Illinois Journal of Mathematics Volume 46, Number 2, Summer 2002, Pages 477–490 S 0019-2082

ON PROBLEMS BY BAER AND KULIKOV USING V = L

LUTZ STRÜNGMANN

ABSTRACT. Let T be a torsion abelian group and λ a cardinal. Among all torsion-free abelian groups H of rank less than or equal to λ satisfying $\operatorname{Ext}(H,T) = 0$ a group G is called λ -universal for T if it is universal with respect to group-embedding. We show that in Gödel's constructible universe (V = L) there always exists a λ -universal group for T if T has only finitely many non-trivial bounded p-components. This answers a question by Kulikov in the affirmative. Moreover, we prove that in V = L for a large class of torsion-free abelian groups G there exists a completely decomposable group C such that $\operatorname{Ext}(G,T') = 0$ if and only if $\operatorname{Ext}(C,T') = 0$ for any torsion abelian group T'. This is related to a question of Baer.

Introduction

In 1936 R. Baer [B] asked for a characterization of all pairs of torsion-free abelian groups G and torsion abelian groups T satisfying Ext(G,T) = 0. This is a simpler version of the problem of characterizing the pairs G and T such that any mixed abelian group M with torsion subgroup T and torsion-free quotient $M/T \cong G$ has to split, i.e., that $M \cong T \oplus G$ in a canonical way. Baer himself [B] gave such a characterization for countable G. The question was first considered again by Wallutis and the author [SW] who, in the framework of cotorsion theories that are singly cogenerated by a torsion-free abelian group G (as introduced by Salce [S]), introduced the class $\mathcal{TC}(G)$ of all torsion abelian groups T satisfying Ext(G,T) = 0. The characterization of the class $\mathcal{TC}(G)$ for torsion-free abelian groups G is closely related to Griffith's solution of the Baer problem [G], which in this terminology can be stated as follows: A torsion-free abelian group G is free if and only if $\mathcal{TC}(G)$ is the class of all torsion groups, i.e., G is free if and only if every mixed abelian group M with $M/t(M) \cong G$ splits. For rational groups $R \subset \mathbb{Q}$, and hence for completely decomposable groups C, a complete description was obtained for $\mathcal{TC}(R)$ and

©2002 University of Illinois

Received July 9, 2001; received in final form November 18, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20K15, 20K20, 20K35, 20K40. Secondary 18E99, 20J05.

The author was supported by a MINERVA fellowship.

 $\mathcal{TC}(C)$, respectively (see [SW]). Moreover, a necessary and sufficient criterion was given for a class of torsion abelian groups \mathfrak{C} to be of the form $\mathcal{TC}(C)$ for some completely decomposable group C. A similar result was obtained by the author [St] for rational groups instead of completely decomposable groups, and it was shown that any finite rank torsion-free abelian group Gsatisfies $\mathcal{TC}(G) = \mathcal{TC}(R)$ for some rational group R. In Section 2 of this paper we will prove that the criterion from [SW] is satisfied for a large class of torsion-free abelian groups, assuming Gödel's universe of constructibility. Hence, for a group G in this class, we have $\mathcal{TC}(G) = \mathcal{TC}(C)$ for some completely decomposable group C. Since $\mathcal{TC}(C)$ is well understood, this gives a characterization of $\mathcal{TC}(G)$ for torsion-free abelian groups G in this class. We are not able to show that in V = L every torsion-free abelian group is of this kind, but we formulate a conjecture (" \mathcal{TC} -Conjecture") stating that this is in fact the case.

In Section 3 we consider Kulikov's problem on the existence of λ -universal groups. As defined in the abstract, a torsion-free abelian group G is λ universal for a torsion abelian group T and a cardinal λ if G is of rank less than or equal to λ , $\operatorname{Ext}(G,T) = 0$, and every torsion-free abelian group Hof rank less than or equal to λ satisfying $\operatorname{Ext}(H,T) = 0$ embeds into G. Clearly, the existence of a λ -universal group G for T answers the question which torsion-free groups H (of cardinality at most λ) satisfy $\operatorname{Ext}(H,T) = 0$: namely, these groups are precisely the subgroups of G. Kulikov [KN] asked if for uncountable λ and arbitrary T there is always a λ -universal group for T. We first deal with the case when λ is a positive integer or ω , and we obtain satisfactory classification results in this case. Moreover, we show that in V = L for every λ and every torsion abelian group T with only finitely many non-trivial bounded p-components there is always a λ -universal group for T.

Our notations are standard; notations that are not explained here can be found in [F] or [EM]. All groups under consideration are abelian. The set of primes is denoted by Π . All rational groups $R \subseteq \mathbb{Q}$ are assumed to contain the element 1. Moreover, we identify rational groups with their types since this does not cause any confusion. However, if S and R are rational groups, we write $S \subseteq R$ if we mean set inclusion and $S \leq R$ if we mean inequality as types.

1. Preliminaries

We first recall a definition from [SW].

DEFINITION 1.1. Let G be a (torsion-free) group. By $\mathcal{TC}(G)$ we denote the class of all torsion groups T such that Ext(G,T) = 0. It is easy to see that $\mathcal{TC}(G)$ is closed under taking epimorphic images and contains all finite groups. Moreover, a torsion group T is in $\mathcal{TC}(G)$ if and only if its reduced part is in $\mathcal{TC}(G)$.

We shall need the following lemma, which is well known. For the convenience of the reader we provide a proof.

First recall that a basic subgroup B of a torsion group T is the direct sum $B = \bigoplus_{p \in \Pi} B_p$ of basic subgroups B_p of the *p*-components T_p ; for each prime p, B_p is a direct sum of cyclic *p*-groups, B_p is a pure subgroup of T_p , and the quotient T_p/B_p is divisible (see [F]).

LEMMA 1.2. Let T be a torsion group and $B \subseteq T$ a basic subgroup of T. Then, for any group G, T is an element of $\mathcal{TC}(G)$ if and only if B is.

