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A REGULARITY CONDITION IN SOBOLEV SPACES
W 1,p

loc (Rn) WITH 1 ≤ p < n

DONATELLA BONGIORNO

Abstract. Extending Malý’s geometric definition of absolutely contin-
uous functions of n variables (in a sense equivalent to that of Rado-

Reichelderfer), we define classes of p-absolutely continuous functions
(1 ≤ p < n) and show that this weaker notion of absolute continuity
still implies differentiability almost everywhere, although it does not
imply continuity or Lusin’s condition (N).

1. Introduction

We investigate to what extent some basic properties that are shared by
absolutely continuous functions in the sense of Rado, Reichelderfer, and Malý
can be generalized to larger classes of functions. We prove that a natural
extension of Malý’s geometric definition of absolute continuity gives a sim-
ple regularity property (in the sense of differentiability almost everywhere)
of functions belonging to the Sobolev space W 1,p(Ω) with 1 ≤ p < n. We
show that our classes ACp, 1 ≤ p < n, of p-absolutely continuous functions
properly contain the classes ACn of absolutely continuous functions of Rado,
Reichelderfer and Malý. In fact, they contain even essentially discontinuous
functions. However, the ACp functions do not share all properties of the ACn

functions; in particular, Lusin’s condition (N) may fail even for continuous
ACp functions when 1 ≤ p < n.

Let Ω be an open subset of Rn, and let 1 ≤ p < ∞. We recall that the
Sobolev space W 1,p(Ω,Rm) is defined as the set of all (equivalence classes of)
functions f ∈ Lp(Ω,Rm) whose distributional partial derivatives all belong to
Lp(Ω,Rm).

L. Cesari [2] proved that if p > n, then each f ∈W 1,p(Ω,Rm) is continuous,
and differentiable at almost all points x ∈ Ω. In the same paper Cesari also
gave an example of a function f ∈ W 1,n(Ω,Rm) which does not have these
properties.
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Regularity properties for functions belonging to W 1,n(Ω,Rm) have been
obtained by A.P. Calderon [1], T. Rado and P.V. Reichelderfer [9], E. Stein
[10], and J. Malý [6].

Definition 1.1 (Malý). A function f : Ω→ R
m is said to be n-absolutely

continuous in Ω (briefly, f ∈ ACn(Ω,Rm)) if for every ε > 0 there exists δ > 0
such that ∑

i

ωn(f,Bi) < ε,

for each disjoint system of balls {Bi ⊂ Ω : i ∈ N} with
∑
i Ln(Bi) < δ. Here

ω(f,Bi) denotes the oscillation of f in Bi.

Our extension of this notion is given by the following definition:

Definition 1.2. Let 1 ≤ p ≤ n. We say that a function f : Ω → R
m is

p-absolutely continuous in Ω (briefly, f ∈ ACp(Ω,Rm)) if for every ε > 0 there
exists δ > 0 such that ∑

i

ωp(f,Bi)rn−p(Bi) < ε,

for each disjoint system of balls {Bi ⊂ Ω : i ∈ N} with
∑
i Ln(Bi) < δ. Here

r(Bi) denotes the radius of the ball Bi.

Note that for p = n Definition 1.2 coincides with Malý’s definition.
We say that f has bounded p-variation (briefly, f ∈ BV p(Ω,Rm)) if there

exist M > 0 and η > 0 such that∑
i

ωp(f,Bi)rn−p(Bi) < M

for each disjoint system of balls {Bi} in Ω such that r(Bi) < η.
The classesBV ploc andACploc are defined in the usual way: f ∈ BV ploc(Ω,Rm)

(resp. f ∈ ACploc(Ω,Rm)) if f ∈ BV p(Ω0,R
m) (resp. f ∈ ACp(Ω0,R

m)) for
every open set Ω0 whose closure is a compact subset of Ω.

