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EXTENSIONS OF HIGGS BUNDLES

STEVEN B. BRADLOW AND TOMÁS L. GÓMEZ

Abstract. We prove a Hitchin-Kobayashi correspondence for exten-

sions of Higgs bundles. The results generalize known results for exten-
sions of holomorphic bundles. Using Simpson’s methods, we construct
moduli spaces of stable objects. In an appendix we construct Bott-

Chern forms for Higgs bundles.

1. Introduction

The underlying principle at work in this paper is that, when approached
in the right way, results about holomorphic bundles can be made applicable
to Higgs bundles.

The type of results we have in mind fall under the general heading of
the Hitchin-Kobayashi Correspondence, i.e., they concern notions of stability,
construction of moduli spaces, and the relation of these to solutions of gauge
theoretic equations. Originally established for holomorphic bundles, results
of this sort have been extended to Higgs bundles and also to a host of so-
called ‘augmented holomorphic bundles’, i.e., holomorphic bundles with some
kind of prescribed additional structure (see [BDGW] for a survey). Indeed a
Higgs bundle can be treated as an augmented holomorphic bundle in which
the augmentation is the Higgs field. However this is not always the best point
of view—and is not the one we have in mind. The better approach is the one
developed by Simpson in [S1], [S2] and [S3].

In Simpson’s approach, instead of treating the Higgs structure as an aug-
mentation, it is encoded in a more fundamental way. In fact there are two
versions of this approach, one differential geometric and one algebraic. In
the first (described in Section 4), the extra structure on a Higgs bundle is
encoded as a modification of the partial differential operator which defines
the holomorphic structure on the underlying complex bundle. From the al-
gebraic point of view (cf. Section 7), locally free coherent analytic sheaves
on a variety X are replaced by sheaves of pure dimension on T ∗X, and the
Higgs structure is encoded in the OT∗X -module structure. Having made these
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adjustments, a proof designed for holomorphic bundles or coherent analytic
sheaves re-emerges as a proof for Higgs bundles or Higgs sheaves!

In this paper we apply these principles to extensions of holomorphic bun-
dles. A Hitchin-Kobayashi correspondence for such extensions was investi-
gated in [BGP] and [DUW]; natural gauge-theoretic conditions for special
metrics, and a notion of stability were formulated, and the correspondence
between them established. In [DUW], GIT methods were used to construct
the moduli spaces. The main results in this paper thus show how, after the
appropriate modifications, these ideas can be carried over to Higgs bundles.
We set up and prove the Hitchin-Kobayashi correspondence for extensions of
Higgs bundles (Theorems 5.1 and 5.13), and we give (in Section 7) a GIT
construction for the associated moduli spaces.

We also use the gauge-theoretic equations to deduce Bogomolov-type in-
equalities on the Chern classes of stable Higgs extensions. Our results (in
Section 6) generalize the corresponding results described in [DUW] for exten-
sions of holomorphic bundles, with the proofs being one more illustration of
how results for holomorphic bundles can be recast as results for Higgs bundles.
Going one step further than in [DUW], we describe in detail the implications
of attaining equality in the Bogomolov inequalities.

Finally, in the Appendix, we extend to Higgs bundles the construction of
Bott-Chern forms. These forms play an important role in the proof of the
Hitchin-Kobayashi correspondence. In fact our proof uses only two special
cases and all the requisite results can be extracted from the literature. The
available treatments are however all somewhat ad hoc. We have thus under-
taken a more systematic and general discussion, but have confined it to an
Appendix. Our results show how the original constructions of Bott and Chern
for holomorphic bundles go over in their entirety to the case of Higgs bundles.
This can be viewed as yet another illustration of the main underlying principle
of this paper.
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part by The National Science Foundation under Grant DMS-9703869. The
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2. The objects

Let X be a closed Kähler manifold of dimension d and with Kähler form
ω. A Higgs sheaf (cf. [S1], [S2], [S3], [S4]) on X is a pair (E ,Θ), where E is
a coherent sheaf on X and Θ is a morphism Θ : E −→ E ⊗ Ω1

X (where Ω1
X
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is the sheaf of holomorphic sections of the cotangent bundle T ∗X) such that
Θ ∧Θ = 0. If E is locally free, Θ can be thought of as a holomorphic section
of End(E) ⊗ Ω1

X . A morphism of Higgs sheaves f : (E ,Θ) −→ (F ,Ψ) is a
morphism of sheaves f : E −→ F such that the following diagram commutes:

(2.1)

E Θ−−−−→ E ⊗ Ω1
X

f

y f⊗id

y
F Ψ−−−−→ F ⊗ Ω1

X

Since the category of Higgs sheaves is abelian, the notion of exact sequence
makes sense.

Definition 2.1. An extension of Higgs sheaves (or Higgs extension) is a
short exact sequence

(2.2) 0 −−−−→ (E1,Θ1) i−−−−→ (E ,Θ)
q−−−−→ (E2,Θ2) −−−−→ 0 .

A morphism between extensions of Higgs sheaves is a commutative diagram

(2.3)

0 −−−−→ (E ′1,Θ′1) −−−−→ (E ′,Θ′) −−−−→ (E ′2,Θ′2) −−−−→ 0yf1

yf yf2

0 −−−−→ (E1,Θ1) −−−−→ (E ,Θ) −−−−→ (E2,Θ2) −−−−→ 0

It follows that a morphism of Higgs extensions is an isomorphism if and
only if the three morphisms f1, f and f2 are isomorphisms of Higgs bundles.

3. Stability

The notions of stability for holomorphic bundles adapt straightforwardly to
define both slope- and Gieseker stability for Higgs bundles (cf. [S1], [S2], [S3],
[S4] and [H]). In [BGP] and [DUW] these notions are defined for extensions
of holomorphic bundles (or more generally, extensions of coherent sheaves).
In this section we combine both of these to define stability for extensions of
Higgs sheaves. As usual, the definition involves a numerical criterion on all
subobjects. We must thus first define subobjects.

Definition 3.1. Consider a morphism of Higgs extensions

(3.1)

0 −−−−→ (E ′1,Θ′1) −−−−→ (E ′,Θ′) −−−−→ (E ′2,Θ′2) −−−−→ 0yf1

yf yf2

0 −−−−→ (E1,Θ1) −−−−→ (E ,Θ)
q−−−−→ (E2,Θ2) −−−−→ 0

If f1, f and f2 are injective, then the extension in the first row is called a
subextension of the extension in the second row. A subextension is called
proper if E ′ is a proper subsheaf of E .
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Remark 3.2. Note that giving a proper subextension is the same thing
as giving a proper subsheaf E ′ of E that is invariant under Θ, in the sense that
the image of Θ(E ′) is in E ′ ⊗ Ω1

X ⊂ E ⊗ Ω1
X . Indeed, if E ′ is invariant under

Θ, it defines a Higgs subbundle (E ′,Θ′), and we can recover (E ′2,Θ′2) as the
image of E ′ under q, and (E ′1,Θ′1) is recovered as the kernel.

We can now define the notion of slope (or Mumford) stability.

Definition 3.3 (Slope stability). Fix α < 0. Given a Higgs extension

(3.2) 0 −→ (E1,Θ1) −→ (E ,Θ) −→ (E2,Θ2) −→ 0,

define its α-slope as

(3.3) µα(E) = µ(E) + α
rk(E2)
rk(E)

,

We say that a Higgs extension is α-slope stable (resp. semistable), if for all
proper subextensions, we have

(3.4) µα(E ′) < µα(E) (resp. ≤).

Remarks 3.4.

(1) While the definition of stability seems to make sense for all real values
of α, there are both algebraic and analytic motivations for insisting that α be
negative. The algebraic explanation has its roots in the relation between the
above notion of α-stability and stability in the sense of geometric invariant
theory (GIT). As discussed in Section 7, the negativity of α is required to
guarantee the ampleness of a line bundle used in the GIT construction (cf.
the proof of Theorem 7.4). From the analytic point of view, the sign of α is
required in order to ensure the convexity of the functional defined in Definition
5.2, without which the existence and uniqueness results for solutions to the α-
Higgs-Hermitian-Einstein equations (4.21) break down. The relation between
the sign of α and the convexity of the functional is evident in equation (5.24)
in Proposition 5.3.

(2) In addition to having zero as an upper bound, the range for α is also
bounded below. Indeed, it is an immediate consequence of the definition that
if (E ,Θ) is α-stable then µα(E1) < µα(E), and hence α > µ(E1)− µ(E2). The
allowed range for the parameter α is thus

(3.5) µ(E1)− µ(E2) < α < 0 .

In Section 7, where we construct moduli spaces, we will need a notion of
Gieseker (semi-)stability for Higgs extensions.

Definition 3.5 (Gieseker stability). Fix α < 0. Let P (E ,m) denote the
Hilbert polynomial of E . A Higgs extension is called α-Gieseker stable (resp.
semistable) if all proper subextensions E ′ satisfy:
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(i) µα(E ′) ≤ µα(E) .
(ii) If equality holds in (i), then

(3.6)
P (E ′,m)

rk(E ′)
≤ P (E ,m)

rk(E)
for m� 0.

(iii) If equality holds in (i) and (ii), then

(3.7)
P (E ′2,m)

rk(E ′2)
>
P (E2,m)

rk(E2)
(resp. ≥) for m� 0.

As usual, we have the following implications:

α-slope stable =⇒ α-Gieseker stable
=⇒ α-Gieseker semistable =⇒ α-slope semistable.

4. Differential geometric description and metric equations

All the essential differential geometric machinery for Higgs bundles can be
found in [S3], [S4] and [H]. We thus give only a brief summary, emphasizing
the aspects needed later in this paper. Denoting the underlying smooth bundle
of a holomorphic bundle E by E, we can describe the holomorphic structure
on E by an integrable partial connection, i.e., by a C-linear map

(4.1) ∂E : Ω0(E) −→ Ω0,1(E)

which satisfies the ∂-Leibniz formula and also the integrability condition

(4.2) ∂E ◦ ∂E = ∂E
2

= 0.

A Higgs bundle (E ,Θ) can thus be specified by a triple (E, ∂E ,Θ), where
• E is a smooth complex bundle on X,
• ∂E : Ω0(E) −→ Ω0,1(E) satisfies the ∂-Leibniz formula and ∂E

2
= 0,

• Θ ∈ Ω1,0(End(E)) satisfies ∂E(Θ) = 0 and Θ ∧Θ = 0.
Instead of treating the holomorphic structure (∂E) and the Higgs field (Θ) as
separate, we can combine them to define the Higgs operator

(4.3) ∇′′ = ∂E + Θ : Ω0(E) −→ Ω0,1(E)⊕ Ω1,0(E).

