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NORMAL FAMILIES OF HOLOMORPHIC FUNCTIONS

JIANMING CHANG, MINGLIANG FANG, AND LAWRENCE ZALCMAN

Abstract. Let F be a family of holomorphic functions in a domain D;

let k be a positive integer; let h be a positive number; and let a be a
function holomorphic in D such that a(z) 6= 0 for z ∈ D. For k 6= 2 we
show that if, for every f ∈ F , all zeros of f have multiplicity at least k,

f(z) = 0 =⇒ f (k)(z) = a(z), and f (k)(z) = a(z) =⇒ |f (k+1)(z)| ≤ h,
then F is normal in D. For k = 2 we prove the following result: Let

s ≥ 4 be an even integer. If, for every f ∈ F , all zeros of f have
multiplicity at least 2, f(z) = 0 =⇒ f ′′(z) = a(z), and f ′′(z) = a(z)

=⇒ |f ′′′(z)|+ |f (s)(z)| ≤ h, then F is normal in D. This improves the

well-known normality criterion of Miranda.

1. Introduction

Let F be a family of holomorphic functions on a domain D ⊂ C. We say
that F is normal in D if every sequence of functions {fn} ⊂ F contains either
a subsequence which converges to an analytic function f uniformly on each
compact subset of D or a subsequence which converges to ∞ uniformly on
each compact subset of D.

In 1912, Montel [10] proved:

Theorem A. Let F be a family of holomorphic functions on a domain
D; and let a, b be distinct complex numbers. If, for every f ∈ F , f 6= a, b,
then F is normal in D.

Later (see [13, p. 125]), he made the following conjecture.
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Conjecture. Let F be a family of holomorphic functions on a domain
D, and let a, b be complex numbers with b 6= 0. If, for every f ∈ F , f 6= a,
and f ′ 6= b, then F is normal in D.

In 1935, Miranda [9] confirmed this conjecture and proved the following
more general result.

Theorem B. Let F be a family of holomorphic functions on a domain
D; let a, b be complex numbers with b 6= 0; and let k be a positive integer. If,
for every f ∈ F , f 6= a, and f (k) 6= b, then F is normal in D.

In this paper, we extend Theorem B as follows.

Theorem 1. Let F be a family of holomorphic functions in a domain
D; let k 6= 2 be a positive integer; let h be a positive number; and let a be a
function holomorphic in D such that a(z) 6= 0 for z ∈ D. If, for every f ∈ F ,
all zeros of f have multiplicity at least k, f(z) = 0 =⇒ f (k)(z) = a(z), and
f (k)(z) = a(z) =⇒ |f (k+1)(z)| ≤ h, then F is normal in D.

Remark 1. Theorem 1 is not valid for k = 2.

Example 1. ([12]) Let F = {fn} on the unit disc ∆, where

fn(z) =
1
n2

(enz + e−nz − 2) =
1
n2
e−nz(enz − 1)2,

so that

f (j)
n (z) = nj−2[enz + (−1)je−nz], j = 1, 2, . . . .

Clearly, all zeros of fn are double, fn(z) = 0 =⇒ f ′′n (z) = 2, and f ′′n (z) =
2 =⇒ f ′′′n (z) = 0 for any fn ∈ F , but F is not normal in ∆.

For k = 2, using the method of [12], we get the following result.

Theorem 2. Let F be a family of holomorphic functions in a domain D;
let h be a positive number; and let a be a nonzero complex number. If, for every
f ∈ F , all zeros of f have multiplicity at least 2, f(z) = 0 =⇒ f ′′(z) = a, and
f ′′(z) = a =⇒ 0 < |f ′′′(z)| ≤ h, then F is normal in D.

In view of Theorems 1 and 2, it is natural to ask whether Theorem 2 is
valid if the nonzero complex number a is replaced by a holomorphic function
a(z) in D with a(z) 6= 0 for z ∈ D. The following example shows that the
answer is negative.
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Example 2. Let F = {fn : n = 2, 3, . . . } on the unit disc ∆, where

fn(z) =
n2 − 1

2n2

(
e(n+1)z

(n+ 1)2
+
e−(n−1)z

(n− 1)2
− 2ez

n2 − 1

)
(1.1)

=
n2 − 1

2n2
e−(n−1)z

(
enz

n+ 1
− 1
n− 1

)2

,

and a(z) = ez, h = 3e. Then

f ′′n (z) =
n2 − 1

2n2

(
e(n+1)z + e−(n−1)z − 2ez

n2 − 1

)
,(1.2)

f ′′′n (z) =
n2 − 1

2n2

(
(n+ 1)e(n+1)z − (n− 1)e−(n−1)z − 2ez

n2 − 1

)
.(1.3)

Obviously, all zeros of fn are double. If fn(z) = 0, then by (1.1) we have

enz =
n+ 1
n− 1

;

so by (1.2), we get

f ′′n (z) =
n2 − 1

2n2

(
n+ 1
n− 1

+
n− 1
n+ 1

− 2
n2 − 1

)
ez

= ez.