As in Malý [6] it is easy to see that the p-absolute continuity follows from
a condition analogous to one introduced by Rado and Reichelderfer:

(R.R.)p There is an absolutely continuous finite measure µ on Rn such that
ωp(f,B) rn−p(B) ≤ µ(B) for each ball B in Ω

A similar remark, without the requirement that µ be absolutely continuous,
holds for functions of bounded p-variation. In fact, by a deep result of Csörnyei
[3] the conditions (R.R.)p and ACp are locally equivalent, and an analogous
statement holds for functions of bounded p-variation.

In this note we prove the following properties of p-absolutely continuous
functions and of functions of bounded p-variation.
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Proposition 1.3. If f ∈ ACploc(Ω,Rm), then f ∈ BV ploc(Ω,Rm). More-
over, every function f ∈ BV p(Ω,Rm) is locally bounded.

Theorem 1.4. BV q(Ω,Rm) ⊂ ACp(Ω,Rm) for 1 ≤ p < q ≤ n.

Theorem 1.5. Let 1 ≤ p ≤ n and let f ∈ BV p(Ω,Rm). Then f is a.e.
differentiable in Ω.

Theorem 1.6. For 1 < p ≤ n we have

BV ploc(Ω,Rm) ⊂W 1,p
loc (Ω,Rm);

for p = 1 we have

BV 1(Ω,Rm) ⊂ BV (Ω,Rm).

Theorem 1.7. For 1 ≤ p < q ≤ n there is a continuous function f ∈
ACp(B(0, 1),R) such that f /∈W 1,q(Ω,R).

In the following theorem we denote by Hn−p the (n − p)-dimensional
Hausdorff measure; for η > 0 we also denote by Hn−pη the corresponding
η-approximating measure (see [7, Chapter 4]).

Theorem 1.8. Let 1 ≤ p ≤ n. Then each function f ∈ ACp(Ω,Rm)
is continuous Hn−p almost everywhere. Moreover, for each function f ∈
BV p(Ω,Rm) the set of the points of discontinuity has σ-finite Hn−p measure.

Note that if p = n, Theorem 1.8 says that f is continuous in Ω. This is,
of course, easy to observe directly. In fact, by Definition 1.1 it follows that
for any Ω0 such that Ω0 ⊂ Ω and for any ε > 0 there is δ > 0 such that
‖f(x)− f(y)‖n < ε for all x, y ∈ Ω0 with ‖x− y‖ < δ.

Note also that general functions from W 1,p(Ω,Rn) satisfy only a weaker
condition than that of Theorem 1.8: they are only approximately continuous
except on a set of Hausdorff dimension n− p (see [11, Remark 3.3.5] and [11,
Theorem 3.3.3] for a stronger result), but they may be unbounded in every
non-empty open subset of Ω (see [11, Exercise 3.3]).

Theorem 1.9. For 1 ≤ p < n there is a function f belonging to
ACp(B(0, 1),R) such that for any continuous function g we have

Ln({x ∈ B(0, 1) : g(x) 6= f(x)}) > 0.

Theorem 1.10. There is a homeomorphism f : [0, 1]n → [0, 1]n not satis-
fying Lusin’s condition (N) which belongs to ACp(Ω,Rn), for 1 ≤ p < n.
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2. Proof of Proposition 1.3

It suffices to consider the case when Ω is bounded and f ∈ ACp(Ω,Rm).
Then there is δ > 0 such that

(2.1)
∑
i

ωp(f,Bi)rn−p(Bi) < 1,

for each disjoint system of balls {Bi ⊂ Ω : i ∈ N} with
∑
i Ln(Bi) < δ.

Let

η =
1
3

(
δ

Ln(B(0, 1))

)1/n

,

and let {Bi} be an arbitrary disjoint system of balls in Ω such that r(Bi) < η
for each i. Then there exist finitely many balls, say Q1, . . . , Qk, of radius η,
such that Ω ⊂

⋃k
j=1Qi. For j = 1, . . . , k, let Q̃j be the ball with the same

center as Qj and of radius 3 η. Thus, if a ball B of radius less than η intersects
Qj for some j, then B ⊂ Q̃j . Hence∑

i :B∩Qj 6=∅

Ln(Bi) < Ln(Q̃j) = δ.

