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ON A CONJECTURE OF CONWAY

JACOB LURIE

Abstract. The purpose of this paper is to prove a conjecture of Con-

way, which asserts that the class of combinatorial games constitutes a
“universally embedding” partially ordered abelian group.

1. Introduction

One of the virtues of Conway’s elegant theory of games is the simplicity
of its basic notions. Therefore it will not take us too far afield to recall the
foundational ideas.

The class of games is defined by the following inductive process: given any
two sets of previously constructed games {GL} and {GR}, there is another
game G = {GL|GR}. We call GL and GR the left and right options of G. One
defines a binary relation ≤ on the games by induction: G ≤ H unless there
is some left option of G such that H ≤ GL, or some right option of H such
that HR ≤ G. An easy induction shows that ≤ is reflexive and transitive. It
follows that the collection of pairs (G,H) such that G ≤ H and H ≤ G is
an equivalence relation on the class of games; we shall say that G and H are
equal if (G,H) belongs to this collection, and write G = H.

The sum of two games G and H is defined inductively as follows:

G+H = {GL +H,G+HL|GR +H,G+HR}
One can show easily by induction that if G ≤ G′ and H ≤ H ′, then G+H ≤
G′ +H ′. It follows that if G = G′ and H = H ′, then G+H = G′ +H ′. The
collection of (equivalence classes of) games forms a partially ordered abelian
group with respect to this addition. The identity element is the (equivalence
class of the) game {|} which has no left or right options, and the additive
inverse of a game G may be constructed by the following recursion:

−G = {−GR| −GL}.
We shall denote the group of equivalence classes of games by U. It is standard
to abuse terminology by referring to elements of U also as games. We shall
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resist this abuse and distinguish between elements of U and the games which
represent them.

We call a map φ between partially ordered sets order-preserving if x ≤ y
is equivalent to φ(x) ≤ φ(y). Now we can state more precisely Conway’s
conjecture:

Theorem 1. Let S ⊆ S′ be partially ordered abelian groups. Suppose
that φ : S → U is an order-preserving homomorphism. Then there exists an
order-preserving homomorphism φ′ : S′ → U such that φ′|S = φ.

Let us make a few comments about this result. First of all, it is essential to
note that the games form a proper class (even after identifying games which
are equal). It is implicit in the statement of the theorem that S′ and therefore
S are sets; otherwise we could take φ : S → U to be an isomorphism and S′

to be some larger group. In the event that the reader does not like using
proper classes, other versions of this embedding theorem can be formulated,
provided one has an appropriate dichotomy between “large” and “small”. For
example, if we change the definition of “game” so as to allow only countably
many options, then U is actually a set and the embedding theorem is true
(with the same proof) provided that S′ is countable.

We should also mention that Theorem 1 characterizes the partially ordered
group U up to isomorphism, provided that one admits a sufficiently strong
version of the axiom of choice (such as the existence of a well-ordering of the
universe). This is proved by a standard “back-and-forth” argument familiar
to model-theorists. The argument runs something like this: suppose that U′

is another partially ordered abelian group (necessarily with a proper class of
elements) for which Theorem 1 holds. We may filter U and U′ by subgroups
Uα and U′α, where α runs over all the ordinals, in such a way that each Uα
and U′α is a set and U =

⋃
αUα, U′ =

⋃
αU
′
α. (For example, take U′α to

be the subgroup of U′ generated by all elements of U′ having rank ≤ α, and
similarly for U.) Now we proceed inductively to define subgroups Vα ⊆ U,
V ′α ⊆ U

′ and order-preserving isomorphisms φα : Vα ' V ′α with the following
properties:

• Each Vα (and therefore also V ′α) is a set.
• If β < α, then Uβ ⊆ Vα and U′β ⊆ V ′α.
• If β < α, then Vβ ⊆ Vα and φα|Vβ = φβ (and therefore also V ′β ⊆ V ′α).

To start, we take V0 and V ′0 to be {0}. At limit stages, we let

Vλ =
⋃
α<λ

Vα, V ′λ =
⋃
α<λ

V ′α, φλ =
⋃
α<λ

φα.

It remains to handle successor stages. Suppose that Vα, V ′α, and φα have
been defined. Let W be the subgroup generated by V ′α and U′α. By the
universal embedding property for U, we may extend φ−1

α to an embedding



ON A CONJECTURE OF CONWAY 499

ψ : W → U. Now let Vα+1 be the subgroup generated by Uα and ψ(W ). By
the universal embedding property for U′, we can extend ψ−1 to an embedding
φα+1 : Vα+1 → U

′; now simply take V ′α+1 = φα+1(Vα+1). This completes the
induction. Now the union of the φα is the desired isomorphism between U
and U′.