Proof. The short exact sequence $0 \to B \to T \to T/B \to 0$ induces the exact sequence $\operatorname{Ext}(G, B) \to \operatorname{Ext}(G, T) \to \operatorname{Ext}(G, T/B) = 0$, where the last term is zero since T/B is divisible. Thus $\operatorname{Ext}(G, B) = 0$ implies $\operatorname{Ext}(G, T) = 0$, i.e., if $B \in \mathcal{TC}(G)$ then $T \in \mathcal{TC}(G)$.

Conversely, assume $T \in \mathcal{TC}(G)$. By [F, Theorem 36.1] *B* is an epimorphic image of *T* and thus also belongs to $\mathcal{TC}(G)$.

It is well known that the functor Ext(G, -) is closed under taking epimorphic images, but in general not closed under taking (pure) subgroups. However, if we restrict ourselves to the class $\mathcal{TC}(G)$, then this property holds.

LEMMA 1.3. Let G be any group and T a torsion group. Then $T \in \mathcal{TC}(G)$ if and only if $T' \in \mathcal{TC}(G)$ for all pure subgroups T' of T such that $|T'| \leq |G|$. Moreover, $T' \in \mathcal{TC}(G)$ for all pure subgroups T' of T.

Proof. Assume that $T \in \mathcal{TC}(G)$ and let T' be a pure subgroup of T. Choose a basic subgroup B' of T'. Then B' is pure in T, and by [F, Corollary 36.2] B' is an epimorphic image of T. Thus $B' \in \mathcal{TC}(G)$, and hence $T' \in \mathcal{TC}(G)$ by Lemma 1.2. Conversely, assume that $T \notin \mathcal{TC}(G)$, but $T' \in \mathcal{TC}(G)$ for all pure subgroups T' of T of cardinality less than or equal to |G|. Since $T \notin \mathcal{TC}(G)$, T is infinite. Let

$$(1.1) 0 \longrightarrow T \xrightarrow{\operatorname{id}_T} M \xrightarrow{\varphi} G \longrightarrow 0$$

be a non-splitting short exact sequence. For $g \in G$ choose $m_g \in \varphi^{-1}(\{g\})$ and put $M' = \langle m_g : g \in G \rangle \subseteq M$. Note that |M'| = |G|. By [F, Proposition 26.2] there exists a pure subgroup $M^* \subseteq M$ such that $M' \subseteq M^*$ and $|M^*| = |M'| = |G|$. We obtain the short exact sequence

(1.2)
$$0 \longrightarrow T' \xrightarrow{\operatorname{id}_{T'}} M^* \xrightarrow{\varphi \upharpoonright_{M^*}} G \longrightarrow 0,$$

where $T' = M^* \cap T$. Since T' is pure in T the sequence splits and we obtain $\psi \in \text{Hom}(G, M^*)$ such that $\varphi \upharpoonright_{M^*} \circ \psi = \text{id}_G$. Thus also $\varphi \circ \psi = \text{id}_G$ and therefore (1.1) splits, which is a contradiction.

To conclude this section we recall some of the basic results obtained in [St, Theorem 2.5] and [SW, Proposition 2.2 and Corollary 3.7], which we shall need in the next sections. For a torsion-free group G we denote by OT(G) its outer type (see [A, page 84]).

PROPOSITION 1.4 ([St], [SW]). Let G be a torsion-free group and T a reduced torsion group with T_p its p-component (where p is a prime). Then we have:

- (i) If $G \subseteq \mathbb{Q}$, then $T \in \mathcal{TC}(G)$ if and only if the following conditions are satisfied, where $r_p = \chi_p^G(1)$:
 - (a) T_p is bounded for all p such that $r_p = \infty$.
 - (b) $T_p = 0$ for almost all p such that $r_p \neq 0$.
- (ii) If G is countable, then there exists a completely decomposable group C such that $\mathcal{TC}(G) = \mathcal{TC}(C)$.
- (iii) If G is of finite rank, then $\mathcal{TC}(G) = \mathcal{TC}(OT(G))$.

2. Characterization of $\mathcal{TC}(G)$ in V = L

In [B] Baer asked to characterize $\mathcal{TC}(G)$ for all torsion-free groups G. For countable groups Proposition 1.4 gives a satisfactory description of $\mathcal{TC}(G)$ since the structure of $\mathcal{TC}(C)$ is well understood for completely decomposable groups C (see [SW]). In this section we shall show that assuming V = L a large class of torsion-free groups G satisfy $\mathcal{TC}(G) = \mathcal{TC}(C)$ for some completely decomposable group C.

We first recall Theorem 3.6 from [SW], which characterizes the classes of torsion groups that are of the form $\mathcal{TC}(C)$ for some completely decomposable group C.

THEOREM 2.1 ([SW]). Let \mathfrak{C} be a class of torsion groups. Then $\mathfrak{C} = \mathcal{TC}(C)$ for some completely decomposable group C if and only if the following conditions are satisfied:

- (i) \mathfrak{C} contains all torsion cotorsion groups.
- (ii) C is closed under epimorphic images.
- (iii) For all primes p, $\bigoplus_{n \in \omega} \mathbb{Z}(p^n) \in \mathfrak{C}$ if and only if \mathfrak{C} contains all p-groups.
- (iv) If P is an infinite set of primes, then $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathfrak{C}$ if and only if $\bigoplus_{p \in P} T_p \in \mathfrak{C}$ for all p-groups $T_p \in \mathfrak{C}$.
- (v) If P is an infinite set of primes such that $\bigoplus_{p \in P} \mathbb{Z}(p) \notin \mathfrak{C}$, then there exists an infinite subset P' of P such that $\bigoplus_{p \in X} \mathbb{Z}(p) \notin \mathfrak{C}$ for all infinite $X \subseteq P'$.

Note that, by Proposition 1.4, for countable torsion-free groups G, $\mathcal{TC}(G)$ satisfies all conditions of Theorem 2.1, Moreover, it was shown in [SW, Corollary 3.9] that under the assumption V = L Theorem 2.1(iii) is always satisfied for $\mathcal{TC}(G)$ when G is a torsion-free group.

LEMMA 2.2 (V = L, [SW]). Let G be a torsion-free group and let p be any prime number. Then the following are equivalent:

- (i) $\mathcal{TC}(G)$ contains all p-groups.
- (ii) $\mathcal{TC}(G)$ contains $\bigoplus_{n \in \omega} \mathbb{Z}(p^n)$.
- (iii) $\mathbb{Z}_{(p)} \otimes G$ is a free $\mathbb{Z}_{(p)}$ -module.