Thus, by (2.1), we have∑
i

ωp(f,Bi) rn−p(Bi) =
k∑
j=1

∑
i :B∩Qj 6=∅

ωp(f,Bi) rn−p(Bi) < k.

This completes the proof that f ∈ BV p(Ω,Rm).
Let now f ∈ BV p(Ω,Rm). By Definition 1.1 it follows that there are

numbers M > 0 and δ > 0 such that ωp(f,B) rn−p(B) < M whenever B ⊂ Ω
and r(B) < δ. If f is not locally bounded, then there is x0 ∈ Ω such that f
is unbounded on every open set containing x0. Hence

ωp(f,B(x0, δ/2)) rn−p(B(x0, δ/2)) =∞,

which it is a contradiction. �

3. Proof of Theorem 1.4

Let f ∈ BV q(Ω,Rm). By definition there are numbers M > 0 and η > 0
such that ∑

i

ωq(f,Bi)rn−q(Bi) < M,

for each disjoint system {Bi} of balls in Ω such that r(Bi) < η.
Given ε > 0, let

δ = min
(
εq/(q−p) Ln(B(0, 1))

Mp/(q−p) , ηn Ln(B(0, 1))
)
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and let {Bi} be a disjoint system of balls in Ω such that
∑
i Ln(Bi) < δ.

Then, by Hölder’s inequality, we have∑
i

ωp(f,Bi)rn−p(Bi)

=
∑
i

ωp(f,Bi)r(n−q)p/q(Bi) · rn(q−p)/q(Bi)

≤

(∑
i

ωq(f,Bi)rn−q(Bi)

)p/q
·

(∑
i

rn(Bi)

)(q−p)/p

≤Mp/q

(∑
i

rn(Bi)

)(q−p)/q

=
Mp/q

(Ln(B(0, 1)))(q−p)/q

(∑
i

Ln(Bi)

)(q−p)/q

< ε.

This completes the proof that f ∈ ACp(Ω,Rm).

4. Proof of Theorem 1.5

We need the following lemma.

Lemma 4.1. For each η > 0 and each k ∈ N there exists a disjoint system
{B(xi, ri)}∞i=1 of balls in Ω, such that ri < η for i = 1, 2, . . . , and

(4.1) Lne (Ω(k)) ≤ C k−p
∑
i

ωp(f,B(xi, ri)) r
n−p
i ,

where C = Ln(B(0, 1)) and

Ω(k) = {x ∈ Ω : for each σ > 0 there exists y ∈ Rn

with ‖y − x‖ < σ and ‖f(y)− f(x)‖ > k‖y − x‖ }.

Proof. The family {B(x, r)} of all balls such that B(x, r) ⊂ Ω, x ∈ Ω(k),
r < η and ω(B(x, r)) > k r is a Vitali covering of Ω(k). Thus there exist
xi ∈ Ω(k) and ri > 0, i = 1, 2, . . . , with ri < η, such that B(xi, ri) ⊂ Ω,
ω(B(xi, ri)) > k ri, the balls {B(xi, ri)} are disjoint, and

Ln
(

Ω(k) \
⋃
i

B(xi, ri)

)
= 0.
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Therefore

Lne (Ω(k)) ≤ Lne

(
Ω(k) \

⋃
i

B(xi, ri)

)
+ Lne

(⋃
i

B(xi, ri)

)

= Ln
(⋃

i

B(xi, ri)

)
=
∑
i

Ln (B(xi, ri))

= C
∑
i

rni ≤ C k−p
∑
i

ωp(B(xi, ri)) r
n−p
i . �

We now return to the proof of the Theorem 1.5. By Stepanoff’s theorem,
it is enough to prove that f is pointwise Lipschitz a.e. in Ω. Let M,η > 0 be
such that ∑

i

ωp(f,Bi) rn−p(Bi) < M

for each disjoint system {Bi} of balls in Ω such that r(Bi) < η. Now it is
easy to see that the set S of points at which f is not pointwise Lipschitz is
contained in each set Ω(k). Thus Lemma 4.1 implies