Notice that this differs from the partial connection ∂E in that its image is
not confined to Ω0,1(E). However, like ∂E , it satisfies the ∂-Leibniz formula
and extends in the usual way to an operator on Ωp(E). Conversely, given any
C-linear map ∇′′ : Ω0(E) −→ Ω1(E) which satisfies the ∂-Leibniz formula,
we can separate it into ∇′′ = ∂E + Θ, corresponding to the splitting Ω(E)1 =
Ω0,1(E)⊕ Ω1,0(E). The integrability condition,

(4.4) (∇′′)2 = 0 ,

is clearly equivalent to the defining conditions of a Higgs bundle, viz.

(∂E)2 = 0 , ∂E(Θ) = 0 , Θ ∧Θ = 0 .
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We thus arrive at the following description of a Higgs bundle, formally identi-
cal to the differential geometric description of a holomorphic bundle, but with
the operator ∂E replaced by the operator ∇′′.

Definition 4.1 (Higgs operator description). A Higgs bundle on Xis a
pair (E,∇′′) in which E is a smooth bundle on X and ∇′′ : Ω0(E) −→ Ω1(E)
is a C-linear map which satisfies the ∂-Leibniz formula and the integrability
condition (4.4).

Given a Hermitian bundle metric, H, on E, we can complete ∇′′ so as to
define a connection. To do so, we first define the adjoint Θ∗H ∈ Ω0,1(EndE)
by the condition that for all sections s, t ∈ Ω0(E)

(4.5) (Θs, t)H = (s,Θ∗Ht)H .

If we fix a local frame {ei} for E, and define the Hermitian matrix

(4.6) Hji = (ei, ej)H ,

then Θ∗H is represented by the matrix

(4.7) Θ∗H = H−1Θ
T
H .

More explicitly, if we write

(4.8) Θ =
∑
α

[Θα]ij ⊗ ωα ,

where the ωα are (1, 0)-forms and the matrices [Θα]ij are local descriptions
(with respect to the frame {ei}) of bundle endomorphisms, then

(4.9) Θ∗H =
∑
α

[Θ∗,αH ]ij ⊗ ωα ,

where

(4.10) [Θ∗,αH ]ij = H−1
ip [Θ∗,αH ]

T

pqHqj .

Definition 4.2. Define

(4.11) ∇′H = D′H + Θ∗H ,

where D(∂E ,H) = ∂E +D′H is the Chern connection compatible with ∂E and
H. The Higgs Connection is then defined by

(4.12) ∇ = ∇′′ +∇′H .

The curvature of this connection

(4.13) F∇H = ∇2 ,

is called the Higgs curvature.
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Remark 4.3. The Higgs curvature, like the curvature of any connection,
is a section of Ω2(M,EndE). Unlike in the case of the Chern connection,
F∇H does not have complex form type (1, 1). The Higgs connection and its
curvature do however have the following two crucial features:

• (Kähler identities)

(4.14) i[Λ,∇′′] = (∇′H)∗ , i[Λ,∇′H ] = −(∇′′)∗ ,
where the adjoints are taken with respect to the metric H and

(4.15) Λ : Ωp,q(E) −→ Ωp−1,q−1(E)

is the adjoint of wedging with the Kähler form on X.
• (Bianchi identity)

(4.16) ∇′H(F∇H ) = 0 = ∇′′(F∇H ) .

Notice that these are direct analogs of the properties enjoyed by the Chern
connection, with ∇′′ and ∇′H playing the role here that ∂E and D′H play
for the Chern connection. This formal correspondence, which leads directly
to the underlying principle mentioned in the Introduction, is summarized in
Table 1.

We now consider an extension of Higgs bundles,

0 −→ (E1,Θ1) −→ (E ,Θ) −→ (E2,Θ2) −→ 0,

i.e., a Higgs extension as in Definition 2.1 but in which the sheaves are locally
free. If we denote the underlying smooth bundle of E by E, then we can fix a
smooth splitting E = E1⊕E2, where the summands are the underlying smooth
bundles for E1 and E2. Thus the sub-Higgs bundle in the extension is described
by the triple (E1, ∂1,Θ1), and the quotient Higgs bundle by (E2, ∂2,Θ2). The
Higgs extension is then specified by the triple (E, ∂E ,Θ), where

• the holomorphic structure is of the form

(4.17) ∂E =
(
∂1 β

0 ∂2

)
, β a holomorphic section in Ω0,1(Hom(E2, E1)) ,

• and the Higgs field is of the form

(4.18) Θ =
(

Θ1 b
0 Θ2

)
, b a holomorphic section in Ω1,0(Hom(E2, E1)) .

Here the holomorphic structure on Hom(E2, E1) is that induced by ∂1 and ∂2.
Alternatively, using Higgs operators to describe the Higgs bundles, we have

0 −→ (E1,∇′′1) −→ (E,∇′′) −→ (E2,∇′′2) −→ 0,

where, with respect to a smooth splitting E = E1 ⊕ E2, the Higgs operator
on E is of the form

(4.19) ∇′′ =
(
∇′′1 b+ β
0 ∇′′2

)
.
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Holomorphic bundle Higgs bundle

underlying
smooth bundle E E

differential
operator ∂E : Ω0(E) −→ Ω0,1(E) ∇′′ : Ω0(E) −→ Ω1(E)

integrability
condition ∂E

2
= 0 (∇′′)2 = 0

complementary
operator (D′H)∗ = i[Λ, ∂E ] (∇′H)∗ = i[Λ,∇′′]

connection D = ∂E +D′H ∇ = ∇′′ +∇′H

gauge theory
equations for iΛFDH = 2πµ

V I iΛF∇H = 2πµ
V I

special metrics

(other) Kähler
identity (∂E)∗ = −i[Λ, D′H ] (∇′′)∗ = −i[Λ,∇′H ]

Bianchi curvature
identities ∂E(FDH ) = D′H(FDH ) = 0 ∇′′(F∇H ) = ∇′H(F∇H ) = 0

Table 1

Differential Geometric Dictionary, illustrating the formal similarity resulting
from using the Higgs operator ∇′′ = ∂E + Θ to encode the Higgs structure

in a Higgs bundle
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Suppose now that we have a metric H on the middle bundle in the extension.
It then makes sense to talk of an orthogonal splitting E = E1 ⊕ E2. We can
thus define a bundle automorphism T : E −→ E which, with respect to the
H-orthogonal splitting, is given by the matrix

(4.20) T =
(

n2
n I1 0
0 −n1

n I2

)
.

Here n = rk(E) and ni = rk(Ei). We can now formulate the following gauge
theoretic equations:

Definition 4.4. Fix the real number α. We say the metric H satisfies
the α-Higgs-Hermitian-Einstein (αHHE) condition if

(4.21) iΛF∇H =
2πµ
V

I +
2πα
V

T ,

where F∇H is the Higgs curvature as in (4.13), Λ is as in (4.15), T is the bundle
automorphism defined in (4.20), V =

∫
X
ωd

d! is the volume of X, and µ = µ(E)
is the slope of E .

Remark 4.5.

• In the case Θ = 0, when ∇′′ = ∂E and thus the Higgs curvature
F∇H reduces to FDH (the curvature of the Chern connection compat-
ible with H and ∂E on E), equation (4.21) becomes the deformed
Hermitian-Einstein equation defined in [BGP] on extensions of holo-
morphic bundles.
• If we set α = 0 then we recover the usual Higgs equation (defined by

Simpson and Hitchin) for a metric on the Higgs bundle (E ,Θ).
• Using the fact that (∇′′)2 = 0, we can express ΛF∇H as

(4.22) ΛF∇H = Λ(FDH + [Θ,Θ∗]) ,

where FDH is the curvature of the Chern connection. The α-Higgs-
Hermitian-Einstein equation can thus also be written in the form

(4.23) iΛ(FDH + [Θ,Θ∗]) =
2πµ
V

I +
2πα
V

T .

5. The Hitchin-Kobayashi correspondence

In this section we investigate the relation between the α-stability of a Higgs
extension and the existence of a metric satisfying the αHHE condition. As in
Section 4, we fix an extension of Higgs bundles

(5.1) 0 −→ (E1,Θ1) −→ (E ,Θ) −→ (E2,Θ2) −→ 0.

The underlying smooth bundles are denoted, as usual, by E1, E2, and E.
With Higgs operators defined as in (4.3) we can thus equivalently describe
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the extension as

(5.2) 0 −→ (E1,∇′′1) −→ (E,∇′′) −→ (E2,∇′′2) −→ 0.

The Hitchin-Kobayashi correspondence asserts that α-stability is equivalent
to the existence of an αHHE metric. In Section 5.1 we prove that existence of
an αHHE metric implies α-(poly)stability. The converse is proved in Section
5.2. In both cases we see the advantage of encoding the Higgs structure in
the Higgs operator; having done so, the proofs amount to little more than
using the dictionary provided in Table 1 to adapt the corresponding proofs
for extensions of holomorphic bundles (as in [BGP]).

5.1. The easy direction.

Theorem 5.1. Fix α < 0. Suppose that the Higgs extension (5.1) supports
a metric with respect to which the smooth splitting E = E1⊕E2 is orthogonal,
and satisfying the αHHE condition (4.21). Then either the Higgs extension is
α-stable or it splits as a direct sum of α-stable Higgs extensions, all with the
same α-slope.

Proof. Suppose that the metric H = H1 ⊕ H2 on E satisfies (4.21). Let
∇ = ∇′′ + ∇′H be the Higgs connection determined by H and the Higgs
operator on E, and let F∇H be its curvature (as in Definition 4.2). Let E ′ ⊂ E
be any Higgs subsheaf, with corresponding Higgs subextension

(5.3) 0 −→ (E ′1,Θ′1) −→ (E ′,Θ′) −→ (E ′2,Θ′2) −→ 0.

If E ′ is a saturated subsheaf then it is locally free outside of a codimension two
subset, say Σ, in X. We can thus define a projection π : E|X−Σ −→ E ′|X−Σ.
Since (E ′,Θ′) is a Higgs subsheaf, we can compute the degree of E ′ by the
formula (cf. [S3, Lemma 3.2])

(5.4) 2π deg(E ′) = i

∫
X

Tr(ΛπF∇H )−
∫
X

|∇′′π|2H .