Hence, Theorem 2.1(iii) holds for $\mathcal{TC}(G)$.

The following example of a Shelah group shows that Lemma 2.2 does not hold in ZFC (see [SW, Lemma 3.10]).

EXAMPLE 2.3 (MA + \neg CH, [SW]). For any prime number p there exists a non-free $\mathbb{Z}_{(p)}$ -module G of cardinality \aleph_1 such that $\operatorname{Ext}(G, \bigoplus_{n \in \omega} \mathbb{Z}(p^n)) = 0$.

Next we prove that Theorem 2.1(iv) holds under the assumption V = L. We need the following basic lemma on the vanishing of Ext (see [ET, Lemma 1]).

LEMMA 2.4 ([ET]). Let T be a torsion group. Suppose that the torsionfree group G is the union of a continuous ascending chain of subgroups G_{α} $(\alpha < \lambda)$ such that $T \in \mathcal{TC}(G_0)$ and $T \in \mathcal{TC}(G_{\alpha+1}/G_{\alpha})$ for all $\alpha < \lambda$. Then $T \in \mathcal{TC}(G)$.

Using Lemma 1.3 and Theorem XII.1.15 from [EM] it is now easy to prove that a torsion-free group G satisfies Ext(G, T) = 0 (where T is a torsion group) if and only if G is the union of a continuous well-ordered ascending chain $\{G_{\alpha} : \alpha < \lambda\}$ of subgroups $(G_0 = 0)$ such that $|G_{\alpha}| < |G|$ and $\text{Ext}(G_{\alpha+1}/G_{\alpha}, T) = 0$ for all $\alpha < \lambda$. But we can do even better using results from [BFS, Theorem 3.1].

PROPOSITION 2.5 (V = L). Let G be a torsion-free group of infinite rank and T a torsion group. Then Ext(G,T) = 0 if and only if G is the union of a continuous well-ordered ascending chain $\{G_{\alpha} : \alpha < \lambda\}$ of subgroups $(G_0 = 0)$ such that $G_{\alpha+1}/G_{\alpha}$ is countable, $|G_{\alpha}| < |G|$, and $\text{Ext}(G_{\alpha+1}/G_{\alpha},T) = 0$ for all $\alpha < \lambda$.

Proof. The proof of [BFS, Theorem 3.1] carries over verbatim to the present situation. All one has to do is to replace the property of being Whitehead by the condition Ext(G, T) = 0.

PROPOSITION 2.6 (V = L). Let G be a torsion-free group and let T be a torsion group. If G is of singular cardinality λ , then Ext(G,T) = 0 if and only if Ext(H,T) = 0 for all $H \subset G$ of smaller cardinality than λ .

Proof. See [E, Theorem 5.5] or the proof of [BFS, Theorem 3.1] which uses Shelah's Singular Compactness Theorem [Sh]. The notion of freeness is defined as follows: G is "free" if and only if there exists a chain $\{G_{\alpha}\}$ of the type described in Proposition 2.5. It is readily checked that this definition satisfies the assumptions of Shelah's Singular Compactness Theorem. \Box

We remark that Proposition 2.6 does not hold in ZFC; see [SS1].

THEOREM 2.7 (V = L). Let G be a torsion-free abelian group. If P is an infinite set of primes, then $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathcal{TC}(G)$ if and only if $\bigoplus_{p \in P} T_p \in \mathcal{TC}(G)$ for all p-groups $T_p \in \mathcal{TC}(G)$. In particular, Theorem 2.1(iv) holds for $\mathcal{TC}(G)$.

Proof. We first note that we only have to prove that $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathcal{TC}(G)$ implies $\bigoplus_{p \in P} T_p \in \mathcal{TC}(G)$ for all *p*-groups $T_p \in \mathcal{TC}(G)$; the converse implication is trivial.

We use induction on the cardinality of G. If G is countable, then the claim is true by Proposition 1.4. Hence assume that $\lambda = |G|$ is greater than or equal to \aleph_1 . If λ is singular, then $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathcal{TC}(G)$ implies that $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathcal{TC}(G)$ $\mathcal{TC}(H)$ for all subgroups H of G of smaller cardinality. Moreover, $\mathcal{TC}(G) \subseteq$ $\mathcal{TC}(H)$. Hence the induction hypothesis implies that $\bigoplus_{p \in P} T_p \in \mathcal{TC}(H)$ for all p-groups $T_p \in \mathcal{TC}(G) \subseteq \mathcal{TC}(H)$. Thus Proposition 2.6 shows that $\bigoplus_{p \in P} T_p \in \mathcal{TC}(G)$ for all p-groups $T_p \in \mathcal{TC}(G)$. Finally, assume that λ is regular. Fix $T_p \in \mathcal{TC}(G)$ for $p \in P$. By Lemma 1.3, we may assume without loss of generality that T_p is of cardinality less than or equal to λ . Let $G = \bigcup_{\beta < \lambda} G_{\beta}$ be an appropriate λ -filtration of G of the type described in Proposition 2.5, i.e., such that $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathcal{TC}(G_{\alpha+1}/G_{\alpha})$ for all $\alpha < \lambda$. Similarly, for each $p \in P$ choose λ -filtrations $G = \bigcup_{\beta < \lambda} G_{\beta,p}$ of G such that $T_p \in \mathcal{TC}(G_{\alpha+1,p}/G_{\alpha,p})$ for all $\alpha < \lambda$. It is well known that for each $p \in P$ there is a cub D_p of λ such that $G_{\beta} = G_{\beta,p}$ for all $\beta \in D_p$. Since $\lambda = cf(\lambda) > \aleph_0$, the intersection $D = \bigcap_{p \in P} D_p$ is still a cub in λ . Thus, for $\alpha < \gamma \in D$ we have $\bigoplus_{p \in P} \mathbb{Z}(p) \in \mathcal{TC}(G_{\gamma}/G_{\alpha})$ and $T_p \in \mathcal{TC}(G_{\gamma}/G_{\alpha})$ for all $p \in P$. Therefore, by the induction hypothesis, for $\alpha < \gamma \in D$ we obtain $\bigoplus_{p \in P} T_p \in \mathcal{TC}(G_{\gamma}/G_{\alpha})$. Hence, by [EM, Proposition XII.1.14] or Lemma 2.4, we have $\bigoplus_{p \in P} T_p \in \mathcal{TC}(G)$.