Ln(S) ≤ Lne (Ω(k)) < C k−p
∑
i

ωp(f,B(xi, ri)) r
n−p
i < C k−pM,

and letting k →∞ we conclude that Ln(S) = 0. �

5. Proof of Theorem 1.6

Suppose that f ∈ BV ploc(Ω,Rm). As in [6] we may assume that f is sup-
ported on a compact subset of Ω and hence, by Proposition 1.3 and Theorem
1.5, that it is a bounded measurable function with compact support in Rn.
Let M,η > 0 be such that∑

i

ωp(f,Bi)rn−p(Bi) < M,

for each disjoint system {Bi} of balls in Rn with r(Bi) < η.
Fix a function ψ1 in C∞(Rn,R) such that ψ1 has its support in B(0, 1/6),

ψ1 ≥ 0, and
∫
Rn
ψ1 = 1, and set ψk(x) = kn ψ1(kx), k = 1, 2, . . . . Define Zk

as the set of all points x ∈ Rn such that kx has integer coordinates. Then the
family {B(x+ y, 1/(3k)) : x ∈ Zk} is a system of disjoint balls in Rn, for each
y ∈ B(0, 2n/k). Thus, for each k > (2n)/η we have

(5.1)
∑
x∈Zk

ωq(f,B(x+ y, 1/(3k)) rn−q(B(x+ y, 1/(3k))) < M.
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Let ψk ∗f denote the convolution of ψk and f and set C = sup ‖∇ψ1‖. Noting
that

∫
B(0,1/6k)

∇ψk(t) dt = 0, we infer∫
B(x+y,1/6k)

‖∇(ψk ∗ f)‖p(s) ds

=
∫
B(x+y,1/6k)

∥∥∥∥∥
∫
B(0,1/6k)

∇ψk(t)f(s− t) dt

∥∥∥∥∥
p

ds

=
∫
B(x+y,1/6k)

∥∥∥∥∥
∫
B(0,1/6k)

∇ψk(t)(f(s− t)− f(s)) dt

∥∥∥∥∥
p

ds

=
∫
B(x+y,1/6k)

∥∥∥∥∥
∫
B(0,1/6k)

kn+1∇ψ1(kt)(f(s− t)− f(s))

∥∥∥∥∥
p

ds

≤ Cp
∫
B(x+y,1/6k)

(
kn+1

∫
B(0,1/6k)

‖(f(s− t)− f(s))‖ dt

)p
ds

≤ Cpωp(f,B(x+ y, 1/3k))
∫
B(x+y,1/6k)

(
kn+1

6n kn
Ln(B(0, 1))

)p
ds

≤ Cpωp(f,B(x+ y, 1/3k))
1

6nkn
kp

6np
(Ln(B(0, 1)))p+1

< C1 · ωp(f,B(x+ y, 1/3k))
(

1
3k

)n−p
= C1 · ωp(f,B(x+ y, 1/3k)) rn−p(B(x+ y, 1/3k)),

where

C1 =
(
C Ln(B(0, 1))

6n

)p Ln(B(0, 1))
3p 2n

.

Hence, by (5.1), we have∫
Ω

‖∇(ψk ∗ f)‖p(s) ds ≤
∑
x∈Zk

∫
B(x,n/k)

‖∇(ψk ∗ f)‖p(s) ds

≤ C2k
n
∑
x∈Zk

∫
B(x,2n/k)

(∫
B(x+y,1/6k)

‖∇(ψk ∗ f)‖p(s) ds

)
dy

≤ C2k
n

∫
B(x,2n/k)

∑
x∈Zk

(∫
B(x+y,1/6k)

‖∇(ψk ∗ f)‖p(s) ds

)
dy

≤ C2k
n

∫
B(x,2n/k)