But by (4.21)

(5.5)
iV

2π
ΛF∇H =

(
τ1I1 0

0 τ2I2

)
,

where

τ1 = µ+ α
n2

n
, τ2 = µ− αn1

n
.(5.6)

It follows (precisely as in Proposition 3.8 of [BGP]) that

(5.7)
i

2π

∫
X

Tr(ΛπF∇H ) = n′1τ1 + n′2τ2 ,
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where n′1 = rank(E ′1) and n′2 = rank(E ′2). Notice that the first of the relations
in (5.6) can be written as τ1 = µα(E), and that together they imply α = τ1−τ2.
Combining (5.7) and (5.4) thus leads to

(5.8) µα(E ′) = µα(E)− 1
2π(n′1 + n′2)

∫
X

|∇′′π|2H ,

from which the conclusion follows in the usual way. �

5.2. The hard direction. We now consider the converse of Theorem 5.1.
Keeping the notation of Section 5.1, we show that if a Higgs extension (5.1) is
α-stable, then E admits a metric with respect to which the smooth splitting
E = E1⊕E2 is orthogonal and which satisfies the αHHE equation (4.21), i.e.,
such that

iΛF∇H =
2πµ
V

I +
2πα
V

T .

As in [S3] and [BGP], we can separate the trace and trace-free parts of this
equation. We can always fix det(H) so that

(5.9) iΛ Tr(F∇H ) = n
2πµ
V

.

In fact, since [Θ,Θ∗] = 0 has zero trace, iΛ Tr(F∇H ) is the same for the Higgs
connection as it is for the (metric) Chern connection. The above equation is
thus satisfied if det(H) is the Hermitian-Einstein metric on the determinant
line bundle det(E). Henceforth, we assume that we have fixed a background
metric, K, such that iΛ Tr(FK) = n 2πµ

V . It remains therefore to prove that E
admits a metric satisfying

(5.10) iΛF⊥H =
2πα
V

T ,

where F⊥H = F∇H − 1
n Tr(F∇H )I is the trace-free part of FH .

The proof follows the standard pattern for Hitchin-Kobayashi correspon-
dences. The method we use is essentially that of Simpson, with modifications
as in [BGP] to accommodate the features arising from the extension struc-
ture (i.e., the non-zero right hand side in the equation). We thus give only a
sketch of the proof, in which we fully describe all novel modifications, but do
not repeat the details that can be found in [BGP], [S3] and [Do1]. Let

(5.11) S(K) = {s ∈ Ω0(X,EndE)|s∗K = s , Tr(s) = 0} .
Then any other metric with the same determinant as K can be described by
Kes, with s ∈ S(K). Fix an integer p > 2n, and define

(5.12) Metp2 = {H = Kes |s ∈ Lp2(S(K))} .
We now define a Donaldson functional on Met whose critical points are so-
lutions to (5.10). The original Donaldson functional was defined using Bott-
Chern forms for pairs of metrics, and had Hermitian-Einstein metrics on holo-
morphic bundles as its critical points. The generalization for metrics on Higgs
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bundles is due to Simpson, while the adaptation for extensions of holomor-
phic bundles can be found in [BGP]. Here we must combine both of these
modifications.

Given metrics H and K, we denote the functional defined by Donaldson
by MD(K,H). Its definition in terms of Bott-Chern classes is

(5.13) MD(H,K) =
∫
X

R2(H,K) ∧ ωd−1 ,

where R2 is the Bott-Chern form associated with the polynomial − 1
2 Tr(AB+

BA). Donaldson also gave a more explicit formula which applies for pairs
(H,K) when H = Kes with s ∈ S(K). Simpson’s generalization of MD can be
obtained directly from this formula: one simply replaces the Chern connection
by the Higgs connection. We will denote Simpson’s functional by MS(H,K).
Though it is not needed in this proof, and was not formulated in this way by
Simpson, this modification can be put in a more general framework. In the
Appendix we show how it can be seen as the result of a modification of the
Bott-Chern forms themselves. The functional used in [BGP] for metrics on
E = E1 ⊕ E2 can be defined as

(5.14) Mτ1,τ2(H,K) = MD(H,K)− 4π(τ1 − τ2)
V

∫
X

R1(H1,K1) ∧ ωd ,

where H1 and K1 are the induced metrics on E1 and the Bott-Chern form R1

is given by

(5.15) R1(H,K) = log det(K−1H) = Tr(logK−1H) .

We can combine this with Simpson’s generalization if we replace MD by MS .
We then get the following, which is the appropriate functional for extensions
of Higgs bundles:

Definition 5.2. Let

(5.16) MHiggs
τ1,τ2 (H,K) = MS(H,K)− 4π(τ1 − τ2)

V

∫
X

R1(H1,K1) ∧ ωd ,

or, setting α = τ1 − τ2,

(5.17) MHiggs
α (H,K) = MS(H,K)− 4πα

V

∫
X

R1(H1,K1) ∧ ωd .

If we fix one of the metrics, say K, we can define

(5.18) MHiggs
α (H) = MHiggs

α (H,K).

Following [BGP], we now define m0
α : Met −→ Ω0(X,EndE) by

(5.19) m0
α(H) = ΛF⊥H +

2πiα
V

TH ,
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where, with respect to the H-orthogonal splitting E = E1 ⊕ E2,

(5.20) TH =
(

n2
n I1 0
0 −n1

n I2

)
.

The crucial properties of MHiggs
α and m0

α are described in the next propo-
sition.

Proposition 5.3.

(1) Given any three metrics H,K, J , we have

(5.21) MHiggs
α (H,K) +MHiggs

α (K,J) = MHiggs
α (H,J) .

(2) If H(t) = Hets with s ∈ S(H), then

(5.22)
d

dt
MHiggs
α (H(t)) = 2i

∫
X

Tr
(
sm0

α(H(t))
)
.

(3) Define the operator L on Lp2(S(H)) by

(5.23) L(s) =
d

dt
m0
α(H(t))|t=0 .

If s ∈ S(H) is given by s =
(
s1 u
u∗ s2

)
with respect to the H-ortho-

gonal splitting E = E1 ⊕ E2, and H(t) = Hets, then

2i〈s, L(s)〉H =
d2

dt2
MHiggs
α (H(t))|t=0(5.24)

= ‖ ∇′′(s) ‖2H −
4πα
V
‖ u ‖2H

(4) If s ∈ S(H) and K = Hes, then

(5.25) ∆|s| ≤ 2(|m0
α(H)|H + |m0

α(K)|K) ,

where the norm on |s| can be with respect to either H or K.

Proof. We start by proving items (1) and (2). When α = 0, these results
follow as in §5 of [S3] and [Do2] (or, equivalently, follow from the properties of
Bott-Chern forms, as described in the Appendix). The modification required
when α < 0 is exactly the same as described in the proof of Proposition 3.11
in [BGP].

We now prove (3). The proof is formally identical to that in Proposition
3.11 in [BGP], except that we replace the result about the second variation
of MD with the corresponding result for MS , viz.

(5.26)
d2

dt2
MS(H(t))|t=0 =‖ ∇′′(s) ‖2H .

This result can be found in [S3]. It can also be derived directly from the
properties of Bott-Chern forms, as in Proposition A.16 of the Appendix.
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Finally, we prove (4). When α = 0, this is part (d) of Lemma 3.1 in [S3].
In general we have

(5.27) m0
α(H)−m0

α(K) = (m0
0(H)−m0

0(K)) +
2πiα
V

(TH −TK) .

This changes the computation in Simpson’s proof by the introduction of an
extra term of the form

(5.28)
2πα
V

Tr (es(TH −TK)) .

But Tr(esTH) = Tr(esTK), so the extra term does not affect the result. �

Corollary 5.4. Suppose that α < 0 and (5.1) is an α-stable extension.
Then

(5.29) Ker(L) = 0 ,

where L is the operator defined above on Lp2(S(H)).

Proof. Suppose that L(s) = 0 for some non-zero s ∈ Lp2(S(H)). Then by
(5.24) we have ∇′′(s) = 0 = u, where u ∈ Ω0(X,Hom(E2, E1)) comes from

writing s =
(
s1 u
u∗ s2

)
, with si ∈ Lp2(S(Ki)). Recall that with respect to the

H-orthogonal splitting E = E1 ⊕ E2, the holomorphic structure and Higgs
field on E are given by (4.17) and (4.18). Thus

(5.30) ∇′′ =
(
∇′′1 β + b
0 ∇′′2

)
and we can conclude that ∇′′1(s1) = ∇′′2(s2) = 0. But ∇′′i (si) = 0 is equivalent
to

(5.31) ∂i(si) = 0 and [Θi, si] = 0.

The eigenspaces of s thus split the extension (5.1) into a direct sum of Higgs
extensions. Since Tr(s) = 0 there must be at least two such summands. But
this violates the stability criterion, since the α-slope inequality cannot be
satisfied by both summands. �

Remark 5.5. This same computation shows that for any path H(t) =
Hets with s ∈ S(H), we get

(5.32)
d2

dt2
MHiggs
α (H(t)) > 0 ,

i.e., MHiggs
α is a convex functional.

Next, we fix a positive real number B such that ‖ m0
α(K) ‖pLp≤ B, where

(5.33) ‖ m0
α(K) ‖pLp=

∫
X

|m0
α(K)|pKd vol
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and define

(5.34) Metp2(B) = {H ∈ Metp2 | ‖ m0
α(H) ‖pLp≤ B } .

Lemma 5.6. If the extension (5.1) is α-stable, then there are no extrema
of MHiggs

α on the boundary of this constrained space, and the minima occur at
solutions to the metric equation m0

α(H) = 0.

Proof. The proof is the same as in [B1, Lemma 3.4.2], in which the relation
Ker(L) = 0 is the key. �

We thus look for minima of MHiggs
α (H) on Metp2(B). To show that minima

do occur, we need

Proposition 5.7 ([BGP, 3.14]). Either (5.1) is not α-stable or we can
find positive constants C1 and C2 such that

(5.35) sup |s| < C1M
Higgs
α (Kes) + C2

for all Kes ∈ Metp2(B).

Remark 5.8. This proposition motivates what might be called the
Donaldson-Uhlenbeck-Simpson-Yau (DUSY) Alternative: either one can pro-
duce a minimizing sequence for the functional MHiggs

α —and hence a solution
to the metric equation—or one can use the functional to produce a sequence
which in the limit destabilizes the extension (5.1).