Note that Theorem 2.7 already implies that for a large class of torsion-free groups G there exists a completely decomposable group C such that $\mathcal{TC}(G) = \mathcal{TC}(C)$, if we assume V = L. In fact, this holds for all torsion-free groups G satisfying Theorem 2.1(v).

However, we consider condition (v) in V = L. We will prove that the smallest torsion-free group G violating Theorem 2.1(v) (if it exists) must be of size \aleph_1 in V = L.

THEOREM 2.8 (V = L). Let G be a torsion-free group and assume that for all groups H of size less than or equal to \aleph_1 Theorem 2.1(v) is satisfied. If P is an infinite set of primes such that $\bigoplus_{p \in P} \mathbb{Z}(p) \notin \mathcal{TC}(G)$, then there exists an infinite subset P' of P such that $\bigoplus_{p \in X} \mathbb{Z}(p) \notin \mathcal{TC}(G)$ for all infinite $X \subseteq P'$. Hence Theorem 2.1(v) is satisfied for G.

Proof. Assume that the claim is not true and let G be a counterexample of minimal cardinality. By assumption $|G| = \lambda \geq \aleph_2$, and for all groups H of smaller cardinality than λ Theorem 2.1(v) holds. If λ is singular, then, by Proposition 2.6, $\bigoplus_{p \in P} \mathbb{Z}(p) \notin \mathcal{TC}(G)$ implies that $\bigoplus_{p \in P} \mathbb{Z}(p) \notin \mathcal{TC}(H)$ for some subgroup H of G of smaller cardinality. Thus, by assumption, our claim holds for H and therefore also for G. Finally, assume that λ is regular. For any infinite subset X of P put $T_X = \bigoplus_{p \in X} \mathbb{Z}(p)$. Hence $T_P \notin \mathcal{TC}(G)$. Choose a λ -filtration $G = \bigcup_{\alpha \in \lambda} G_{\alpha}$ such that $T_P \notin \mathcal{TC}(G_{\alpha+1}/G_{\alpha})$ if, for some $\beta > \alpha$, $T_P \notin \mathcal{TC}(G_\beta/G_\alpha)$. Let $W = \{P_\alpha : \alpha \in 2^{\aleph_0}\}$ be an enumeration of all infinite subsets of P. Note that $|W| = 2^{\aleph_0} = \aleph_1$ since we work in V = L. Since G is a counterexample to Theorem 2.1(v) for every $P_{\alpha} \in W$, there exists a set $X_{\alpha} \in W$ such that $X_{\alpha} \subseteq P_{\alpha}$ and $T_{X_{\alpha}} \in \mathcal{TC}(G)$. Choose λ -filtrations $G = \bigcup_{\beta < \lambda} G_{\beta,\rho}$ of G for each $P_{\rho} \in W$ $(\rho < \aleph_1)$ as in Proposition 2.5, such that $T_{X_{\rho}} \in \mathcal{TC}(G_{\alpha+1,\rho}/G_{\alpha,\rho})$ for all $\alpha < \lambda$. For all $\mu < \nu < \lambda$ we therefore have $T_{X_{\rho}} \in \mathcal{TC}(G_{\nu,\rho}/G_{\mu,\rho})$. It is well known that for each $\rho < \aleph_1$ there is a cub D_{ρ} of λ such that $G_{\beta,\rho} = G_{\beta}$ for all $\beta \in D_{\rho}$. Since $\lambda = cf(\lambda) > \aleph_1$, the intersection $C = \bigcap_{\rho < \aleph_1} D_{\rho}$ is still a cub in λ . Assume that there exists $\beta \in C$ such that $T_P \notin \mathcal{TC}(G_{\beta+1}/G_{\beta})$. Since $G_{\beta+1}/G_{\beta}$ is of smaller cardinality than G, there exists an infinite subset $X \subseteq P$ such that $T_Y \notin \mathcal{TC}(G_{\beta+1}/G_\beta)$ for all infinite subsets $Y \subseteq X$. Choose $\beta + 1 \leq \gamma \in C$. Then also $T_Y \notin \mathcal{TC}(G_\gamma/G_\beta)$ for all infinite subsets $Y \subseteq X$. But this implies $X = P_{\rho}$ for some $P_{\rho} \in W$, and hence $T_{X_{\rho}} \in \mathcal{TC}(G_{\gamma}/G_{\beta}) = \mathcal{TC}(G_{\gamma,\rho}/G_{\beta,\rho})$, which is a contradiction. Thus, for all $\beta \in C$ we have $T_P \in \mathcal{TC}(G_{\beta+1}/G_{\beta})$. Hence the relative Γ invariant $\Gamma_{T_P}(G)$ is equal to 0, and therefore, by [EM, Proposition XII.1.14], $T_P \in \mathcal{TC}(G)$, which is a contradiction.

COROLLARY 2.9 (V = L). Assume that for all torsion-free groups H of size less than or equal to \aleph_1 there exists a completely decomposable group C_H such that $\mathcal{TC}(H) = \mathcal{TC}(C_H)$. Then all torsion-free groups G satisfy $\mathcal{TC}(G) = \mathcal{TC}(C)$ for some completely decomposable group C.

Proof. Let G be any torsion-free group. By Lemma 2.2 and Theorem 2.7, conditions (i)–(iv) of Theorem 2.1 are satisfied for $\mathcal{TC}(G)$. Moreover, Theorem

2.8 shows that Theorem 2.1(v) is also satisfied. Hence, by Theorem 2.1, $\mathcal{TC}(G) = \mathcal{TC}(C)$ for some completely decomposable group C.

As a corollary we obtain a special case of [EFS, Theorem C].

COROLLARY 2.10 (V = L). Let G be a torsion-free abelian group. Then G is free if and only if $\bigoplus_{p \in \Pi} \bigoplus_{n \in \omega} \mathbb{Z}(p^n) \in \mathcal{TC}(G)$. Hence there exists a countable test-group for freeness.