C1M dy

≤ C1 C2 · (2n)n Ln(B(0, 1))M.
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This implies that the sequence {ψk ∗ f} is bounded in W 1,p(Ω,Rm). Also,
from standard properties of the convolution it follows that ψk ∗f converges to
f in Lp. If p > 1, then W 1,p(Ω,Rm) is reflexive, and hence a subsequence of
ψk ∗ f converges weakly to a function g ∈W 1,p(Ω,Rm); since it converges to
f in Lp, we have f = g and so f ∈W 1,p(Ω,Rm). If p = 1, the same argument
works if we use instead of the reflexivity the compactness of the unit ball of
BV functions in the L1 norm (see [11, Corollary 5.5.4]). �

6. Proof of Theorems 1.7 and 1.9

Let 0 < c < 1 and let ak be a sequence such that

1 ≥ a1 ≥ a2 ≥ · · · > 0.

Moreover, given 1 ≤ p < q ≤ n, let nk ≥ 1 be such that

(6.1) aknk ≤ ak+1nk+1, k = 1, 2, . . . ,

and
∞∑
k=1

(ak+1 nk+1)p ck(n−p) <∞,(6.2)

∞∑
k=1

(ak+1 nk+1)q ck(n−q) =∞.(6.3)

The numbers c and ak and the integers nk will be specified later.
For each k ∈ N let

α0,k = ck+1 < α1,k < · · · < αnk,k = ck

be a division of [ck+1, ck] into nk intervals, each of length (ck− ck+1)/nk, and
for i = 1, . . . , nk let di,k be the midpoint of the interval [αi−1,k, αi,k]. Define
ψ : [0, 1] −→ R

+ to be linear on the intervals [αi−1,k, di,k] and
[di,k, αi,k], and such that ψ(αi,k) = 0 and ψ(di,k) = ak, for i = 1, . . . , nk and
k = 1, 2, . . . . We will show that the function f(x) = ψ(‖x‖) is ACp(B(0, 1),R)
and that f is not W 1,q(B(0, 1),R).

To this end define, for a Lebesgue measurable set E ⊂ Rn,

µ(E) =
(

4
c(1− c)

)n 1
Ln(B(0, 1))

∑
k

(ak+1 nk+1

ck

)p
Ln(E ∩B(0, ck)).

By (6.2) we have µ(B(0, 1)) < +∞, so µ is a finite measure that is absolutely
continuous with respect to the Lebesgue measure. Therefore, to prove that
f ∈ ACp(B(0, 1),R) it is enough to verify that, for each ball B ⊂ B(0, 1),

ωp(f,B) rn−p(B) ≤ µ(B).
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Let k be maximal such that B ⊂ B(0, ck). We consider two cases, B ∩
B(0, ck+2) = ∅ and B ∩ B(0, ck+2) 6= ∅. In the first case, by (6.1) and since
0 < c < 1, it follows

ω(f,B) ≤ 4
c(1− c)

ak+1 nk+1

ck
r(B).

Thus

ωp(f,B)rn−p(B) ≤
(

4
c(1− c)

)p (ak+1 nk+1

ck

)p
rn(B)

=
(

4
c(1− c)

)p (ak+1 nk+1

ck

)p Ln(B ∩B(0, ck))
Ln(B(0, 1))

≤ µ(B).

In the second case, since B ∩B(0, ck+2) 6= ∅, we have

r(B) ≥ ck c (1− c)
2

.

Moreover, since B ⊂ B(0, ck), it follows that ω(f ;B) ≤ ak. Therefore

ωp(f,B) rn−p(B) ≤ apk r
n−p(B)

≤
(ak
ck

)p ( 2
c(1− c)

)p Ln(B ∩B(0, ck))
Ln(B(0, 1))

≤
(

4
c(1− c)

)n 1
Ln(B(0, 1))

(ak nk
ck

)p
Ln(B ∩B(0, ck))

≤ µ(B).

This completes the proof that f ∈ ACp(B(0, 1),R).
Now, since

‖∇f‖ =
2 ak nk
ck − ck+1

almost everywhere in B(0, ck) \B(0, ck+1), we have∫
B(0,1)

‖∇f‖q =
(

2
1− c

)q
cn (1− cn)Ln(B(0, 1))

∑
k

(ak+1 nk+1)q ck(n−q)

=∞.