Sketch of proof. The first step is to show that for metrics in the constrained
set Metp2(B), the C0 estimate given above is equivalent to a C1 estimate of the
same type. The proof of this uses (5.25) in Proposition 5.3, but is otherwise
identical to that in [S3] or [B1]. One then supposes that no such C1 estimate
holds. It follows that one may find an unbounded sequence of constants
Ci and metrics Kesi ∈ Metp2(B) such that the estimate is violated. After
normalizing the si, this produces a sequence {ui} ⊂ LP2 (S(K)) such that
‖ ui ‖L1= 1. This has a weakly convergent subsequence in L2

1(S(K)), with
non-trivial limit denoted by u∞. One then shows that the eigenvalues of u∞
are constant almost everywhere. This is done, as in [S3, §5], by making use
of an estimate of the following form:

Lemma 5.9 ([BGP, Lemma 3.13]). Suppose that α < 0 and let H = Kes

with s ∈ Lp2(S(K)). Let s =
(
s1 u
u∗ s2

)
be the block decomposition of s with

respect to the K-orthogonal splitting E = E1 ⊕ E2 . Let Ψ : R×R −→ R be
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the smooth function as in [B1] (or [S3]). Then
1
2
MHiggs
α (H) = i

∫
X

Tr(sΛFK) +
∫
x

(Ψ(s)∇′′s,∇′′s)K −
2πα
V

R1(H1,K1)

≥ i

∫
X

Tr(sΛFK) +
∫
x

(Ψ(s)∇′′s,∇′′s)K −
2πα
V

∫
x

Tr(s1),(5.36)

where the meaning of Ψ(s) is as in [B1] or [S3].

Proof. As in [BGP], the first line follows from the computations in [S3].
The second line uses the convexity properties of the function R1(H(t)1,K1),
and the fact that its first derivative at t = 0 is given by

∫
X

Tr(s1). �

Remark 5.10. The astute reader will notice a minor difference between
the formula (5.36) and the corresponding one given in Lemma 3.13 in [BGP].
The difference involves the placement of factors of 2; the version in the first
line of (3.3.18) in [BGP] is incorrect, but the errors do not affect any of the
results in that paper.

Following the analysis in [S3, Lemma 5.4], this leads to the following result:

Proposition 5.11 ([BGP, 3.15]). Let F : R ×R −→ R be any smooth
positive function which satisfies F(x, y) ≤ 1/(x− y) whenever x > y. Then

i

∫
X

Tr(u∞ΛFK) +
∫
x

(F(u∞)∇′′u∞,∇′′u∞)K(5.37)

− 2πα
V

∫
x

Tr(u∞,1) ≤ 0 ,

where u∞ =
(
u∞,1 ∗
∗ ∗

)
with respect to the K-orthogonal splitting of E.

Since Tr(u∞) = 0, there are at least two distinct eigenvalues. Let λ1 <
λ2, . . . , < λk denote the distinct eigenvalues. Setting ai = λi+1 − λi, one can
thus define projections πi ∈ L2

1(S(K)) such that

(5.38) u∞ = λrI−
k−1∑
i

aiπi.

Lemma 5.12. The projections πi satisfy
(1) πi ∈ L2

1(S(K)),
(2) π2

i = πi,
(3) (1− π1)∇′′(πi) = 0.

Proof. The case α = 0 is proved in [S3] (see Lemma 5.6 and the succeeding
remarks). The presence of the extra term depending on α in (5.37) does not
affect the method of proof. �
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Each πi thus defines a weak Higgs subbundle in the sense of Uhlenbeck and
Yau [UY], as adapted by Simpson [S3] for Higgs bundles, and hence produces
a filtration of E by reflexive Higgs subsheaves

(5.39) E1 ⊂ E2 ⊂ · · · ⊂ Ek = E .

Each Higgs subsheaf Ej determines a Higgs subextension

(5.40) 0 −→ E1,j −→ Ej −→ E2,j −→ 0 .

Now define the numerical quantity

(5.41) Q = λk(rµ(E)− r1τ1 − r2τ2)−
k1∑
i

ai(riµ(Ei)− r1,iτ1 − r2,iτ2) ,

where µ(Ei) is the slope of Ej , and ra,i is the rank of Ea,i. Using Lemma
5.9 and the fact that u∞ = λrI −

∑k−1
i aiπi, one shows (by precisely the

method in [S3]) that Q ≤ 0. On the other hand, τ1 and τ2 are related by
rµ(E)− r1τ1 − r2τ2 = 0, and if (5.1) is α-stable, then

(5.42) riµ(Ei)− r1,iτ1 − r2,iτ2 < 0

for all i = 1, . . . , k − 1. Thus Q must be strictly positive if (5.1) is α-stable.
We conclude therefore that if (5.1) is α-stable then there must be constants
C1 and C2 such that the estimate (5.35) holds. This completes the proof of
Proposition (5.7). �

We can now prove:

Theorem 5.13. Fix α < 0 and suppose that the Higgs extension (5.1) is
α-stable. Then E admits a unique metric H with respect to which the smooth
splitting E = E1 ⊕ E2 is orthogonal, with det(H) = det(K), and such that

(5.43) iΛF⊥H =
2πα
V

T .

Proof. By Proposition 5.7, there is an estimate of the form in (5.35) and
hence the functional MHiggs

α is bounded below. By Lemma 5.6, a minimizing
sequence produces a solution in Metp2(B) to the equation m0

α(H) = 0. The
smoothness and uniqueness of the solution follows in exactly the same way as
in [Do1], [S3] or [B1]. The smoothness is a result of elliptic regularity, while
the uniqueness is a consequence of the convexity properties of MHiggs

α . �

6. Bogomolov inequality

The existence of a solution to the α-Higgs-Hermitian-Einstein equations
on an α-stable Higgs extension can be used to deduce topological constraints.
The constraints are expressed as inequalities involving the Chern classes of the
underlying bundles. As such, they are direct generalizations of the Bogomolov
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inequalities for stable holomorphic bundles. The notation in this section is as
follows:

• As in Section 5, (E,∇′′) is a Higgs bundle which has the structure of
an extension of Higgs bundles as in (5.2), i.e., which can be written
as

0 −→ (E1,∇′′1) −→ (E,∇′′) −→ (E2,∇′′2) −→ 0 .

• The ranks of the underlying smooth bundles E1, E2 and E are denoted
by n1, n2 and n, respectively.
• The base space is the Kähler manifold (X,ω). The dimension of X is
d, and its volume is V .
• Using the Kähler form ω and the Chern classes c1(E), c2(E), we

define the characteristic numbers

(6.1) C2(E) =
∫
X

c2(E) ∧ ωd−2 , C2
1 (E) =

∫
X

c21(E) ∧ ωd−2.

With this notation, we prove the following results:

Theorem 6.1 (Bogomolov Inequality). Let (E,∇′′) be a Higgs bundle
which has the structure of an extension of Higgs bundles as in (5.1), i.e.,
which can be written as

0 −→ (E1,∇′′1) −→ (E,∇′′) −→ (E2,∇′′2) −→ 0 .

Suppose that (E,∇′′) is α-polystable as an extension of Higgs bundles, for
some α < 0. Then

(6.2) 2C2(E)− n− 1
n

C2
1 (E) +

α2

V

(n1n2

n

) (d− 1)!
d

≥ 0 .

Theorem 6.2. Let (E,∇′′) be as in Theorem 6.1. Suppose that (E,∇′′) is
α-polystable as an extension of Higgs bundles and that equality holds in (6.2),
i.e., its Chern classes satisfy

(6.3) 2C2(E)− n− 1
n

C2
1 (E) +

α2

V

(n1n2

n

) (d− 1)!
d

= 0 .

Then:

(1) With respect to the splitting E = E1 ⊕ E2 we have

(6.4) ∇′′ =
(
∇′′1 0
0 ∇′′2

)
, i.e., ∂E =

(
∂1 0
0 ∂2

)
and Θ =

(
Θ1 0
0 Θ2

)
.

(2) There is a metric H = H1 ⊕H2 on E such that for i = 1, 2 we have

(6.5) F⊥Hi = 0 ,
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where F⊥Hi is the trace-free part of the Higgs connection determined by
(∂i,Θi,Hi) on Ei, and furthermore,

(6.6)
Tr(F∇1

H1
)

n1
−

Tr(F∇2
H2

)
n2

=
2πiα
V

ω

d

(3) The parameter α has the value

(6.7) α = µ1 − µ2 ,

where

(6.8) µi =

∫
X

Λc1(Ei)ωd/d!
ni

.

Conversely, if conditions (1)–(3) apply, then the Higgs extension is α-
polystable and its Chern classes satisfy the equality (6.3).

Remark 6.3. Conditions (1) and (2) in Theorem 6.2 together imply that
(E,∇′′) splits as a direct sum of polystable Higgs bundles.

We require the following key technical result:

Proposition 6.4 ([S3, §3]). If F∇H is the curvature of the Higgs connec-
tion determined by metric H on (E,∇′′), then

(6.9) Tr(F∇H ∧ F∇H ∧ ωd−2) =
∣∣∣∣F∇H − 1

d
(ΛF∇H )ω

∣∣∣∣2 ωd

d(d− 1)
− |ΛF∇H |2

ωd

d2
,

where d = dim(X). Similarly, if F⊥ = F∇H − 1
d Tr(F∇H )I, then

(6.10) (F⊥H ∧ F⊥H ∧ ωd−2) =
∣∣∣∣F⊥H − 1

n
(ΛF⊥H )ω

∣∣∣∣2 ωd

d(d− 1)
− |ΛF⊥H |2

ωd

d2
.

Proof. This uses the following features of Higgs connections:

(6.11) (F∇H )1,1 + ((F∇H )1,1)∗H = 0,

�(6.12) (F∇H )2,0 = ((F∇H )0,2)∗H .

Proof of Theorem 6.1. If (E,∇′′) is α-polystable, then (by Theorem 5.13)
it has a metric satisfying the αHHE equation (4.21). Taking the trace-free
part (given in (5.10)), we get

||ΛF⊥H ||2 =
∫
X

|ΛF⊥H |2
ωd

d!
(6.13)

=
4π2

V 2

∫
X

|αT|2 ωd

d!

