solutions take the modification in [AK3] of the Ahern-Schneider solution (see
[R, §6.6.2] and [AS]) one step further by employing Theorems 1.2 and 2.4.

We need integer values of s that satisfy (6). If q > −1, then s = dq + 1e,
the least integer greater than or equal to q + 1, works for all 1 ≤ p < ∞. If
q ≤ −1, then s = 0 works for all 1 ≤ p ≤ ∞, including p = ∞. In any case,
s ≥ 0 and Hs is binomial.

Theorem 6.1. Given q, 1 ≤ p ≤ ∞, and a ∈ B, there exist bounded linear
operators aG1, . . . , aGN : Bpq → Bpq satisfying

(18) f(z)− f(a) =
N∑
m=1

(zm − am) aGmf(z) (f ∈ Bpq , z ∈ B).

Proof. Let s > −(N + 1) be an integer satisfying (6), let t satisfy (4), and
define

aGmf(z) =
1
Cst

∫
B

Hs(〈z, w〉)−Hs(〈a,w〉)
〈z − a,w〉

wm (1− |w|2)s Itsf(w) dν(w)

for m = 1, . . . , N and f ∈ Bpq . The crucial difference to the Ahern-Schneider
solution is the presence of the imbedding Its. Then the right side of (18) is

1
Cst

∫
B

(
Hs(〈z, w〉)−Hs(〈a,w〉)

)
(1− |w|2)s Itsf(w) dν(w)

=
1
Cst

(
Ps(Itsf)(z)− Ps(Itsf)(a)

)
= f(z)− f(a)
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by Theorem 1.2. Hence aG1f, . . . , aGNf satisfy (18). It remains to show that
aGm is bounded.

Using that s is an integer and the finite binomial expansion, we can write

aGmf(z) =
1
Cst

N+s∑
j=0

∫
B

wm (1− |w|2)s

(1− 〈z, w〉)N+1+s−j (1− 〈a,w〉)1+j
Itsf(w) dν(w).

Take a u satisfying (4) with Reu in place of τ , and apply Ius−j to the jth term
in the sum, which we denote by Tjf(z), j = 0, . . . , N + s ≥ 1. By (13), the
result is

1
Cst

(1− |z|2)u
∫
B

wm (1− |w|2)s

(1− 〈z, w〉)N+1+s+u−j (1− 〈a,w〉)1+j
Itsf(w) dν(w)

=
1
Cst

(1− |z|2)u
∫
B

(1− |w|2)s

(1− 〈z, w〉)N+1+s+u

wm (1− 〈z, w〉)j

(1− 〈a,w〉)1+j
Itsf(w) dν(w)

The second fraction is bounded for all z, w ∈ B for fixed a ∈ B. Hence

|Ius−j(Tjf)(z)| ≤ C(1− |z|2)u
∫
B

(1− |w|2)s

|1− 〈z, w〉|N+1+s+u
|Itsf(w)| dν(w)

= T (Itsf)(z),

where T is an operator of type V us and is bounded on Lp(νq), which contains
Itsf , if and only if (4) and (6) hold with Reu in place of τ by Theorem 2.4
(a). Thus Tj is bounded on Bpq . Therefore aGm is a bounded operator on Bpq
since it is a finite sum of the Tj . �

7. Duality

It is well-known that (BSVv
p)
∗ = BSVv

p′ , which is equivalent to (Bpq )∗ = Bp
′

q .
Here we derive this relationship from Theorem 1.2 and give a whole family
of pairings that realize it. Some of these pairings have already been used
in Section 5 in finding P ∗s . Our results give some new pairings also for the
classical duality (Apq)

∗ = Ap
′

q of weighted Bergman spaces.

Theorem 7.1. Let q ≤ −1 and 1 ≤ p <∞. The dual space (Bpq )∗ can be
identified with Bp

′

q under the pairing q[·, ·]−q0 . In particular, the Bloch space B
is the dual space of all B1

q . Explicitly, every g ∈ Bp′q induces a bounded linear
functional Mg on Bpq via

(19) Mg(f) =
∫
B

I−q0 f I−q0 g dνq,

and every bounded linear functional M on Bpq is of the form Mg for a unique
g ∈ Bp′q .
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Proof. First let g ∈ Bp′q . Apply Hölder’s inequality to the right side of (19)
with p and p′ to obtain |Mg(f)| ≤ ‖f‖Bpq ‖g‖Bp′q for all f ∈ Bpq . This gives

that Bp
′

q ⊂ (Bpq )∗ and ‖Mg‖ ≤ ‖g‖Bp′q .