Proof. If G is free, then trivially $\bigoplus_{p\in\Pi} \bigoplus_{n\in\omega} \mathbb{Z}(p^n) \in \mathcal{TC}(G)$. Hence assume that $\bigoplus_{p\in\Pi} \bigoplus_{n\in\omega} \mathbb{Z}(p^n) \in \mathcal{TC}(G)$. Since we assume V = L, we know that conditions (i)–(iv) of Theorem 2.1 are satisfied for $\mathcal{TC}(G)$. Therefore, by Theorem 2.1(iii), $\bigoplus_{n\in\omega} \mathbb{Z}(p^n) \in \mathcal{TC}(G)$ implies that $\mathcal{TC}(G)$ contains all pgroups for all primes $p \in \Pi$. Thus $\bigoplus_{p\in\Pi} \mathbb{Z}(p) \in \mathcal{TC}(G)$ and Theorem 2.1(iv) imply that $\mathcal{TC}(G)$ contains all direct sums of arbitrary p-groups (for $p \in \Pi$), and hence contains all torsion groups. Thus $\mathcal{TC}(G)$ is the class of all torsion groups, and by Griffith's solution of the Baer problem [G] it follows that G is free. \Box

REMARK 2.11. The Example 2.3 of a Shelah group under Martin's axiom shows that the above corollary does not hold in ZFC.

We were not able to show that in V = L every torsion-free group G satisfies $\mathcal{TC}(G) = \mathcal{TC}(C)$ for some completely decomposable group C. Hence we conclude this section with a conjecture.

CONJECTURE 2.12 (\mathcal{TC} -Conjecture). In Gödel's constructible universe V = L, for every torsion-free group G there exists a completely decomposable group C such that $\mathcal{TC}(G) = \mathcal{TC}(C)$.

3. Kulikov's problem

Let T be any torsion group and λ any cardinal. A torsion-free group G of rank λ is called λ -universal for T if it satisfies Ext(G,T) = 0 and every torsion-free group H of rank less than or equal to λ satisfying Ext(H,T) = 0can be embedded into G. Kulikov [KN, Question 1.66] asked if, for arbitrary T and uncountable λ , there is always a λ -universal group. For a large class of torsion groups we will show that this is the case in V = L. Since, to the author's knowledge, there are no published results on Kulikov's question for countable or finite λ , we begin with the case when λ is an integer. We first note that it is easy to see that G is λ -universal for T if and only if G is λ universal for the reduced part of T. Hence we may always assume that T is reduced. Recall that a group T is called *cotorsion* if $\text{Ext}(\mathbb{Q}, T) = 0$.

LEMMA 3.1. If T is a torsion cotorsion group, then for any cardinal λ there exists a λ -universal group G for T.

Proof. Clearly the direct sum of λ copies of the rationals \mathbb{Q} forms a λ -universal group for T since every torsion-free group can be embedded into its divisible hull.

LEMMA 3.2. Let T be a torsion group and let G be n-universal for T for some n > 0. Then G is homogeneous completely decomposable.

Proof. Since G is of finite rank n, it follows from Proposition 1.4(iii) that the outer type R = OT(G) satisfies $\mathcal{TC}(R) = \mathcal{TC}(G)$, and hence $\operatorname{Ext}(R, T) =$ 0. Thus, by universality, $\bigoplus_{i \leq n} R$ can be embedded into G. Therefore there exists a maximal linearly independent set $\{x_1, \dots, x_n\}$ of elements of G having type greater than or equal to R. Thus the inner type IT(G) is greater than or equal to R (for the definition of inner type see [A, page 84]). Hence R =OT(G) = IT(G) and it follows from [A, Proposition 3.1.13] that G must be homogeneous completely decomposable of type R. \Box

THEOREM 3.3. Let T be a torsion group and $n \in \mathbb{N}$. Then there exists an n-universal group G for T if and only if T has only finitely many non-trivial bounded p-components. In this case G is completely decomposable.

Proof. Without loss of generality we may assume that T is reduced. Assume that G is *n*-universal for T for some positive integer n. Then, by Lemma 3.2, G must be homogeneous completely decomposable, and hence $\mathcal{TC}(G) = \mathcal{TC}(S)$ for some rational group $S \subseteq \mathbb{Q}$. Assume that T has infinitely many bounded p-components, say T_p is bounded and non-trivial for $p \in P$, where P is an infinite set of primes. Then $\text{Ext}(\mathbb{Q}^{(p)}, T) = 0$ for all $p \in P$. Hence $\mathbb{Q}^{(p)}$ embeds into G and thus, by Proposition 1.4(i), $\chi_p^S(1) = \infty$ for all $p \in P$. But then, again by Proposition 1.4(i), we have $\text{Ext}(S, T) \neq 0$, which is a contradiction. Thus T can have only finitely many bounded non-trivial p-components.

Conversely, assume that T has only finitely many non-trivial bounded pcomponents. Let $P = \{p \in \Pi : T_p \text{ is unbounded }\}$ and put $R = \langle 1/p^{\infty} : p \notin P \rangle \subseteq \mathbb{Q}$. Then, by Proposition 1.4(i), $C = \bigoplus_{i \leq n} R$ clearly satisfies $\operatorname{Ext}(C,T) = 0$. Let G be any torsion-free group of rank less than or equal to n satisfying $\operatorname{Ext}(G,T) = 0$. We will show that G can be embedded into C. Since $\operatorname{Ext}(G,T) = 0$ it follows that for any type S in the typeset of G we have $\operatorname{Ext}(S,T) = 0$. Hence $S \leq R$ since R is idempotent. Thus the tensor product $G \otimes R$ is homogeneous of type R. Moreover, the short exact sequence

$$(3.1) 0 \to \mathbb{Z} \to R \to D \to 0$$

with D torsion divisible induces the short exact sequence

$$(3.2) 0 \to G \to G \otimes R \to D \otimes R \to 0,$$

and thus G is embeddable into $G \otimes R$. Note that D has non-trivial pcomponents only for $p \notin P$. Let $T = T_1 \oplus T_2$ with T_1 finite and $T_2 = \bigoplus_{p \in P} T_p$. Then $\text{Ext}(G \otimes R, T) = 0$ if and only if $\text{Ext}(G \otimes R, T_2) = 0$. Applying the Homfunctor to the sequence (3.2) we obtain