=
4π2

V
α2n1n2

n
2π .
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Using the Chern-Weil formulae for ch2(E) and c1(E), plus the identity ch2 =
1
2c

2
1 − c2, we get

1
4π2

∫
X

Tr(F⊥H ∧ F⊥H ∧ ωd−2)

=
1

4π2

∫
X

(Tr(F∇H ∧ F∇H )− 1
n

Tr(F∇H ) ∧ Tr(F∇H )) ∧ ωd−2(6.14)

=
∫
X

(−2 ch2(E) +
1
n
c21(E)) ∧ ωd−2

=
∫
X

(2c2(E)− n− 1
n

c21(E)) ∧ ωd−2 .

Equation (6.10) thus yields

2C2(E)− n− 1
n

C2
1 (E) +

α2

V

(n1n2

n

) (d− 1)!
d

(6.15)

=
(d− 2)!

4π2
||F⊥H −

1
d

(ΛF⊥H )ω||2 ,

where C2(E) and C2
1 (E) are as in (6.1). Theorem 6.1 follows directly from

this. �

Proof of Theorem 6.2. Suppose that (E,∇′′) is α-polystable as an exten-
sion of Higgs bundles, and that (6.3) holds. As in the previous proof, we
may thus assume that E supports a metric H = H1 ⊕H2 which satisfies the
trace-free αHHE equation (5.10). It then follows from (6.15) that the trace
free part of the curvature, i.e., F⊥H , satisfies

(6.16) F⊥H = −2πiα
V

T
ω

d
.

Applying the Bianchi identity, viz. ∇(F∇H ) = 0, and the fact that (cf. Lemma
A.11) dTr(F∇H ) = Tr∇(F∇H ), we get

(6.17) ∇(T ) = 0 .

It follows from this that the subbundles corresponding to eigenvalues n2/n and
−n1/n of T both give rise to Higgs subbundles of (E,∇′′). Alternatively, one
can compute the covariant derivative ∇(T ) and observe directly from (6.17)
that ∇′′ (and hence ∂E and Θ) must be as in (6.4). Either way, we have

(6.18) F∇H =
(
F∇1
H1

0
0 F∇2

H2

)
and hence

(6.19) F⊥H =
(
F⊥H1

0
0 F⊥H2

)
+

(
Tr(F∇1

H1
)

n1
−

Tr(F∇2
H2

)
n2

)
T ,
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where

F⊥H1
= F∇1

H1
−

Tr(F∇1
H1

)
n1

I1,

and similarly for F⊥H2
. Combining this with (6.16), we see that

(6.20)
(
F⊥H1

0
0 F⊥H2

)
=

(
Tr(F∇2

H2
)

n2
−

Tr(F∇1
H1

)
n1

− 2πiα
V

ω

d

)
T ,

i.e.,

F⊥H1
=

n2

n

(
Tr(F∇2

H2
)

n2
−

Tr(F∇1
H1

)
n1

− 2πiα
V

ω

d

)
I1 ,(6.21)

F⊥H2
= −n1

n

(
Tr(F∇2

H2
)

n2
−

Tr(F∇1
H1

)
n1

− 2πiα
V

ω

d

)
I2 .

Taking the trace of either of these equations yields (6.6). Contracting with
ω and integrating over X then yields (6.7). Conversely, suppose that (1)–(3)
apply. Then (6.19) implies

(6.22) F⊥H = −2πiα
V

T
ω

d
= ΛF⊥H

ω

d
,

and hence that the right hand side of (6.15) vanishes. Thus, withH = H1⊕H2,
we see that iΛF∇H = 2πµ

V I + 2πα
V T, as required. It remains to verify (6.3). We

write, for i = 1, 2,

(6.23) c1(Ei) = δiω + βi ,

(6.24) c2(Ei) = aiω
2 + bi ∧ ω + ci,

where δi, ai ∈ R and βi, bi ∈ Ω(1,1)(X,R) are primitive forms, and ci ∧
ω(d−2) = 0. The condition in (6.6) then becomes

(6.25)
β1

n1
− β2

n2
= 0 .

Using the identities

(6.26) c2(E1 ⊕ E2) = c2(E1) + c2(E2) + c1(E1) ∧ c1(E2) ,

and

(6.27) c1(E1 ⊕ E2) = c1(E1) + c1(E2) ,
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we thus compute

(2c2(E)− (n− 1)
n

c21(E)) ∧ ωd−2

= (2(a1 + a2 + δ1δ2)− n− 1
n

(δ1 + δ2)2)ωd(6.28)

+ 2(β1 ∧ β2 −
n− 1
n

(β1 + β2)2) ∧ ωd−2

=
∑
i=1,2

(2c2(Ei)−
ni − 1
ni

c21(Ei)) ∧ ωd−2

− n1n2

n

(
δ1
n1
− δ2
n2

)2

∧ ωd − n1n2

n

(
β1

n1
− β2

n2

)2

∧ ωd−2.

But F⊥H1
= F⊥H2

= 0. Thus by (6.14) applied to E1 and E2 we have

(6.29) 2C2(Ei)−
ni − 1
ni

C2
1 (Ei) = 0 .

Together with (6.25), equation (6.28) thus reduces to

2C2(E)− (n− 1)
n

C2
1 (E) = −n1n2

n

(
δ1
n1
− δ2
n2

)2 ∫
X

ωd(6.30)

= −α
2

V

(n1n2

n

) (d− 1)!
2πd

,

where in the last line we have used α = µ1 − µ2 and
∫
X
ωd = V d ! . �

Remarks 6.5.

(1) The condition (6.16) makes sense for connections on complex bundles
over symplectic manifolds, where ω is then the symplectic form. It is thus
tempting to view this as the definition a symplectic version of a stable Higgs
extension, in much the same way that flat bundles provide the real versions of a
stable Higgs bundles (under suitable restrictions on Chern classes). However,
as the above proof shows, the condition forces the Higgs extension to be a
direct sum of polystable Higgs bundles, so no new phenomena emerge. It is
also worth noting that, by (6.7), the equation F⊥H = − 2πiα

V Tω can apply only
if α is at the extreme lower bound of its range.

(2) In the case where Θ = 0, or equivalently ∇′′ = ∂E , Theorem 6.1 yields a
Bogomolov inequality for α-stable extensions. This is equivalent to Theorem
3.11 in [DUW]. Taking ∇′′ = ∂E in Theorem 6.2 similarly yields a result
for extensions of bundles. It provides the necessary and sufficient conditions
under which equality can be attained in the Bogomolov inequality for an
α-stable extension. As far as we are aware, this result has not previously
appeared anywhere.
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7. Algebro-geometric description and GIT construction

We now return to the algebraic setting and consider Higgs sheaves and
extensions of Higgs sheaves as defined in Section 2. In [DUW], Daskalopoulos,
Uhlenbeck and Wentworth have constructed the moduli space of extensions of
torsion free sheaves, following ideas of Simpson. In this section we will show
how basically the same construction also gives the moduli space of extensions
of Higgs sheaves. The main modification required is to use sheaves of pure
dimension, rather than torsion free sheaves.

We will start by recalling Simpson’s identification between Higgs sheaves
on X and sheaves on the cotangent bundle T ∗X. Let Z be the usual pro-
jective completion of the cotangent bundle T ∗X, extending the projection
π : T ∗X −→ X to a projective bundle π : Z −→ X. Let D = Z − T ∗X be
the divisor at infinity. Let OX(1) be an ample line bundle on X, and choose
b such that OZ(1) := π∗OX(b)⊗OZ(D) is an ample line bundle on Z. In [S2]
Simpson shows (cf. Lemma 6.8) that a Higgs sheaf (E ,Θ) on X is the same
thing as a sheaf E on Z such that Supp(E)∩D = ∅. In fact, E = π∗E, and the
homomorphism Θ (with Θ∧Θ = 0) is equivalent to giving the OT∗X -module
structure. This identification is also called the spectral cover construction.
Set S = Supp(E), and consider the projection πS : S −→ X. The fiber over a
point x ∈ X is a length n = rk(E), zero-dimensional subscheme of T ∗xX = Ω1

x.
Hence πS : S −→ X is an n-to-1 cover of X. If X is a curve, then S is the
spectral curve studied in [BNR]. The reason for this name is that if we restrict
the Higgs field Θ to a point x ∈ X, we obtain an endomorphism of the fiber
Ex with values in Ω1

x
∼= C,

Θx : Ex −→ Ex ⊗ Ω1
x,

and hence the eigenvalues of Θx give a set of n points (counted with multi-
plicity) of T ∗xX. This set is precisely the fiber of S over x ∈ X.

This identification between Higgs sheaves (E ,Θ) on X and torsion sheaves
E on T ∗xX is compatible with morphisms, giving an equivalence of categories.
The sheaf E is torsion free if and only if E is of pure dimension d = dim(X)
(i.e., if E is torsion free when restricted to its support and every irreducible
component of its support has dimension d). Since OT∗X(1) = π∗OX(b), the
Hilbert polynomials of E and E = π∗E are related by

P (E,m) = P (E , bm) =: P̃ (E ,m),

and hence E is (semi)stable with respect toOX(1) if and only if E is (semi)stable
with respect toOZ(1) [S2, Cor. 6.9]. These correspondences between the Higgs
sheaf and the sheaf of pure dimension are summarized in Table 2.

Simpson then gives a method to construct the (projective) moduli space
Mpure(Z, P̃ ) of semistable (with respect to OZ(1)) sheaves with pure dimen-
sion on Z and with Hilbert polynomial P̃ . Using the previous identification,
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(E ,Θ) Higgs sheaf on X E sheaf on T ∗X

support X
S ⊂ T ∗X

spectral cover ofX

Higgs structure Θ OT∗X -module structure

sheaf type torsion free of pure dimension dim(X)

ample line bundle OX(1)
OZ(1) :=

π∗OX(b)⊗OZ(D)

Hilbert polynomial P (E , bm) P (E,m)

Gieseker stability w.r.t. OX(1) w.r.t. OZ(1)

Table 2

Algebro-Geometric Dictionary, giving the correspondence between Higgs
sheaves on X and sheaves of pure dimension on T ∗X ⊂ Z

plus the openness of the condition that Supp(E) does not intersect D, one
is thus able to identify MHiggs(X,P ), the moduli space of semistable Higgs
sheaves with Hilbert polynomial P , as an open subset of Mpure(Z, P̃ ).

As in [DUW], instead of considering extensions, it is more convenient to
take the equivalent point of view of considering quotient pairs of Higgs sheaves.