Next let M be a bounded linear functional on Bpq . By (4), I−q0 imbeds
Bpq in Lp(νq). Let Q be the restriction of P0 to I−q0 (Bpq ). Then M ◦ Q is a
bounded linear functional on I−q0 (Bpq ) by Theorem 1.2. By the Hahn-Banach
theorem, M ◦ Q extends to a bounded linear functional L on Lp(νq) with
‖L‖ = ‖M ◦Q‖. By the Riesz representation theorem, there exists a unique ϕ
in Lp

′
(νq) such that L(h) =

∫
B
hϕdνq for all h ∈ Lp(νq) and ‖L‖ = ‖ϕ‖

Bp
′
q

.

Taking h = I−q0 f = F for f ∈ Bpq gives M(f) =
∫
B
I−q0 f ϕ dνq. We can replace

f by CP0(I−q0 f) = CP0F by Theorem 1.2. Put g = CP0ϕ. Then g is unique
and clearly g ∈ Bp′q . Now we have

M(f) = C

∫
B

I−q0 (P0F )ϕdνq = C

∫
B

ϕ(z)
∫
B

F (w)
(1− 〈z, w〉)N+1−q dν(w) dν(z)

= C

∫
B

F (w) (1− |w|2)−q
∫
B

ϕ(z)
(1− 〈z, w〉)N+1−q dν(z) dνq(w)

= C

∫
B

F V −q0 ϕdνq = C

∫
B

F I−q0 (P0ϕ) dνq =
∫
B

I−q0 f I−q0 g dνq

by (13), (17), and the Fubini theorem. The norms satisfy

‖g‖
Bp
′
q
≤ C‖P0‖ ‖ϕ‖Lp′ (νq) = C‖P0‖ ‖L‖

≤ C‖P0‖ ‖M‖ ‖Q‖ ≤ C‖P0‖2 ‖M‖.
So the norms of g and M need not be equal; in other words, the identification
of dual spaces may not be isometric. �

We similarly have the following duality whose proof is omitted.

Theorem 7.2. Let q ≤ −1. The dual space B0
∗ of the little Bloch space

can be identified with each of B1
q under the pairing q[·, ·]−q0 .

The cases q = −(N + 1) of Theorems 7.1 and 7.2 are with respect to the
invariant measure and given in [Z3, Theorems 17 and 18]. The corresponding
identifications for q > −1 concern the weighted Bergman spaces and can be
found essentially in [HKZ, Theorem 1.16, Theorem 1.21, p. 23].

Remark 7.3. Retracing the proofs of Theorems 7.1 and 7.2, we see that
the stated dualities are realized under each of the pairings

(20) q[f, g]t,−q+ss,q+t =
∫
B

Itsf I
−q+s
q+t g dνq,

now for all q, where s, t satisfy (6) and (4).
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8. Complex interpolation

Another application of Theorem 1.2 is that we can apply complex interpo-
lation between Bp0

q and Bp1
q . These are compatible spaces, because they are

contained in A1
q if q > −1 and in A1 if q ≤ −1, as seen in [Kap, (2)]. So for

q ≤ −1, for example, we have Bp0
q ∩Bp1

q ⊂ Bpq ⊂ Bp0
q ∪Bp1

q ⊂ Bp0
q +Bp1

q ⊂ A1,
and the inclusions are dense since polynomials are dense in all Bpq , see [BB,
Lemma 5.2]. For relevant definitions and notation such as [·, ·]θ, ‖ · ‖θ, F , or
‖ · ‖F ; see [Z2, §2.2]. The notation [X,Y ]θ here denotes the complex interpo-
lation space between the Banach spaces X and Y , and must not be confused
with the inner products in (16).

Theorem 8.1. Suppose 1 ≤ p0 < p < p1 ≤ ∞ with 1/p = (1−θ)/p0+θ/p1

for some θ ∈ (0, 1). Then [Bp0
q , B

p1
q ]θ = Bpq .