Theorem 1 may be considered a complete description of the partially or-
dered group of games. However, if we impose finiteness conditions on our
games, then the issue becomes much more subtle. A game is called short if it
has only finitely many options, each of which is itself a short game (in other
words, the class of short games is defined in exactly the same way as the class
of games, except that only finitely many options are permitted). Theorem 1 is
not true for the class of short games, even if we require S′ to be a finite group.
For example, it is shown in [1] that no short game can have odd order. It is
not known which partially-ordered abelian groups occur as finitely generated
subgroups of the short games. However, this question has been answered for
cyclic groups: see [2].

2. Embedding for partially ordered sets

If we replace “partially ordered abelian group” by “partially ordered set”
in the statement of Conway’s conjecture, then the conjecture becomes much
easier to prove. In this section, we will give a proof of this easier result, which
we will call the weak embedding theorem. The purpose for this is twofold.
First, the proof of the weak embedding theorem is a good warm-up for the
proof of Theorem 1 (which we shall refer to as the strong embedding theorem):
the structure of the proof is the same, but the details are much simpler.
Second, we will actually use the weak embedding theorem in the course of
proving the strong one.

Let S be a set of games. We will call S hereditary if, for every x ∈ S, all
of its options xL and xR lie also in S. Note that any set S of games may be
enlarged to a hereditary set, simply by adjoining all options of elements of S,
together with the options of those options, and so forth.

Lemma 2. Suppose S is a hereditary set of games, and let L,R ⊆ S.
Assume that:

• The set L is closed downwards. That is, if x ∈ L, y ∈ S, and y ≤ x,
then y ∈ L.
• The set R is closed upwards. That is, if x ∈ R, y ∈ S, and y ≥ x,

then y ∈ R.
• The inequality x ≤ y holds, whenever x ∈ L, y ∈ R.

Let G be a game having as left options all elements of S which do not lie in
R, and as right options those elements of S which do not lie in L. Then for
any x ∈ S, G ≤ x if and only if x ∈ R, and x ≤ G if and only if x ∈ L.
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Proof. We prove this by induction on x. By symmetry it suffices to prove
the first claim. If G ≤ x, then x cannot be a left option of G, so x ∈ R.
Conversely, if G � x, then we have either xR ≤ G or x ≤ GL. In the first
case, the inductive hypothesis implies that xR ∈ L, so that xR � x implies
x /∈ R. In the second case, x ≤ y for some y /∈ R, so again x /∈ R. �

Using this lemma, we now prove the weak embedding theorem.

Theorem 3. Let S ⊆ S′ be partially ordered sets, and let φ be an order-
preserving map from S to the games. Then φ admits an extension to an
order-preserving map from S′ to the games.

Proof. Consider all partial extensions ψ of φ, partially ordered so that
ψ ≤ ψ′ if ψ′ extends ψ. This is a nonempty partial order which admits
inductive limits. Therefore it has a maximal element by Zorn’s lemma. (The
fact that this partial order is actually a proper class introduces a technicality,
but it is easy to sidestep since every chain in this partial order is bounded in
size.) Without loss of generality, we may replace φ by this maximal element
and S by its domain; it now suffices to show that S = S′. Suppose otherwise,
and choose s ∈ S′ − S. We will extend φ to S ∪ {s}, thereby contradicting
the maximality of φ.

Choose a hereditary set M of games containing φ(S), and let L = {x ∈
M : (∃t ∈ S)[x ≤ φ(t)∧ t ≤ s]} and R = {x ∈M : (∃t ∈ S)[x ≥ φ(t)∧ t ≥ s]}.
Then Lemma 2 guarantees the existence of a game G such that t ≤ s if and
only if φ(t) ≤ G and t ≥ s if and only if φ(t) ≥ G, for any t ∈ S. Thus we
can extend φ to S ∪ {s} by setting φ(s) = G. �

Our proof of the strong embedding theorem will proceed in much the same
way. Using Zorn’s lemma, we can reduce to the problem of extending the
definition of our map to a single new element. In other words, we are given a
partially ordered abelian group S (which, for simplicity, we will identify with
its image in the group of games), together with a description of a new element
that we would like to adjoin. We must produce a game G which matches this
description. At first, it might not be obvious how to find G. In the preceding
argument, we first enlarged S to a hereditary set. Then Lemma 2 guarantees
that the naive attempt to construct G actually works.