Definition 7.1. A quotient pair of Higgs sheaves is a surjective morphism
of Higgs sheaves

(E ,Θ)
q−−−−→ (F ,Ψ) −−−−→ 0,
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and it will be denoted by q or by (E ,Θ;F ,Ψ). A morphism between quotient
pairs of Higgs sheaves is a commutative diagram

(7.1)

(E ′,Θ′) q′−−−−→ (F ′,Ψ′) −−−−→ 0

f

y g

y
(E ,Θ)

q−−−−→ (F ,Ψ) −−−−→ 0

Remark 7.2. Clearly, isomorphism classes of quotient pairs are the same
thing as isomorphism classes of extensions. Indeed, using the notation of
Section 2, we take (E1,Θ1) = ker q, and (E2,Θ2) = (F ,Ψ). We say that
a quotient pair is stable if the corresponding Higgs extension is stable. A
quotient pair (E ,Θ;F ,Ψ) is called torsion free if E is a torsion free sheaf (note
that F might have torsion).

Proposition 7.3 (Jordan-Hölder filtration). If (E ,Θ;F ,Ψ) is an
α-Gieseker semistable torsion free quotient pair, then there exists a filtration

(0, 0) = (E0,Θ0) ⊂ (E1,Θ1) ⊂ · · · ⊂ (El,Θl) = (E ,Θ)y y y y
(0, 0) = (F0,Ψ0) ⊂ (F1,Ψ1) ⊂ · · · ⊂ (Fl,Ψl) = (F ,Ψ)

↓ ↓ ↓ ↓
0 0 0 0

such that Ei−1 is saturated in Ei, the induced quotients

qi : (Ei/Ei−1,Θi) −→ (Fi/Fi−1,Ψi)

are α-Gieseker stable, and
deg(Ei/Ei−1)− α rk(Fi/Fi−1)

rk(Ei/Ei−1)
=

deg(E)− α rk(F)
rk(E)

,

P (Ei/Ei−1,m)
rk(Ei/Ei−1)

=
P (E ,m)

rk(E)
for all m,

P (Fi/Fi−1,m)
rk(Fi/Fi−1)

=
P (F ,m)

rk(F)
for all m.

Moreover, the direct sum of these quotient pairs, denoted by

gr(q) =
l⊕
i=1

qi,

is unique up to isomorphism.

Proof. Analogous to [HL, Prop. 1.5.2] or [DUW, Prop. 2.13]. �

Remark. Two quotient pairs q and q′ are called S-equivalent if gr(q) ∼=
gr(q′). If q is α-Gieseker stable, then gr(q) ∼= q.
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Theorem 7.4. Fix Hilbert polynomials P and P ′′. There exists a quasi-
projective scheme Mα

Higgs(X,P, P
′′) whose points correspond to S-equivalence

classes of quotient pairs of α-Gieseker semistable torsion free Higgs sheaves
with the given Hilbert polynomials.

Proof. The moduli space Mα
tf (X,P, P ′′) of quotient pairs of torsion free

sheaves has been constructed in [DUW], but since the authors use Simpson’s
method, their proof works not only for torsion free sheaves, but also for quo-
tient pairs of sheaves of pure dimension. Let Mα

pure(Z, P̃ , P̃ ′′) be the moduli
space of quotient pairs E −→ F → 0 of sheaves on Z with E of pure dimen-
sion. Since the condition that Supp(E) does not intersect D is open, using
Simpson’s identification we finally conclude that Mα

Higgs(X,P, P
′′) is an open

subset of Mα
pure(Z, P̃ , P̃ ′′).

Now we will briefly recall the construction in [DUW, Section 5], indicating
what has to be changed to consider sheaves of pure dimension. For any
coherent sheaf E on Z, its Hilbert polynomial can be written as

χ(E(m)) = r(E) deg(Supp E)
md

d!
+ a(E)

md−1

(d− 1)!
+ · · · ,

where d is the dimension of the support of E. Following Simpson [S1, p. 55],
we call r(E) the rank of E, and a(E) the degree of E with respect to OZ(1).

Using these new definitions for rank and degree, the GIT construction in
[DUW] goes through for quotient pairs of pure dimension. First one proves
that the set of semistable quotient pairs (with fixed Hilbert polynomials P̃
and P̃ ′′) is bounded, and then that there is an integer K0 such that if k ≥ K0,
for all semistable quotient pairs q : E −→ F (with E of pure dimension), E(k)
is generated by global sections and h0(E(k)) = χ(E(k)) =: N .

Let V = C
N be a fixed vector space of dimension N . Consider pairs

(q, φ), where q is a semistable quotient pair and φ : V −→ H0(E(k)) is an
isomorphism. A pair (q, φ) is the same thing as a commutative diagram

(7.2)

V ⊗OZ
q1−−−−→ E(k) −−−−→ 0∥∥∥ yq

V ⊗OZ
q2−−−−→ F(k) −−−−→ 0y

0

such that q1 induces an isomorphism V ∼= H0(E(k)). Hence for each pair
(q, φ) we get a point (q1, q2) in

(7.3) Quot(V ⊗OZ , P̃m)×Quot(V ⊗OZ , P̃ ′′m),
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where Quot(V ⊗OZ , P̃m) (resp. Quot(V ⊗OZ , P̃ ′′m)) is Grothendieck’s quotient
scheme, parameterizing quotients of V ⊗OZ with Hilbert polynomials P̃m(i) =
P̃ (m+ i) (resp. P̃ ′′m(i) = P̃ ′′(m+ i)).

Let Q̂k be the closed subset of (3), where ker q1 ⊂ ker q2 (i.e., q2 factors
through q1), let Qk ⊂ Q̂k be the subscheme where E is of pure dimension,
and let Qk ⊂ Q̂k be its closure. The projective scheme Qk parameterizes
commutative diagrams like (7.2). Now we have to get rid of the choice of
isomorphism φ. The group SL(V) acts on (7.3) and hence on Qk (since this is
invariant). From the point of view of pairs (q, φ), this action corresponds to
(q, φ) 7→ (q, g ◦φ) for g ∈ SL(V), so to get rid of the choice of the isomorphism
φ we only need to take the quotient by SL(V). Note that it is enough to use
SL(V), and we do not need to use GL(V), because scalar multiplication acts
trivially on (7.3). This is done by taking the GIT quotient of Qk by SL(V),
but to do this, first we have to linearize the action of SL(V) on an ample
line bundle on Qk. Following Grothendieck, by tensoring with OZ(j) for high
enough j, and taking sections, we embed (7.3) (and hence Qk) into a product
of Grassmanians

Gr(V ⊗W, P̃ (k + j))×Gr(V ⊗W, P̃ ′′(k + j)),

where W = H0(OZ(j)). Using Plücker coordinates we get an embedding in

(7.4) P = P

(∧
P̃ (k+j)(V ⊗W )∨

)
× P

(∧
P̃ ′′(k+j)(V ⊗W )∨

)
.

The natural action of SL(V) on (7.4) has a natural linearization on OP (r, s)
for any r and s, and by restriction we obtain a linearization on the line bundle
OP (r, s)|Qk on Qk.

We choose r and s depending on α as in [DUW, p. 511]. Namely, consider
the set of α-semistable quotient pairs q : E → F. Then consider the set
of subobjects q′ : E′ → F′ with µα(E′) = µα(E), where µα(E) = (a(E) +
αa(F))/r(E). We may assume that E′ is saturated in E. The set of such E′

is bounded, and the set of polynomials of such E′ is finite. Let C be the
maximum of the absolute value of the coefficients of kn−2/(n − 2)! in the
polynomials P (E′, k)/r(E′) − P (E, k)/r(E) as E′ varies over this set. Then
choose M large enough so that(

M − αr(F)
r(E)

− a(E)
r(E)

) (−α)
r(E)2

− deg(Supp E)
d

(d− 1)C ≥ 1.

Finally choose r and s to be positive integers such that

r

s
=
k deg(Supp E) +Md

−αd
Note that r and s have to be positive, so that OP (r, s) is ample, and this
forces α < 0.
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Next one proves that GIT-semistable (resp. stable) points on Qk corre-
spond to α-Gieseker semistable (resp. stable) quotient pairs, and then the
moduli space is obtained as the GIT quotient

Mα
pure(Z, P̃ , P̃ ′′) = Qk//SL(V) .

Finally one checks that points of Mα
pure(Z, P̃ , P̃ ′′) correspond to S-equivalence

classes. �

Appendix: Bott-Chern forms for Higgs bundles

A.1. Introduction. In this Appendix we adapt the computations of Bott
and Chern (in their paper [BC]) to construct Bott-Chern forms for Higgs
Bundles. We recall the notation of Section 4:

• E −→ X is a rank n holomorphic bundle with underlying smooth com-
plex bundle E and holomorphic structure determined by an integrable
partial connection ∂E (as in 4.1),
• A Higgs field on E is denoted by Θ. ∇′′ = ∂E + Θ is the Higgs

operator. As in Definition 4.1, a Higgs bundle on X is a pair (E,∇′′)
in which (∇′′)2 = 0,

Definition A.1. Let φ be any symmetric GL(n,C)-invariant, k-linear
function on Matn, the space of n×n matrices. We extend φ to a k-linear map
on Matn-valued forms as follows: if ai ⊗ αi ∈ Matn⊗Ωpi(X), then

(A.1) φ(a1 ⊗ α1, . . . , ak ⊗ αk) = φ(a1, . . . , an)α1 ∧ · · · ∧ αk .

Each GL(n,C)-invariant polynomial φ defines a characteristic class for E.
This class, denoted by [φ] ∈ H2k(X,C), can be represented by the closed
2k-form

(A.2)
(
i

2π

)k
φ(FD) ≡

(
i

2π

)k
φ(FD, FD, . . . , FD) ,

where D is any GL(n,C) connection on E, and FD is the GL(n,C)-valued
2-form which represents the curvature of D with respect to a local frame.
Suppose now that E is the underlying smooth bundle of a holomorphic bundle
E = (E, ∂E). Then any Hermitian bundle metric, say H, determines a unique
Chern connection. Denoting the curvature of this connection by FDH , we thus
get a representative 2k-form

(A.3)
(
i

2π

)k
φ(H) =

(
i

2π

)k
φ(FDH ) ,

corresponding to each metric. If K is any other metric, then φ(K) and φ(H)
must differ by a closed form since they represent the same class in cohomology.
The Bott-Chern forms give a more refined measure of this difference between
φ(K) and φ(H), for any pair of metrics.
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The essential ingredient in this construction is the Chern connection, which
uses the defining structure of the holomorphic bundle (i.e., the operator ∂E)
to associate a unique connection to each metric on E = (E, ∂E). Suppose now
that we add a Higgs field Θ to E and, as outlined in Section 4, replace ∂E by the
Higgs operator ∇′′ = ∂E+Θ. Each metric then produces a unique connection
determined by the defining data of the Higgs bundle, i.e., determined by
∇′′ (or, equivalently, by ∂E and Θ). Given a GL(n,C)-invariant polynomial
we can use these Higgs connections to associate to each metric, H, a Higgs
representative for the corresponding characteristic class:

Definition A.2. Let H be a Hermitian metric on the Higgs bundle
(E,∇′′). Let ∇H be the corresponding Higgs connection, and let F∇H be
the curvature of this connection. Let φ be any GL(n,C)-invariant, k-linear,
symmetric function on Mn. We define

(A.4) φHiggs(H) = φ(F∇H , F
∇
H , . . . , F

∇
H ) .