$$(3.3) \qquad \operatorname{Ext}(D \otimes R, T_2) \to \operatorname{Ext}(G \otimes R, T_2) \to \operatorname{Ext}(G, T_2) \to 0,$$

and since D is q-divisible for all $q \in P$ it follows that $\operatorname{Ext}(D \otimes R, T_2) = 0$, and hence $\operatorname{Ext}(G \otimes R, T) = 0$. By Proposition 1.4(iii) there exists a rational group $S \subseteq \mathbb{Q}$ such that $\mathcal{TC}(G \otimes R) = \mathcal{TC}(S)$. It follows that $S \ge R$, and since Ris idempotent and $\operatorname{Ext}(G \otimes R, T) = 0$ we obtain S = R. Thus [St, Corollary 2.11] implies that $G \otimes R$ is completely decomposable, and hence embeddable into C.

In the case of ω -universal groups the situation is more delicate.

LEMMA 3.4. If T is a torsion group with only finitely many non-trivial bounded p-components, then there is an ω -universal group C for T which is completely decomposable.

Proof. Without loss of generality assume that T is reduced torsion and has only finitely many non-trivial bounded p-components. As in the proof of Theorem 3.3 we define $P = \{p \in \Pi : T_p \text{ is unbounded}\}$ and put $R = \langle 1/p^{\infty} : p \notin P \rangle \subseteq \mathbb{Q}$. We will show that $C = \bigoplus_{n \in \omega} R$ is ω -universal for T. Let G be countable torsion-free such that Ext(G,T) = 0. By the same arguments as in the proof of Theorem 3.3 we see that $G \otimes R$ is homogeneous of type Rand that $\text{Ext}(G \otimes R, T) = 0$. By Proposition 1.4(ii) there exists a completely decomposable group H such that $\mathcal{TC}(G \otimes R) = \mathcal{TC}(H)$. It follows that $S \leq R$ for all types S in the typeset of H since R is idempotent and $\text{Ext}(G \otimes R, T) = 0$. Therefore $\mathcal{TC}(R) \subseteq \mathcal{TC}(H) = \mathcal{TC}(G \otimes R)$. Moreover, by homogeneity we have $\mathcal{TC}(G \otimes R) \subseteq \mathcal{TC}(R)$, and hence $\mathcal{TC}(G \otimes R) = \mathcal{TC}(R)$. Griffith's solution of the Baer problem [G] then implies that $G \otimes R$ is completely decomposable of type R and therefore embeds into C.

If T has infinitely many non-trivial bounded p-components, then we can find at least a completely decomposable ($< \omega$)-universal group for T, i.e., a completely decomposable countable torsion-free group G satisfying Ext(G,T)= 0, and every finite rank torsion-free group H such that Ext(H,T) = 0 is embeddable into G.

LEMMA 3.5. Let T be a torsion group. Then there exists a $(< \omega)$ -universal group for T which is completely decomposable.

Proof. Let T be torsion and define P_1 to be the set of all primes p such that the *p*-component T_p of T is bounded but non-trivial. Moreover, let P_2 contain all primes such that $T_p = 0$, and let $P_3 = \Pi \setminus (P_1 \cup P_2)$. For a finite subset $Q \subseteq P_1$ we put

$$R_Q = \langle 1/p^\infty : p \in (Q \cup P_3) \rangle$$

and define $C_Q = \bigoplus_{n \in \omega} R_Q$. Finally, let $C = \bigoplus_{Q \text{ (finite)}} \subseteq_{P_1} C_Q$. Then Ext(C,T) = 0 by Proposition 1.4(i).

We will show that every finite rank torsion-free group H such that $\operatorname{Ext}(H, T) = 0$ is embeddable into C. Let H be such a group. Then, by Proposition 1.4(iii), $\mathcal{TC}(H) = \mathcal{TC}(K)$ for some rational group $K \subseteq \mathbb{Q}$. Note that K is the outer type of G. Thus, if S is in the typeset of H then, by Proposition 1.4(i), clearly $S \leq R_{Q_S}$ for some finite subset Q_S of P_1 . Let $Q = \bigcup_{S \in \operatorname{Tst}(H)} Q_S \subseteq P_1$. Then Q must be finite, for otherwise $\chi_p^K(1) = \infty$ for infinitely many primes $p \in P_1$, which is a contradiction since $\operatorname{Ext}(K, T) = 0$. We let $R = \sup\{R_Q, K\}$ and conclude that $H \otimes R$ must be homogeneous of type R. Notice that R is idempotent and that $\operatorname{Ext}(R, T) = 0$. We consider the short exact sequence

$$(3.4) 0 \to \mathbb{Z} \to R \to D \to 0,$$

where D is torsion divisible with non-trivial p-components for $\chi_p^R(1) = \infty$, say $U = \{p \in \Pi : D_p \neq 0\}$. Note that $U \cap P_1$ is finite by the choice of R. By applying first the \otimes -functor and then the Hom-functor to (3.4) we obtain the short exact sequence

$$(3.5) \qquad \operatorname{Ext}(D \otimes H, T) \to \operatorname{Ext}(H \otimes R, T) \to \operatorname{Ext}(H, T) = 0.$$

From the elementary properties of Ext it follows that

$$\operatorname{Ext}(D \otimes H, T) \cong \operatorname{Ext}\left(\bigoplus_{p \in U \cap P_1} D_p \otimes H, \bigoplus_{p \in U \cap P_1} T_p\right).$$