In the context of the strong embedding theorem, G will need to satisfy
more complicated conditions. It will therefore be necessary to enlarge S in
two different ways: so that it is hereditary and so that it is “justified” (a
notion which we shall introduce later). In order to carry out the second
sort of enlargement, it will be necessary to add to S games which satisfy
complicated conditions of their own. Fortunately, the properties required of
these auxiliary games are less complicated than the properties required of G,
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and so it is possible to construct these games directly. That is the subject of
the next section.

3. Construction of auxiliary games

The strong embedding theorem implies that every partially ordered abelian
group is a subgroup of the group U. On the other hand, general partially or-
dered abelian groups can look somewhat unusual. It is therefore inevitable
that a proof of Theorem 1 must hide some method for constructing games sat-
isfying unusual-looking inequalities. In our proof, the construction is hidden
in this section.

We begin by recalling that there is a natural embedding of the ordinals into
the class of games. For every ordinal α, we identify α with the game {β|}.
Here β ranges over all of the ordinals smaller than α, which we also identify
with games via the same formula. The ordering on the ordinals induced by
their inclusion into the games agrees with their usual ordering.

Note that the game-theoretic sum of two ordinals does not agree with their
order-type sum (though the former does turn out to be another ordinal). Thus
there is a potential for confusion in expressions such as α+ β; we will always
take this to mean the game-theoretic sum of α and β.

We shall need only the following simple property of the ordinals in our
discussion:

Lemma 4. Let S be any set of games. Then there exists an ordinal α such
that x < α for all x ∈ S.

(Of course, x < α simply means that x ≤ α and α � x.)

Proof. Since the class of games is constructed recursively, it admits an
ordinal rank defined (recursively) by the following condition: the rank of G
is the smallest ordinal which is larger than the rank of any option of G. One
can verify easily by induction that if the rank of G is less than α, then G < α.
It now suffices to choose α larger than the ranks of all elements of S. �

Now we are well-equipped to produce the games we will need.

Lemma 5. Let {Hi} be a set of games such that each Hi � 0, and let α
be an ordinal. Then there exists a game G ≥ 0 such that G � Hi for each i,
and yet nG ≥ α for any n > 1.

Proof. Enlarging α if necessary, we may assume that α is larger than each
−Hi. Let G = {α+α|Hi}. Then G � Hi by construction. Since each Hi � 0,
we have G ≥ 0.

To prove nG ≥ α for n > 1, it suffices by the positivity of G to prove that
α ≤ 2G. Suppose otherwise. Then either 2G ≤ αL or (2G)R ≤ α. In the first
case, we obtain 2G ≤ β, which is impossible since it implies β ≤ G+ (α+α).
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In the second case we have G+Hi ≤ α, so that α � (α+α)+Hi, or α � −Hi,
contrary to our assumption. �

We now prove a stronger version of the preceding lemma.

Lemma 6. Let A, {Bn}n>0, and {Cn}n>0 be sets of games. Suppose that
a � b1 for all a ∈ A, b1 ∈ B1. Then there exists a game x with the following
properties:

• a � x for all a ∈ A.
• bn ≤ nx for all bn ∈ Bn.
• nx � cn for all cn ∈ Cn.

Proof. Consider first the easier task of finding a game satisfying the con-
ditions listed above, but only for n = 1. In this case, the arithmetic of games
does not enter into the question: we only need x to satisfy certain inequali-
ties. Moreover, the hypotheses guarantee that these inequalities are consistent
with one another. It follows from the weak embedding theorem that there is
a game x0 satisfying these inequalities. Without loss of generality, we may
replace x by x − x0, A by {a − x0 : a ∈ A}, Bn by {b − nx0 : b ∈ Bn}, and
Cn by {c− nx0 : c ∈ Cn}. After carrying out this replacement, we know the
following:

• Each a ∈ A is � 0.
• Each b1 ∈ B1 is ≤ 0.
• Each c1 ∈ C1 is � 0.

Furthermore, since every set of games is bounded by some ordinal, there is
an ordinal α such that α > bn, cn for all bn ∈ Bn, cn ∈ Cn. Thus it suffices to
find a game x such that x ≥ 0, nx ≥ α for n > 1, and x � a for a ∈ A. The
existence of this game follows from Lemma 5. �

4. Framings

We have said earlier that the proof of Theorem 1 can be reduced to the
problem of finding a single game G with certain properties which relate it to
some set S of previously constructed games. In the case of the weak embedding
theorem, these properties were purely order-theoretic: we had specified for us
which elements of S should be smaller than G, and which should be larger
than G. In the case of the strong embedding theorem, the arithmetic of the
games is also involved: we must specify how the elements of S compare to all
multiples of G. This motivates the following definition:

Definition 7. Let S be a subgroup of U. A framing of S is a collection
of subsets Si ⊆ S, indexed by the integers, with the following properties:

• Si + Sj ⊆ Si+j .
• g ∈ S0 if and only if g ≥ 0.
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If S′ is a subgroup of U containing S, then a framing of S′ extends a framing
of S if Si = S′i ∩ S.