The Higgs-Bott-Chern forms measure the difference between the closed
forms φHiggs(H) and φHiggs(K), for any two metrics H and K. Our main
result is as follows:

Theorem A.3. Corresponding to each GL(n,C)-invariant, k-linear func-
tion φ there is a function of pairs of metrics, RHiggs(H,K), such that:

(i) RHiggs(H,K) takes its values in Ω2k−2(X,C).
(ii) RHiggs(H,K) is well defined modulo Im ∂+Im ∂, where Im ∂ and Im ∂

denote the images ∂(Ω2k−3(X,C)) and ∂(Ω2k−3(X,C)), respectively,
in Ω2k−2(X,C).

(iii) We have

(A.5) φHiggs(H)− φHiggs(K) = i∂∂RHiggs(H,K) .

The forms RHiggs(H,K) are the analogs for Higgs bundles of the Bott-
Chern forms associated to pairs of metrics on a holomorphic bundle. We
will thus refer to these as Higgs Bott-Chern forms. Notice that unlike on
holomorphic bundles, for which the Bott-Chern forms take their values in
Ω(p,p)(X,C), the Higgs Bott-Chern forms need not have holomorphic type
(p, p). This difference does not play any role in the proof of Theorem A.3.
Indeed, the main ingredients in the proof are formally identical to those of
Proposition 3.15 in [BC], the difference being that in place of the Chern
connections used in [BC], here we use Higgs connections.

A.2. Definition of RHiggs(H,K). Fix φ, a symmetric GL(n,C)-invariant
k-linear function on Matn as in Definition A.1.

Notice that though φ is symmetric, its extension to Matn-valued forms on
X is not in general symmetric because of the skew-symmetry of the wedge
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product on forms. The symmetry will, however, be preserved if at most one
of the forms has odd degree. Since we will need them later, we record the
following basic properties:

Lemma A.4. Let φ be any GL(n,C)-invariant, k-linear function on Matn.
For any matrix-valued forms Ai = ai ⊗ αi ∈ Matn⊗Ωpi(X) (i = 1, . . . , k),

(A.6) dφ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . , d(Aj), . . . , Ak) ,

If B = b⊗ β ∈ Matn Ωq(X), then

(A.7)
∑
j

(−1)pj+1+···+pkφ(A1, . . . , [Aj , B], . . . , Ak) = 0 ,

where [Ai, B] = [ai, b]αi ∧ β.

Given two metrics H and K we can pick a 1-parameter family of metrics,
H(t), such that H(0) = H and H(1) = K, and so that it corresponds to a
smooth path from H to K in the space of metrics. We can compute derivatives
with respect to the parameter t and thus define Lt by

(A.8) (Ltη, ν)H(t) =
d

dt
(η, ν)H(t)

for any smooth sections η, ν ∈ Ω0(E).

Lemma A.5 ([BC]). Defined as above, Lt is a bundle endomorphism, i.e.,
a global section in Ω0(EndE). If [H] denotes the matrix representing H with
respect to the local frame {ei}, then the matrix representing Lt is given by

(A.9) [Lt] = [H(t)]−1[Ḣ(t)] ,

where [Ḣ(t)] = d
dt [H(t)].

Henceforth, where no confusion can arise, we drop the square braces and
denote the matrix representing H by H, etc. Corresponding to the path of
metrics H(t) we get (cf. Definition 4.2) a family

(A.10) ∇′t = D′H(t) + Θ∗H(t)

and thus a family of Higgs connections given by

(A.11) ∇t = ∇′′ +∇′t .
Viewing the space of connections as an affine space, and identifying the tan-
gent space at ∇t with Ω1(X,EndE), we can compute the derivative with
respect to t. This yields an element ∇̇t ∈ Ω1(X,EndE).

Lemma A.6 ([BC]). We have

(A.12)
d

dt
∇t = ∇̇t = ∇′t(Lt) ,
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where

(A.13) ∇′t(Lt) = ∇′t ◦ Lt − Lt ◦ ∇′t ,

i.e., where ∇′t(Lt) is the contribution to the covariant derivative ∇t(Lt) re-
sulting from the decomposition of ∇t as ∇′′ +∇′t.

We denote by Ft the curvature of the Higgs connection determined by H(t),
and define

(A.14) φ′Higgs(Ft, Lt) =
k∑
j=1

φ(Ft, . . . , Ft, Lt, Ft . . . , Ft) .

We compute

∂φ′Higgs(Ft, Lt) =
k∑
j=1

∑
i<j

φ(Ft, . . . ∂Ft, . . . , Ft, Lt, Ft . . . , Ft)

+
k∑
j=1

φ(Ft, . . . , Ft, ∂Lt, Ft . . . , Ft)

−
k∑
j=1

∑
i>j

φ(Ft, . . . , Ft, Lt, Ft . . . , ∂Ft, . . . , Ft) .

But by the Bianchi identities for Higgs connections,

(A.15) ∇′t(Ft) = 0 = ∂Ft + [Ft, At] + [Ft,Θt] ,

where ∂+At is the (1, 0) part of the Chern connection corresponding to H(t).
Together with the invariance of φ (cf. equations (A.7) and (A.12)), this leads
to the expression

∂φ′Higgs(Ft, Lt) =
k∑
j=1

φ(Ft, . . . , Ft, ∂Lt − [Lt, At]− [Lt,Θt], Ft, . . . , Ft)

=
k∑
j=1

φ(Ft, . . . , Ft,∇′t(Lt), Ft, . . . , Ft)(A.16)

= φ′Higgs(Ft, ∇̇t) .

But (cf. Proposition 2.18 in [BC], or any standard discussion of the Chern-
Weil homomorphism)

∫ 1

0
φ′Higgs(Ft, ∇̇t)dt is precisely the transgression term

relating φHiggs(H) and φHiggs(K), i.e.,

(A.17) φHiggs(K)− φHiggs(H) = d

(∫ 1

0

φ′Higgs(Ft, ∇̇t)dt
)
.
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It thus follows from (A.16) that

(A.18) φHiggs(K)− φHiggs(H) = ∂∂

(∫ 1

0

φ′Higgs(Ft, Lt)dt
)
.

We make therefore the following definition.

Definition A.7. Given metrics H and K, and given a path H(t) from H
to K, set

(A.19) RHiggs(H,K) = −i
∫ 1

0

φ′Higgs(Ft, Lt)dt .

Remark A.8. In particular, (A.18) implies that ∂∂RHiggs(H,K) is inde-
pendent of the path Ht joining H and K.

A.3. Independence of the path H(t). To prove that RHiggs(H,K) is
well defined, i.e., is independent of the choice of path H(t), we reformulate
the definition in terms of a 1-form on Met(E), the space of Hermitian metrics
on E, and appeal to Stokes’ Theorem. Recall (cf. [Ko]) that Met(E) is a
convex domain in an infinite dimensional vector space, and that the tangent
space at any point H ∈ Met(E) can be identified with hermitian sections of
End(E), i.e.,

(A.20) TH Met(E) = HermH(E) = {u ∈ Ω0(EndE) | u∗H = u } .

Definition A.9. Let UH be a tangent vector in TH Met(E), and let H(t)
be a path in Met(E) with H(0) = H and Ḣ(0) = UH . Define

(A.21) θH(UH) = φ′Higgs(F
∇
H , L0) ,

where, as before, Lt = H(t)−1Ḣ(t).

Given a curve γ = H(t) which joins H and K in Met(E), our definition of
RHiggs(H,K) thus becomes

(A.22) RHiggs(H,K) = −i
∫
γ

θ .

Expressed in this way, it becomes apparent that we can show the indepen-
dence of the path γ by computing dθ and applying Stokes’ Theorem. Suppose
therefore that UH , VH are vectors in TH Met(H). Let h(s, t) be a smooth map
from a neighborhood of the origin in R2 to Met(E), such that

(A.23) h(0, 0) = H, h∗

(
∂

∂s

)
= Uh(s,t) , h∗

(
∂

∂t

)
= Vh(s,t) ,
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where Uh(s,t) and Vh(s,t) are vector fields which extend UH and VH , respec-
tively. Then

dθH(U, V ) = h∗(dθ)
(
∂

∂s
,
∂

∂t

)
(A.24)

=
∂

∂s
θ

(
h∗

∂

∂t

)
− ∂

∂t
θ

(
h∗

∂

∂s

)
= UH(θH(VH))− VH(θH(UH)).

Lemma A.10. Under the identification of tangent spaces of Met(E) with
hermitian sections of End(E), as in (A.20) we get

(A.25)
∂

∂s
(h−1(s, t)Vh(s,t))

∣∣∣
s=t=0

= −UHVH +H−1 ∂
2h

∂s∂t

∣∣∣
s=t=0

,

(A.26)
∂

∂s
Fh(s,t) = ∇′′∇′h(s,t)(h

−1(s, t)Uh(s,t)).

Using (A.21), (A.25) and (A.26) we thus get from (A.24) that

dθH(U, V ) = φ
(
[H−1VH ,H

−1UH ], F∇H , . . . , F
∇
H

)
(A.27)

−
k∑
j=2

φ
(
H−1UH , F

∇
H , . . . , F

∇
H ,∇′′∇′H(H−1VH), F∇H , . . . , F

∇
H

)
+

k∑
j=2

φ
(
H−1VH , F

∇
H , . . . , F

∇
H ,∇′′∇′H(H−1UH), F∇H , . . . , F

∇
H

)
.