Hence f is not in W 1,q(B(0, 1),R).
It remains to specify the numbers c, ak, and nk. To prove Theorem 1.7, we

take ak = (1/k)1/q , c = 2−q, and nk = 2k(n−q). Then the conditions (6.1),
(6.2), and (6.3) are satisfied, and f is continuous. Thus the proof of Theorem
1.7 is complete.

To prove Theorem 1.9, we take ak = 1, c = 2−q, and nk = 2k(n−q). Then
conditions (6.1), (6.2), and (6.3) are satisfied, and f is discontinuous. To



566 DONATELLA BONGIORNO

complete the proof of Theorem 1.9, it suffices to note that a function that is
almost everywhere equal to f cannot be continuous at the origin. �

7. Proof of Theorem 1.8

Let f ∈ ACp(Ω,Rm), and set

D = {x ∈ Ω : f is not continuous at x}.

We have to show that Hn−p(D) = 0. To this end, for each k ∈ N let

Dk = {x ∈ D : ω(f, x) > 1/k}.

We will show that Ln(Dk) = 0. Taking ε = 1 in Definition 1.2, let δ = δ(1)
and let U ⊂ Ω be an open set with Ln(U) < δ and Dk ∩ U 6= ∅. Then,
given σ > 0 and a disjoint system of balls {Bi} such that r(Bi) < σ, Bi ⊂ U ,
i = 1, 2, . . ., and Dk ∩ U ⊂

⋃
iBi, we have

Ln(Dk ∩ U) ≤
∑
i

rn(Bi) < σp
∑
i

rn−p(Bi)

< σpkp
∑
i

ωp(f,Bi)rn−p(Bi) < σpkp.

Letting σ → 0 we obtain Ln(Dk ∩ U) = 0, and since U is arbitrary, it follows
that Ln(Dk) = 0.

Let ε > 0, and let δ = δ(ε) be chosen according to Definition 1.2. Since
Ln(Dk) = 0 we can find an open set G ⊂ Ω such that Dk ⊂ G and Ln(G) < δ.
Now, for η > 0 let {Bi = B(xi, ri)}i∈I be a system of balls such that Bi ⊂ G
and r(Bi) < η/10 for each i ∈ I, and Dk ⊂

⋃
iBi. By the “5r-covering

Theorem” (see [7, Theorem 2.1]), there is a subset J ⊂ I such that the balls
{Bj}j∈J are disjoint, and for each i ∈ I there is j ∈ J with Bi ⊂ B(xj , 5rj).
Hence Dk ⊂

⋃
j∈J B(xj , 5rj), and

∑
j∈J Ln(Bj) ≤ Ln(G) < δ. Therefore

Hn−pη (Dk) ≤
∑
j∈J

(2r(B(xj , 5rj)))n−p = 10n−p
∑
j∈J

rn−p(Bj)

< 10n−pkp
∑
j∈J

ωp(f,Bj)rn−p(Bj)

< 10n−pkpε.

Since η is arbitrary, it follows that Hn−p(Dk) ≤ 10n−pkpε, and since ε is arbi-
trary, we obtain Hn−p(Dk) = 0. Thus we have Hn−p(D) = limkHn−p(Dk) =
0.

Assume now that f ∈ BV p(Ω,Rm) and define D and Dk as above. Since
D =

⋃
kDk, it is enough to prove that Hn−p(Dk) < +∞ for each k ∈ N.