The idea is that Si should be the set of elements s such that s ≥ iG, where
G is the game which has yet to be constructed.

Lemma 8. Let S ⊆ S′ be subgroups of U. Then any framing of S extends
to a framing of S′.

Proof. Set S′n = {g′ ∈ S′ : (∃g ∈ Sn)[g′ ≥ g]}. �

Definition 9. Let S be a framed subgroup of U, and suppose g /∈ Sn for
some g ∈ S, n > 1. We say that (g, n) is justified if there exists x ∈ S−1 such
that g + x /∈ Sn−1. Similarly, if g /∈ S−n, we say (g,−n) is justified if there
exists x ∈ S1 such that g + x /∈ S−n+1.

Here is the idea behind the definition. We would like to find a game G with
the property that Sn = {g ∈ S : nG ≤ g}. Now the general philosophy by
which the games are constructed asserts that an inequality nG ≤ g will hold
unless there is a reason to the contrary. If the pair (g, n) is justified, then we
can provide such a reason by looking at the Sk for |k| < n.

Suppose that S ⊆ S′ are (compatibly) framed subgroups of U. If g ∈ S,
g /∈ Sn, and (g, n) is justified with respect to S, then (g, n) is justified with
respect to S′. On the other hand, if (g, n) is not justified with respect to S,
we shall now show that S′ can be chosen so that (g, n) becomes justified in
S′.

Lemma 10. Let S be a framed subgroup of U, and suppose g /∈ Sn. Then
there is a framed subgroup U extending S in which (g, n) is justified.

Proof. Without loss of generality we assume n > 1. We will obtain the
desired extension by adjoining a single game x to S. Let x be an arbitrary
game, and let S′ be the group generated by S and x. In order to guarantee
that (g, n) is justified, we will frame S′ so as to ensure that x ∈ S′−1 and
g + x /∈ S′n−1.

Set
S′k = {y ∈ S′ : (∃i ≥ 0)(∃z ∈ Sk+i)[z + ix ≤ y]}

Note that x ∈ S′−1. To complete the proof, it suffices to show that it is possible
to choose x such that the {S′k} give a framing of S′ extending the framing of
S, and such that g + x /∈ S′n−1. We will now examine more carefully what is
required of x to make this so.

First, let us determine when the formula above describes a framing on S′.
It is obvious that S′k + S′l ⊆ S′k+l and that {s ∈ S′ : s ≥ 0} ⊆ S′0. Thus, to
have a framing, we need only verify that y ≥ 0 for every y ∈ S′0. Equivalently,
we must have ix ≥ −z for each z ∈ Si, i ≥ 0. For i = 0, this is immediate.
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We need to know not only that S′ is framed, but that its framing is com-
patible with the framing on S. It is clear that Si ⊆ S′i; we must show the
reverse inequality S′i ∩ S ⊆ Si. In other words, we must show that z ∈ Sk+i,
y ∈ S, y ≥ z + ix implies y ∈ Sk. This will hold if z ∈ Sk+i, y ∈ S − Sk
implies ix � y − z. If i = 0, then this follows automatically since Sk is closed
upwards.

Finally, to ensure that g + x /∈ S′n−1, we must guarantee three things:

• g + x � y for y ∈ Sn−1.
• g + x � y + x for y ∈ Sn. This is automatic since g /∈ Sn.
• g + x � y + ix for y ∈ Sn+i−1, i > 1.

To rephrase, we must have y − g � x for y ∈ Sn−1, and (i − 1)x � g − y
for y ∈ Sn+i−1, i > 1.

We want to apply Lemma 6 with A = {y − g : y ∈ Sn−1}, Bi = {−z :
z ∈ Si}, Ci = {g − y : y ∈ Sn+i} ∪ {y − z : z ∈ Sk+i, y ∈ S − Sk}. This will
guarantee the existence of x having the desired properties, provided that there
is no outright contradiction due to an inequality a ≤ b1 for a ∈ A, b1 ∈ B1.
In this case, we would have y − g ≤ −z for some y ∈ Sn−1, z ∈ S1. But then
y + z ≤ g so that g ∈ Sn, contrary to our assumption. �

5. The end of the proof

Now that we have Lemma 10, the hard work is essentially done.