By the choice of P_1 and the finiteness of $U \cap P_1$ we obtain that $\bigoplus_{p \in U \cap P_1} T_p$, and hence also $\operatorname{Ext}(D \otimes H, T)$, is bounded. But $\operatorname{Ext}(H \otimes R, T)$ is divisible and an epimorphic image of $\operatorname{Ext}(D \otimes R, T)$, and hence trivial. Thus $\operatorname{Ext}(H \otimes R, T) = 0$. By Proposition 1.4(iii) there exists a rational group $S \subseteq \mathbb{Q}$ such that $\mathcal{TC}(H \otimes R) = \mathcal{TC}(S)$, and hence $R \leq S$. Note that S must be idempotent. Assume now that S > R. Then there exists $p \in P_1$ such that $\chi_p^S(1) = \infty$ and $\chi_p^R(1) = 0$. Since $K \leq R$, it follows that there exists an unbounded p-group $T_1 \in \mathcal{TC}(H)$. We now prove by induction on the rank of H that $T_1 \in \mathcal{TC}(H \otimes R) = \mathcal{TC}(S)$, which yields a contradiction. If H is of rank one, then clearly $\chi_p^{H \otimes R}(1) < \infty$, and hence $\operatorname{Ext}(H \otimes R, T_1) = 0$. Assume that H is of rank n and choose a pure subgroup M of H of rank n - 1. Let $N = H/M \subseteq \mathbb{Q}$. From the exact sequence

$$(3.6) 0 \to M \to H \to N \to 0$$

we obtain the short exact sequence

$$(3.7) \qquad \operatorname{Ext}(N \otimes R, T_1) \to \operatorname{Ext}(H \otimes R, T_1) \to \operatorname{Ext}(M \otimes R, T_1) \to 0.$$

By the induction hypothesis, $\operatorname{Ext}(M \otimes R, T_1) = 0$. Moreover, we have $N \leq K$ since K = OT(G), and therefore $\operatorname{Ext}(G, T_1) = 0$ implies $\operatorname{Ext}(K, T_1) = 0 = \operatorname{Ext}(N, T_1)$. Thus, $\chi_p^N(1) < \infty$, and hence also $\chi_p^{N \otimes R}(1) < \infty$. We

conclude that $\operatorname{Ext}(N \otimes R, T_1) = 0$, and hence $\operatorname{Ext}(H \otimes R, T_1) = 0$, which is a contradiction. Thus S = R and $\mathcal{TC}(H \otimes R) = \mathcal{TC}(R)$. By Griffith's solution of the Baer problem or [St, Corollary 2.11] it follows that $H \otimes R$ is completely decomposable of type R. Hence $H \subseteq H \otimes R$ embeds into C.

Note that Lemma 3.2 cannot hold for ω -universal groups, for if G is ω universal for T and H is countable torsion-free satisfying $\operatorname{Ext}(H,T) = 0$, then $G \oplus H$ is also ω -universal for T. We can even show that no ω -universal group for T (if it exists) can be completely decomposable if T has infinitely many non-trivial bounded p-components. Recall that a torsion-free group B is called a B_1 -group if $\operatorname{Bext}(G,T) = 0$ for all torsion groups T.

LEMMA 3.6 ([SW]). Let B be a B_1 -group. Then we have $\mathcal{TC}(B) = \mathcal{TC}(\bigoplus_{B \in \mathrm{Tst}(B)} R)$, where $\mathrm{Tst}(B)$ denotes the typeset of B.

PROPOSITION 3.7. Let T be a torsion group with infinitely many nontrivial bounded p-components. Then there exists a countable torsion-free group G with Ext(G,T) = 0 such that G is not embeddable into any completely decomposable group C satisfying Ext(C,T) = 0.

Proof. The proof is very similar to that given in [A, Example 3.4.2]. Hence we will only give a brief outline. Let P be the set of primes such that T_p is non-trivial and bounded. Let S be the set of words on the alphabet $\{0, 1\}$ and denote by \emptyset the trivial word. We divide P into two disjoint infinite subsets P_0 and P_1 and enumerate these by ω , e.g., $P_i = \{p_{i,j} : j < \omega\}$ (i = 0, 1). For $s \in S$ let $X_s = \langle 1/p_{i,j}^{\infty} : s(j) = i \rangle \subseteq \mathbb{Q}$. Then the family X_s $(s \in S)$ forms a tree, i.e., satisfies $X_s = X_{s0} \cap X_{s1}$ for all $s \in S$, and clearly $\text{Ext}(X_s, T) = 0$. Moreover, if R is a type and for each $n \in \mathbb{N}$ there is $s \in S$ with l(s) = n such that $R \geq X_s$, then $\chi_p^R(1) = \infty$ for infinitely many primes $p \in P$, and hence $\text{Ext}(R, T) \neq 0$.

Now define, for $n \in \mathbb{N}$, $G_n = \bigoplus \{X_s : s \in S, l(s) = n\}$, so that $\operatorname{Ext}(G_n, T) = 0$, and let G be the direct limit of $\{G_n, f_n : n \ge 1\}$, where $f_n : G_n \to G_{n+1}$, $x \mapsto (x, x)$. Then G is a B_1 -group and the typeset $\operatorname{Tst}(G)$ of the group G is contained in the (even finite) meet closure of the sets X_s . Since $\operatorname{Ext}(X_s, T) = 0$ for all $s \in S$, it follows by Lemma 3.6 that $T \in \mathcal{TC}(\bigoplus_{s \in S} X_s) = \mathcal{TC}(G)$, and thus $\operatorname{Ext}(G, T) = 0$. Finally, assume that G is a subgroup of a completely decomposable group $C = \bigoplus_{i \in \omega} C_i$ satisfying $\operatorname{Ext}(C, T) = 0$. Since G is reduced, we may assume that C is reduced. There exists $m \ge 1$ such that $X_{\emptyset} = \mathbb{Z} \subseteq C_1 \oplus \cdots \oplus C_m$. Let $0 \neq x \in X_{\emptyset}$ and $n \ge 1$. Then $x = \bigoplus \{x_s : l(s) = n\} \in G_n$ with each $x_s \neq 0$. Moreover, $x_s = c(1, s) \oplus \cdots \oplus c(k, s)$ for some $k \ge m$ and $c(i, s) \in C_i$. Hence, $X_s = \operatorname{type}(x_s) \le \cap \{\operatorname{type}(c(i, s)) : 1 \le i \le k\} \le \cap \{\operatorname{type}(c(i, s)) : 1 \le i \le m\}$, and since $x \neq 0$ there exists j with $1 \le j \le m$ such that $c(j, s) \neq 0$. Thus, for every $n \ge 1$ there exists $s \in S$ with l(s) = n

and j with $1 \leq j \leq m$ such that $X_s \leq C_j$. By the choice of the sets X_s it follows that $\text{Ext}(C_j, T) \neq 0$, and we have reached a contradiction. \Box

COROLLARY 3.8. If T has infinitely many non-trivial bounded p-components and λ is an infinite cardinal, then no λ -universal group G for T can be completely decomposable.