Assume that there is k ∈ N with Hn−p(Dk) = ∞. Then for each positive
M there is τ > 0 such that Hn−pτ (Dk) > kp 2n−pM. Let 0 < η < τ and let



REGULARITY CONDITION IN SOBOLEV SPACES 567

{Bi} be a disjoint system of balls such that Bi ⊂ Ω and r(Bi) < η/2 for
i = 1, 2, . . . , and Dk ⊂

⋃
iBi. Then∑

i

(2 r(Bi))n−p ≥ Hn−pη (Dk) > kp 2n−pM,

and hence ∑
i

ωp(f,Bi) rn−p(Bi) >
1
kp

∑
i

rn−p(Bi) > M,

in contradiction to the hypothesis f ∈ BV p(Ω,Rm). �

8. Proof of Theorem 1.10

We use an improvement of Ponomarev’s example [8] due to J. Kauhanen,
P. Koskela, and J. Malý [5]. Let Q be a closed cube with side s, and let {ck}
be a sequence of positive numbers such that ck < 1 for each k. Divide Q
into 2n nonoverlapping cubes Pi, i = 1, . . . , 2n, such that Ln(Pi) = Ln(Q)/2n

for each i. Inside each Pi take a closed cube Qi with side s (c1/2), such
that Pi and Qi are concentric. Then apply the above algorithm to Qi, for
each i. We thus obtain 4n new closed cubes Qi,j , i, j = 1, . . . , 2n, with sides
s (c1 c2/22). Continuing this process, we obtain a system of cubes {Qα} with
α ∈ Σk = {1, 2, . . . , 2n}k, k = 0, 1, . . . (where we let Σ0 = {∅}, Q∅ = Q), such
that the side of Qα is s(c1 c2 . . . ck)/2k. Let E =

⋂∞
k=1

⋃
α∈Σk

Qα. Then E is
a nonempty closed set.

We first apply this construction with Q = [0, 1]n and the constant sequence
{ck = b}. We obtain a system of cubes {Qα} with α ∈ Σk, k = 0, 1, . . . , such
that the side of Qα is (b/2)k for each k and the set E =

⋂∞
k=1

⋃
α∈Σk

Qα is a
null set. In fact, we have

Ln(E) = lim
k→∞

Ln
( ⋃
α∈Σk

Qα

)
= lim
k→∞

b2 k = 0.

Now let {dk} be a sequence of positive numbers such that dk < 1 for each
k, and

∏∞
k=1 dk > 0. We apply the same construction with Q = [0, 1]n and the

sequence {ck = dk}. We then obtain a system of cubes {Q̃α} with α ∈ Σk,
k = 0, 1, . . . , such that the side of Q̃α is (d1 d2 . . . dk)/2k for each k. Let
Ẽ =

⋂∞
k=1

⋃
α∈Σk

Q̃α. Then

Ln(Ẽ) = lim
h→∞

Ln
 ⋃
|α|=h

Q̃α

 =
∞∏
h=1

dh > 0.
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For k = 1, 2, . . . and α ∈ Σk let xα be the center of Qα and let

sk =
d1d2 · · · dk−1(1− dk)

bk−1(1− b)
, tk =

d1d2 · · · dk−1

2k+1

(
1− 1− dk

1− b

)
,

vk =
d1d2 · · · dk

bk
.

It is easy to see that

sk
1
2

(
b

2

)k
+ tk =

1
2

(
d1d2 · · · dk

2k

)
,

sk
1
4

(
b

2

)k−1

+ tk =
1
4

(
d1d2 · · · dk−1

2k−1

)
,(8.1)

vk
1
2

(
b

2

)k
=

1
2

(
d1d2 · · · dk

2k

)
.

Denote by f0 the identity function on [0, 1]n and, for k = 1, 2, . . . , define

fk(x) =


fk−1(x), if x 6∈

⋃
α∈Σk

Pα,
fk−1(xα) + sk(x− xα) + tk

x−xα
‖x−xα‖ , if x ∈ Pα \Qα, α ∈ Σk,

fk−1(xα) + vk(x− xα), if x ∈ Qα, α ∈ Σk.

By (8.1) it follows that fk is continuous and maps Pα onto P̃α, Qα onto Q̃α,
the boundary of Pα onto the boundary of P̃α, and the boundary of Qα onto
the boundary of Q̃α.