Proof. Given f ∈ Bpq , we pick positive s, t satisfying (6) and (4) with p0 (the
smallest), and set ϕ = Itsf ∈ Lp(νq). We know by Theorem 1.2 that Psϕ = Cf

and ‖ϕ‖Lp(νq) = C ‖f‖Bpq . For ζ in the strip S = { ζ ∈ C : 0 ≤ Re ζ ≤ 1 }
and z ∈ B we define

Φζ(z) =
ϕ(z)
|ϕ(z)|

∣∣ϕ(z)
∣∣p( 1−ζ

p0
+
ζ
p1

)
and Fζ = PsΦζ as in the proof of [Z2, Theorem 5.3.8], which takes care of the
case q = −(N + 1). Both Φ and F are continuous and bounded for ζ ∈ S,
holomorphic for ζ ∈ S, Φθ = ϕ, and Fθ = f . On the left boundary of S,
|Φiy(z)| = |ϕ(z)|p/p0 , ‖Φiy‖p0

Lp0 (νq)
= ‖ϕ‖pLp(νq)

, and ItsFiy(z) = MΦiy(z),
where M is an operator of type V ts by (17) and bounded on Lp0(νq). Thus
‖Fiy‖Bp0

q
≤ ‖M‖ ‖ϕ‖p/p0

Lp(νq)
for all y ∈ R. Similarly, on the right boundary of

S, ‖F1+iy‖Bp1
q
≤ ‖M‖ ‖ϕ‖p/p1

Lp(νq)
for all y ∈ R. Thus ‖f‖θ ≤ ‖F‖F ≤ C ‖f‖Bpq

and f ∈ [Bp0
q , B

p1
q ]θ.

Conversely let f ∈ [Bp0
q , B

p1
q ]θ. There is a function Fζ such that Fiy ∈ Bp0

q ,
F1+iy ∈ Bp1

q , and Fθ = f . Put Φζ = ItsFζ . But then Φiy ∈ Lp0(νq) and
Φ1+iy ∈ Lp1(νq). Applying [Z2, Theorem 2.2.6] yields Φθ ∈ Lp(νq). Finally
Theorem 1.2 gives PsΦθ = Ps(ItsFθ) = CFθ = Cf ∈ Bpq . �

Note that the interpolating space between Bp0
q and Bp1

q is not the same as
the interpolating space between BSVv

p0
and BSVv

p1
.

Let Aut(B) be the group of all automorphisms of B, that is, one-to-one
holomorphic maps of B onto B. We recall that Aut(B) acts transitively on
B, and for each ψ ∈ Aut(B), there is a unique unitary transformation U of
C
N such that ψ = U ◦ φa, where a = ψ−1(0) and φa is an involutive Möbius

transformation, as explained in detail in [R, §2.2].
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The measures νq have certain invariance properties. For ψ ∈ Aut(B), define
the operators

(Zqψf)(z) = f(ψ(z)) |Jψ(z)|2
(

1+
q

N+1

)
,

where Jψ is the complex Jacobian of ψ. Then

(21)
∫
B

(Zqψf) dνq =
∫
B

f dνq

for f ∈ L1(νq). This is stated in [BB, (3.5)] for q > −1, but it holds for all q.
It reduces to the well-known invariance under compositions with members of
Aut(B) (Möbius-invariance) of ν−(N+1). Further, it is shown in [BB, Theorem
3.3] using (21) that the Bergman spaces Apq for 0 < p ≤ ∞ and q > −1 are
invariant under each of the isometries

Up,qψ f(z) = f(ψ(z))
(
Jψ(z)

) 2
p

(
1+

q
N+1

)
(ψ ∈ Aut(B)).

In our final theorem we apply interpolation methods to extend this result to
certain other Besov spaces.

Theorem 8.2. Suppose 2 ≤ p ≤ ∞, −(N+1) ≤ q ≤ −1, and ψ ∈ Aut(B).
Then Up,qψ is a bounded linear transformation on Bpq .

Proof. We know that U2,q
ψ is a unitary transformation for q > −(N + 1)

on B2
q by [BB, Theorem 1.10]. This holds also for q = −(N + 1) since it is

equivalent to the Möbius invariance of the Dirichlet space D. We also know
that U∞,qψ maps B onto itself isometrically, which is actually the Möbius
invariance. To interpolate between these two ends, for ζ ∈ S, we let

Tζf(z) = f(ψ(z))
(
Jψ(z)

)(1+
q

N+1

)
(1−ζ)

and 1/p = (1 − θ)/2. Then Tθf = Up,qψ f . Let ω(z) =
(
arg(Jψ(z))

)1+
q

N+1 .
The Jacobian Jψ(z), being the determinant of a linear map on CN , the Ja-
cobian matrix, has bounded argument as z varies in B. So |ω(z)| ≤ C for all
z ∈ B. Then ‖Tiyf‖B2

q
≤ eCy ‖f‖B2

q
and ‖T1+iyf‖B ≤ eCy ‖f‖B for all real y.