To conclude this section we show that in V = L every torsion group with only finitely many non-trivial *p*-components has λ -universal groups for every λ . This contrasts the consistency result from [SS2], which shows that there is a model of ZFC in which for every torsion group *T* that is not cotorsion there is a class of cardinals λ such that there exist no λ -universal groups for *T*.

THEOREM 3.9 (V = L). If T is a torsion group with only finitely many non-trivial bounded p-components and λ is a cardinal, then there is a λ universal group C for T which is completely decomposable.

Proof. Assume that T is reduced torsion and has only finitely many nontrivial p-bounded components. We define $P = \{p \in \Pi : T_p \text{ is unbounded}\}$ and put $R = \langle 1/p^{\infty} : p \notin P \rangle \subseteq \mathbb{Q}$. Then, by Proposition 1.4(i), $C = \bigoplus_{\lambda} R$ clearly satisfies $\operatorname{Ext}(C,T) = 0$. We will show that C is λ -universal for T. Let G be torsion-free of cardinality less than or equal to λ and satisfying Ext(G,T) = 0. Since Ext(G,T) = 0, it follows that for any type S in the typeset of G we have $\operatorname{Ext}(S,T) = 0$. Hence $S \leq R$, since R is idempotent. Thus the tensor product $G \otimes R$ is homogeneous of type R. As in the proof of Theorem 3.3 it follows that $\operatorname{Ext}(G \otimes R, T) = 0$. Since we do not know whether the \mathcal{TC} -Conjecture holds, we show directly that Theorem 2.1(v) holds for $\mathcal{TC}(G \otimes R)$. Assume that Q is an infinite set of primes such that $\bigoplus_{p \in Q} \mathbb{Z}(p) \notin \mathcal{TC}(G \otimes R)$. Then $Q \setminus P$ must be infinite since $T' = \bigoplus_{p \in Q \cap P} \mathbb{Z}(p)$ is an epimorphic image of T, and hence $T' \in \mathcal{TC}(G \otimes R)$. It follows that condition (v) of Theorem 2.1 holds for $\mathcal{TC}(G \otimes R)$ since it holds for $\mathcal{TC}(R)$. Thus V = L and the results from Section 2 imply that there exists a completely decomposable group Hsuch that $\mathcal{TC}(G) = \mathcal{TC}(H)$. As in the proof of Theorem 3.4 we conclude that $\mathcal{TC}(G \otimes R) = \mathcal{TC}(R)$. Thus Griffith's solution of the Baer problem [G] implies that $G \otimes R$ is completely decomposable of type R and therefore embeds into C.

To the author's knowledge, it is not known whether under V = L for every torsion group T and every infinite cardinal λ there exists a λ -universal group for T. The author strongly conjectures that the answer is yes, but the techniques developed in this article are not sufficient to provide a complete solution. Therefore we pose the following open question. QUESTION 3.10 (V = L). Let T be a torsion group (with infinitely many non-zero p-components) and λ an infinite cardinal. Does there exist a λ -universal group for T?

References

- [A] D.M. Arnold, Abelian groups and representations of finite partially ordered sets, Lecture Notes in Math., vol. 931, Springer-Verlag, New York, 2000.
- [B] R. Baer, The subgroup of the elements of finite order of an abelian group, Ann. of Math. 37 (1936), 766–781.
- [BFS] T. Becker, L. Fuchs, and S. Shelah, Whitehead modules over domains, Forum Math. 1 (1989), 53–68.
- [E] P.C. Eklof, Set-theoretic methods in homological algebra and abelian groups, Séminaire de Mathématiques Supérieures, vol. 69, Presses de L'Université de Montréal, Montréal, Que., 1980.
- [EFS] P. Eklof, L. Fuchs, and S. Shelah, Baer modules over domains, Trans. Amer. Math. Soc. 332 (1990), 547–560.
- [EM] P.C. Eklof and A. Mekler, Almost free modules. Set-theoretic methods, North-Holland, Amsterdam, 1990.
- [ET] P.C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), 41–51.
- [F] L. Fuchs, Infinite abelian groups. I, II, Academic Press, New York, 1970, 1973.
- [GSW] R. Göbel, S. Shelah, and S.L. Wallutis, On the lattice of cotorsion theories, J. Algebra 238 (2001), 292–313.
- [G] P. Griffith, A solution to the splitting mixed group problem of Baer, Trans. Amer. Math. Soc. 139 (1969), 261–269.
- [KN] The Kourovka Notebook—unsolved questions in group theory, 14th edition, Russian Academy of Sciences Siberian Division, Novosibirsk, 1999.
- [S] L. Salce, Cotorsion theories for abelian groups, Conf. abelian groups and their relationship to the theory of modules (INDAM, Rome, 1977), Symposia Mathematica, vol. XXIII, Academic Press, London, 1979, pp. 11–32.
- [Sh] S. Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), 319–349.
- [SS1] S. Shelah and L. Strüngmann, A non-compactness theorem for abelian groups, in preparation.
- [SS2] _____, On Kulikov's problem and universal torsion-free abelian groups, J. London Math. Soc., to appear.
- [St] L. Strüngmann, Torsion groups in cotorsion classes, to appear in Rendiconti del Seminario Matematico dell'Universita' di Padova 107 (2002).
- [SW] L. Strüngmann and S.L. Wallutis, On the torsion groups in cotorsion classes, Abelian groups, rings and modules (Perth, 2000), Contemp. Math., vol. 273, Amer. Math. Soc., Providence, RI, 2001; pp. 269–283.

The Hebrew University, Givat Ram, Jerusalem 91904, Israel

Current address: Fachbereich 6 – Mathematik, University of Essen, 45117 Essen, Germany

E-mail address: Lutz.Struengmann@uni-essen.de