If k > h then fk(x) = fh(x) for x 6∈
⋃
α∈Σk

Pα, and

|fk(x)− fh(x)| ≤ (d1 d2 . . . dk−1)
√

2
2k

<
1

2k−1
,

for x ∈
⋃
α∈Σk

Pα. Therefore the sequence {fk} is uniformly convergent to a
continuous function f . It is easily seen that f is one-to-one, f([0, 1]n) = [0, 1]n,
and f(E) = Ẽ. Moreover, by the compactness of [0, 1]n, f maps closed sets
into closed sets. Thus f is an homeomorphism.

To complete the proof, we show that f ∈ ACp((0, 1)n,Rn), for 1 ≤ p < n.
To this end define, for a measurable set E ∈ Rn,

µ(E) =
(

8
1− b

)p 1
Ln(B(0, 1))

∞∑
k=0

1
b(k+2)p

Ln
(
E ∩

⋃
α∈Σk

Qα

)
.

It is easy to see that, since b < 1,
∞∑
k=0

1
b(k+2)p

Ln
( ⋃
α∈Σk

Qα

)
=
∑
k

1
b(k+2)p

2kn
(
b

2

)kn
=

1
b2p

∑
k

bk(n−p) <∞.
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Hence µ is a finite measure that is absolutely continuous with respect to the
Lebesgue measure. Thus, in order to prove that f ∈ ACp((0, 1)n,Rn) it is
enough to verify that, for each ball B ⊂ (0, 1)n,

ωp(f,B) rn−p(B) ≤ µ(B).

If x, y ∈ Pα \Qα with α ∈ Σk, k = 1, 2, . . . , then we have

‖x− xα‖ ≥
1
2

(
b

2

)k
, ‖y − xα‖ ≥

1
2

(
b

2

)k
.

Since ∥∥∥∥ x− xα
‖x− xα‖

∥∥∥∥ ≤ ∥∥∥∥2(x− xα)
(b/2)k

∥∥∥∥ , ∥∥∥∥ y − xα
‖y − xα‖

∥∥∥∥ ≤ ∥∥∥∥2(y − xα)
(b/2)k

∥∥∥∥ ,
it follows that∥∥∥∥ x− xα

‖x− xα‖
− y − xα
‖y − xα‖

∥∥∥∥
≤
∥∥∥∥2(x− xα)

(b/2)k
− 2(y − xα)

(b/2)k

∥∥∥∥ = 2
(

2
b

)k
‖x− y‖.

Therefore, since f = fk on Pα \Qα, we have

‖f(x)− f(y)‖ ≤ sk ‖x− y‖+ 2 tk

(
2
b

)k
‖x− y‖(8.2)

≤ d1d2 · · · dk
bk

‖x− y‖

<
1
bk
‖x− y‖

for all x, y ∈ Pα \Qα.
Suppose now that B is a ball contained in (0, 1)n, and let k be maximal such

that B ⊂ Qα for some α ∈ Σk. We consider the two cases, B ∩
⋃
β∈Σk+2

Qβ =
∅ and B ∩

⋃
β∈Σk+2

Qβ 6= ∅. In the first case, by (8.2) applied to x, y ∈ B we
have

ω(f,B) ≤ 1
bk+2

2 r(B).

Therefore

ωp(f,B)rn−p(B) ≤
(

2
bk+2

)p
rn(B)

=
(

2
bk+2

)p Ln(B ∩
⋃
α∈Σk

Qα)
Ln(B(0, 1))

≤ µ(B).
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In the second case, since B ∩
⋃
β∈Σk+2

Qβ 6= ∅, and since B is not com-
pletely contained in Qγ with γ ∈ Σk+1, it follows that

r(B) ≥ 1− b
4

(
b

2

)k+1

.

Since B ⊂ Qα with α ∈ Σk, we have

ω(f,B) ≤ d1 d2 · dk
2k

≤ 1
2k
.

Therefore

ωp(f,B) rn−p(B) ≤ 1
2kp

rn−p(B)

<

(
8

(1− b)

)p 1
b(k+1)p

Ln(B ∩
⋃
α∈Σk

Qα)
Ln(B(0, 1))

≤ µ(B).

This completes the proof that f ∈ ACp((0, 1)n,Rn).
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