Now we proceed as in the proof of [Z2, Theorem 2.2.4]. Given f ∈ Bpq , there
is a function F ∈ F such that Fθ = f and ‖F‖F ≤ ‖f‖Bpq +ε by Theorem 8.1.
Put G(ζ) = eiCζ TζFζ so that |G(θ)| = |Tθf |. On the boundary of S, we have
‖G(iy)‖B2

q
= e−Cy ‖TiyFiy‖B2

q
≤ ‖Fiy‖B2

q
and ‖G(1 + iy)‖B ≤ ‖F1+iy‖B for

all y ∈ R by the above remark. This shows that ‖G‖F = ‖F‖F = ‖f‖Bpq + ε.
Since ε is arbitrary, ‖Up,qψ f‖Bpq = ‖Tθf‖Bpq = ‖G(θ)‖θ ≤ ‖G‖F = ‖f‖Bpq by
Theorem 8.1. It follows that ‖Up,qψ ‖ ≤ 1. �

So, in particular, if N = 1 and ψ ∈ Aut(B), then the map f 7→ (f ◦ψ)
√
Jψ

is unitary on H2 = A.
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Appendix

Proof of Theorem 2.4 (b). For notational simplicity, without loss of gen-
erality, we take a, b ∈ R. We apply [BB, Corollary 3.8 (iii)] with p2 = 1,
q2 = b+ 1, p1 = p, and q1 = p(N + 1 + b)−N to the holomorphic function

w 7→ f(w)
(1− 〈w, z〉)N+1+a+b

.

The first condition on b is a result of the requirement q1 > 0. The requirement
q2 > 0, that is, b > −1, is implied by this. (Actually, [BB] considers the case
q = 0 too, but with a different kind of measure. Also note that the variable
q of [BB] corresponds to q − 1 in our notation.) This lemma is valid for
0 < p1 ≤ p2, which is equivalent to 0 < p ≤ 1 as we assumed. We obtain

|V ab f(z)|p ≤ C (1− |z|2)pa
∫
B

(1− |w|2)p(N+1+b)−(N+1)

|1− 〈z, w〉|p(N+1+a+b)
|f(w)|p dν(w).

Then ‖V ab f(z)‖pLp(νc)
is

=
∫
B

|V ab f(z)|p (1− |z|2)c dν(z)

≤ C
∫
B

(1− |z|2)c+pa
∫
B

(1− |w|2)(p−1)(N+1)+pb

|1− 〈z, w〉|p(N+1+a+b)
|f(w)|p dν(w) dν(z)

= C

∫
B

|f(w)|p (1− |w|2)(p−1)(N+1)+pb

∫
B

(1− |z|2)c+pa dν(z)
|1− 〈z, w〉|p(N+1+a+b)

dν(w),

where we used Fubini’s theorem. The condition on a amounts to c+pa > −1,
and the second condition on b to (p− 1)(N + 1) + pb− c > 0, and when these
conditions hold, [R, Proposition 1.4.10] gives us

(1− |w|2)(p−1)(N+1)+pb

∫
B

(1− |z|2)c+pa

|1− 〈z, w〉|p(N+1+a+b)
dν(z) ≤ C (1− |w|2)c,

which in turn yields that ‖V ab f(z)‖pLp(νc)
≤ C ‖f(z)‖pLp(νc)

. �

Proof of Theorem 3.4. We show the details only for the case when s, s+ t,
r, and r+u are real and exceed −(N+1); the other cases are similar. Following
[BB, p. 41], for b > −1, we consider

h(λ) =
∞∑
k=0

(N + 1 + r + u)k
(N + 1 + r)k

(N + 1 + s)k
(N + 1 + s+ t)k

(b+ 1)N+k

N ! k!
λk,

which belongs to H(D). Computing with f(z) = zα and Proposition 2.1, we
see that

Du
r f(z) =

∫
B

Dt
sf(w)h(〈z, w〉) (1− |w|2)b dν(w)
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for f ∈ H(B) by virtue of Theorem 3.2. By (8),

h(λ) ∼
∞∑
k=0

(N + 1 + b)k
k! (k + 1)t−u

λk = gN+1+b,t−u(λ),

where gx,y is defined in [BB, §0.5]. Then by the assumption on b and [BB,
Corollary 2.4 (a)],

h(λ) =
h1(λ)

(1− λ)N+1+u−t+b

for a holomorphic h1 in the Lipschitz class ΛN+1+u−t+b on D. This finally
implies, since Arg(1− λ) is bounded, that

|h(λ)| ≤ C

|1− λ|N+1+u−t+b

as in the proof of [BB, Lemma 5.6]. The proof is now complete. �
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