Lemma 11. Let S be a framed subgroup of U. Then there exists a framed
subgroup S′ extending S such that for any g /∈ Sn, g ∈ S, (n 6= −1, 0, 1), the
pair (g, n) is justified in S′.

Proof. Choose a well-ordering of the set of all pairs (g, n) as above, and
index them by an ordinal α. We define a transfinite sequence of framed
subgroups S(β), so that S(β) extends S(γ) for β > γ, by induction. For
β = 0, let S(β) = S. If β is a limit ordinal, we let S(β) be the union of all
S(γ) for γ < β (with the induced framing). Finally, let S(β + 1) be a framed
subgroup of the games extending S(β) in which the βth pair (g, n) is justified.
The framed subgroup S(α) has the desired property. �

Let us call a framed subgroup S of U justified if, whenever g /∈ Sn, n 6=
−1, 0, 1, we have (g, n) justified in S. Call a subset S of U hereditary if there
exists a hereditary set of games S̃ having image S in U. Note that a union of
hereditary subsets of U is itself hereditary.

Lemma 12. Any framed subgroup of U can be extended to a justified, hered-
itary framed subgroup.
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Proof. Let S be a framed subgroup of U. We define a sequence of framed
subgroups

S(0) ⊆ S(1) ⊆ S(2) ⊆ · · ·
as follows. Let S(0) = S.

Now assume that the framed group S(i) has been defined, let S̃(i) be a
hereditary set of games whose image in U contains S(i), and let S′(i) denote
the subgroup generated by the image of S̃(i). By Lemma 8, we can extend the
framing of S(i) to a framing of S′(i). Now let S(i+1) be a framed subgroup of
the games containing S′(i) in which for every g ∈ S′(i)−S′(i)n (n 6= −1, 0, 1),
(g, n) is justified in S(i+ 1). Then the union of the S(i) is the desired framed
subgroup of U. �

We can now show that it is possible to find the extensions we need to adjoin
a single element.

Lemma 13. Let S be a framed subgroup of U. Then there exists a game
x such that Sn = {y ∈ S : nx ≤ y} for every integer n.

Proof. Without loss of generality, we may enlarge S so that S is hereditary
and justified. Let S̃ denote a hereditary set of games with image S in U, and
let S̃i denote the preimage of Si in S̃. We define the game x to be such that
its left options are the elements of S̃ not contained in S̃1, and its right options
are the elements of S̃ not contained in −S̃−1.

We now prove that Sn = {y : nx ≤ y} by induction on |n|. For n = 0,
the assertion follows from the definition of a framing. For |n| = 1, we simply
apply Lemma 2. Thus we may assume |n| > 1. We will assume that n > 0;
the proof in the case where n < 0 is the same.

First suppose that y /∈ Sn. Then, since (y, n) is justified, there exists
z ∈ S−1 such that y + z /∈ Sn−1. By the inductive hypothesis, we have
−x ≤ z and (n− 1)x � y + z. Therefore nx � y.

Now suppose that y ∈ Sn, and identify y with one of its representatives in
S̃. We must prove that nx ≤ y. Otherwise, we have either y ≤ xL + (n− 1)x
or yR ≤ nx. In the first case, the inductive hypothesis implies that xL − y ∈
S−n+1, so that xL ∈ S1, a contradiction. In the second case, what we have
shown implies −yR ∈ S−n, so that y − yR ∈ S0, so that yR ≤ y, also a
contradiction. �

We now have the tools we need to establish the main theorem of this paper.

Proof of Theorem 1. Consider the collection of all partial extensions of φ,
partially ordered by extension. By Zorn’s lemma, this collection possesses
a maximal element (as in the proof of the weak embedding theorem, the
fact that this collection forms a proper class does not pose any real difficulty).
Replacing φ by this maximal element, we may assume that φ is itself maximal.
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It now suffices to show that S = S′. Suppose otherwise, and choose s ∈ S′−S.
We will show that it is possible to extend φ to the subgroup of S′ generated
by S and s. This will contradict the maximality of φ and complete the proof.

Let us identify S with its image under φ. Let Sn = {t ∈ S : ns ≤ t}.
This is a framing of S. By Lemma 13, there exists a game x such that
Sn = {t ∈ S : nx ≤ t}. Then we can extend φ by setting φ(s) = x. �

Remark 14. We used the axiom of choice several times in the course of
proving the embedding theorem. The constructively minded reader may note
that we can eliminate all appeals to the axiom of choice if we are provided with
a well-ordering of S′ and a set of games containing representatives for each
element of φ(S). With these additional hypotheses, the proof of Theorem
1 that we have given is valid in any admissible set satisfying the axiom of
infinity.
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