To simplify the notation, we set u = H−1UH and v = H−1VH . The first term
in (A.27) is then

φ
(
[v, u], F∇H , . . . , F

∇
H

)
= −

k∑
j=2

φ
(
v, F∇H , . . . , F

∇
H , [F

∇
H , u], F∇H , . . . , F

∇
H

)(A.28)

= −
k∑
j=2

φ
(
v, F∇H , . . . , F

∇
H ,∇′′∇′H(u), F∇H , . . . , F

∇
H

)
−

k∑
j=2

φ
(
v, F∇H , . . . , F

∇
H ,∇′H∇′′(u), F∇H , . . . , F

∇
H

)
.

Here the first equality follows by (A.7) and the second equality follows from
the fact that

[F∇H , u] = F∇H (u) = ∇′′∇′H(u) +∇′H∇′′(u) ,
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where the F∇H in the expression F∇H (u) refers to the curvature of the induced
connection on EndE. Hence (A.27) becomes

dθH(U, V ) = −
k∑
j=2

φ
(
u, F∇H , . . . , F

∇
H ,∇′′∇′H(v), F∇H , . . . , F

∇
H

)
(A.29)

−
k∑
j=2

φ
(
v, F∇H , . . . , F

∇
H ,∇′H∇′′(u), F∇H , . . . , F

∇
H

)
.

Lemma A.11. For any connection D on E, any (symmetric), invariant
k-linear function φ, and any collection Ai ∈ Ωpi(End(E)) (i = 1, . . . , k), we
have

(A.30) dφ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . , DAj , . . . , Ak) .

Proof. We fix a local frame for E and write D = d + A, where A is the
connection 1-form. Thus DAj = dAj + (−1)pj [Aj , A]. Using both parts of
Lemma A.4 we get

dφ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . , dAj , . . . , Ak)

=
∑
j

(−1)p1+···+pj−1φ(A1, . . . , DAj , . . . , Ak)(A.31)

−
∑
j

(−1)p1+···+pj−1+pjφ(A1, . . . , [Aj , A], . . . , Ak)

=
∑
j

(−1)p1+···+pj−1φ(A1, . . . , DAj , . . . , Ak). �

Corollary A.12. If ∇′′ = ∂E + Θ is the Higgs operator, then

(A.32) ∂φ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . ,∇′′Aj , . . . , Ak) ,

and if ∇′H = D′H + Θ∗H , then

(A.33) ∂φ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . ,∇′HAj , . . . , Ak) .

Proof. If we apply Lemma A.11 to the Chern connection ∂E + D′H , and
decompose both side of (A.30) according to holomorphic type, we get

(A.34) ∂φ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . , ∂EAj , . . . , Ak),

(A.35) ∂φ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . , D
′
HAj , . . . , Ak).



EXTENSIONS OF HIGGS BUNDLES 621

But ∇′′Aj = ∂EAj + (−1)pj [Aj ,Θ]. Equation (A.34) thus yields

∂φ(A1, . . . , Ak) =
∑
j

(−1)p1+···+pj−1φ(A1, . . . ,∇′′Aj , . . . , Ak)(A.36)

−
∑
j

(−1)p1+···+pj−1+pjφ(A1, . . . , [Aj ,Θ], . . . , Ak) .

The last summation in (A.36) vanishes by (A.7) in Lemma A.4, i.e., by the
invariance of φ. Equation (A.33) follows similarly from (A.35), using the
invariance of φ and ∇′HAj = D′HAj + (−1)pj [Aj ,Θ∗H ]. �

Using (A.32) and (A.33) of Corollary A.12, the Bianchi identities (4.16),
and Lemma A.4, the terms on the right hand side of (A.29) thus become

k∑
j=2

φ(u, F∇H , . . . , F
∇
H ,∇′′∇′H(v), F∇H , . . . , F

∇
H )(A.37)

= −
k∑
j=2

φ(∇′′(u), F∇H , . . . , F
∇
H ,∇′H(v), F∇H , . . . , F

∇
H )− ∂α(u, v)

and
k∑
j=2

φ(v, F∇H , . . . , F
∇
H ,∇′H∇′′(u), F∇H , . . . , F

∇
H )(A.38)

= −
k∑
j=2

φ(∇′H(v), F∇H , . . . , F
∇
H ,∇′′(u), F∇H , . . . , F

∇
H )− ∂β(u, v) .

The forms α and β are forms on X, given by

(A.39) −α(u, v) = φ(u, F∇H , . . . , F
∇
H ,∇′H(v), F∇H , . . . , F

∇
H )

and

(A.40) −β(u, v) = φ(v, F∇H , . . . , F
∇
H ,∇′′(u), F∇H , . . . , F

∇
H ) .

Furthermore, since ∇′H(v) and ∇′′(u) are 1-forms and F∇H is a 2-form, it
follows by the invariance of φ (cf. the remark after Definition A.1) that

φ(∇′H(v), F∇H , . . . , F
∇
H ,∇′′(u), F∇H , . . . , F

∇
H )(A.41)

+ φ(∇′′(u), F∇H , . . . , F
∇
H ,∇′H(v), F∇H , . . . , F

∇
H ) = 0 .

Equation (A.29) thus reduces to

(A.42) dθH(U, V ) = ∂α(u, v) + ∂β(u, v) .

Lemma A.13. The expression ∂α(u, v) + ∂β(u, v) defines a 2-form on
Met(E) with values in Im ∂ + Im ∂
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Proof. Applying (A.33) in Corollary A.12 to φ(u, F∇H , . . . , F
∇
H , v, F

∇
H ,

. . . , F∇H ) gives

φ(u, F∇H , . . . , F
∇
H ,∇′H(v), F∇H , . . . , F

∇
H )(A.43)

= −φ(∇′H(u), F∇H , . . . , F
∇
H , v, F

∇
H , . . . , F

∇
H )

+ ∂φ(u, F∇H , . . . , F
∇
H , v, F

∇
H , . . . , F

∇
H ) ,

and hence

∂α(u, v) = ∂φ(∇′H(u), F∇H , . . . , F
∇
H , v, F

∇
H , . . . , F

∇
H )(A.44)

+ ∂∂φ(u, F∇H , . . . , F
∇
H , v, F

∇
H , . . . , F

∇
H ) .

Similarly, applying (A.32) to φ(v, F∇H , . . . , F
∇
H , u, F

∇
H , . . . , F

∇
H ) gives

∂β(u, v) = ∂φ(∇′′(v), F∇H , . . . , F
∇
H , u, F

∇
H , . . . , F

∇
H )(A.45)

+ ∂∂φ(v, F∇H , . . . , F
∇
H , u, F

∇
H , . . . , F

∇
H ) .

Notice that in each occurrence of φ in (A.44) and (A.45) the arguments include
at most one form of odd degree. By the remark after Definition A.1 the
expressions are thus symmetric functions of their arguments. Recall also that
∂∂ + ∂∂ = 0. Combining (A.44) and (A.45) thus yields

∂α(u, v) + ∂β(u, v) = ∂φ(v, , F∇H , . . . , F
∇
H ,∇′H(u), F∇H , . . . , F

∇
H )(A.46)

+ ∂φ(u, F∇H , . . . , F
∇
H ,∇′′(v), F∇H , . . . , F

∇
H )

= −(∂α(v, u) + ∂β(v, u)) . �

We can now prove:

Proposition A.14. Up to terms in Im ∂ + Im ∂, RHiggs(H,K) is inde-
pendent of the path H(t) used to compute it in Definition A.19. Thus the
map

(A.47) H 7−→ RHiggs(H,K)

gives a well defined map from Met(E) (the space of metrics) to the space
Ωk(X,C)/ Im ∂ + Im ∂.

Proof. Let γ1, γ2 be any two paths from H to K in Met. Then γ1 − γ2

bounds a disk, say Γ, and Stokes’ Theorem implies

�(A.48)
∫
γ1

θ −
∫
γ2

θ =
∫

Γ

dθ =
∫

Γ

(∂α+ ∂β) .

The rest of Theorem A.3 now follows from the definition of RHiggs.
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Remark A.15. It follows from the definition of RHiggs that if H(t) is a
smooth 1-parameter family of metrics, then

(A.49)
d

dt
RHiggs(H(t),K) = −ikφ(Lt, Ft, . . . , Ft) ,

where Lt is as in (A.8) and Ft is the curvature of the Higgs connection corre-
sponding to H(t).

A.4. Two special cases.

Case 1. If k = 1 and φ(A) = Tr(A), then

(A.50) φ′(Ft, Lt) = φ(Lt) = Tr(Ḣ(t)H(t)−1) .

Thus, denoting the corresponding function RHiggs by R(1)
Higgs, we get

(A.51) R
(1)
Higgs(H,K) = −i

∫ 1

0

Tr(Ḣ(t)H(t)−1)dt .

Notice that this is the same as the corresponding Bott-Chern form defined on
a holomorphic bundle. In both cases (i.e., with or without the extra Higgs
bundle structure) we get

(A.52) R
(1)
Higgs(H,K) = −i lnHK−1 ,

which is manifestly independent of the path from H to K.

Case 2. If k = 2 and φ(A1, A2) = − 1
2 Tr(A1A2 +A2A1), then

(A.53) φ′(Ft, Lt) = φ(Ft, Lt) = −Tr(FtLt) ,

R
(2)
Higgs(H,K) = i

∫ 1

0

Tr(FtLt)dt .

The functional defined by Simpson in [S3] is

(A.54) MS(H,K) =
∫
X

R
(2)
Higgs(H,K) ∧ ωd−1 .

This is the Higgs analog of the function defined by Donaldson in [Do1], which
is given by the same formula, but with the Bott-Chern form R(2)(H,K) in
place of the Higgs Bott-Chern form R

(2)
Higgs(H,K).

Proposition A.16. Take H(t) = Kets, with s = s∗K . Then

(A.55)
d

dt
MS(H(t),K) = −2i

∫
X

φ′(Ft, s) ∧ ωd−1 = 2i
∫
X

Tr(Fts) ∧ ωd−1,

(A.56)
d2

dt2
MS(H(t),K)|t=0 = |∇′′(s)|2K .
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Proof. The formulae for d
dtMS follow directly from (A.49). Using this re-

sult, plus the fact that (cf. (A.26)) dFt/dt = ∇′′∇′t(s), we get

d2

dt2
MS(H(t),K)|t=0 = 2i

∫
X

Tr(∇′′∇′K(s)s) ∧ ωd−1(A.57)

= −2i
∫
X

Tr(∇′′(s) ∧∇′K(s)) ∧ ωd−1

= 2
∫
X

|∇′′(s)|2K ∧ ωd−1 .

The second equality follows by (A.37). The third follows by Lemma 3.1(b) in
[S3]. �
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