Thus fn(z) = 0 =⇒ f ′′n (z) = ez.
Now let f ′′n (z) = ez. Then by (1.2), we have

enz + e−nz − 2
n2 − 1

=
2n2

n2 − 1
.

Solving the above equation, we get either enz = (n + 1)/(n − 1) or enz =
(n− 1)/(n+ 1). If enz = (n+ 1)/(n− 1), then by (1.3),

f ′′′n (z) =
n2 − 1

2n2

(
(n+ 1)

n+ 1
n− 1

− (n− 1)
n− 1
n+ 1

− 2
n2 − 1

)
ez(1.4)

=
n2 − 1

2n2

(n+ 1)3 − (n− 1)3 − 2
n2 − 1

ez

= 3ez.

If enz = (n− 1)/(n+ 1), then by (1.3),

f ′′′n (z) =
n2 − 1

2n2

(
(n+ 1)

n− 1
n+ 1

− (n− 1)
n+ 1
n− 1

− 2
n2 − 1

)
ez(1.5)

=
n2 − 1

2n2

(
−2− 2

n2 − 1

)
ez

= −ez.
Thus by (1.4) and (1.5), we find that f ′′n (z) = ez =⇒ 0 < |f ′′′n (z)| ≤ 3e on ∆.
But F is not normal in ∆.
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For k = 2 and a holomorphic function a, we have the following result.

Theorem 3. Let F be a family of holomorphic functions in a domain
D; let h be a positive value and s ≥ 4 an even integer; and let a be a function
holomorphic in D such that a(z) 6= 0 for z ∈ D. If, for every f ∈ F ,
all zeros of f have multiplicity at least 2, f(z) = 0 =⇒ f ′′(z) = a(z), and
f ′′(z) = a(z) =⇒ |f ′′′(z)|+ |f (s)(z)| ≤ h, then F is normal in D.

Remark 2. Example 1 also shows that f ′′(z) = a(z) =⇒ |f (s)(z)| ≤ h is
necessary and that one cannot replace even s by odd s in Theorem 3.

Theorem 4. Let F be a family of holomorphic functions in a domain
D; let k ≥ 2 be a positive integer; and let a be a function holomorphic in D
such that a(z) 6= 0 for z ∈ D. If, for every f ∈ F , f(z) = 0 =⇒ f ′(z) = a(z),
and f ′(z) = a(z) =⇒ |f (k)(z)| ≤ h, then F is normal in D.

Theorem 4 improves results of Chen and Hua [2, Theorem 1], Pang [11,
Theorem 1], and Fang and Xu [6, Theorem 3].

Remark 3. In Theorems 1, 3 and 4, the condition a(z) 6= 0 is necessary,
and cannot be replaced by a(z) 6≡ 0.

Example 3. For k 6= 2, let F = {nk+2zk+2 : n = 1, 2, 3, . . . }; let a(z) =
z2, h = 1; and let D = {z : |z| < 1}. Then, for any f ∈ F , all zeros of f are
of multiplicity at least k; f(z) = 0 =⇒ f (k)(z) = a(z); and f (k)(z) = a(z) =⇒
|f (k+1)(z)| ≤ h for z ∈ D, but F is not normal in D.

Example 4. For s ≥ 6, let F = {n4z4 : n = 1, 2, . . . } and a(z) = z2;
for s = 4, let F = {n4(z4 − 1/n4)2 : n = 1, 2, . . . } and a(z) = 32z2. Let
D = {z : |z| < 1}. Then for any f ∈ F , all zeros of f are of multiplicity ≥ 2;
f(z) = 0 =⇒ f ′′(z) = a(z); and f ′′(z) = a(z) =⇒ |f ′′′(z)| + |f (s)(z)| ≤ 1920
for any z ∈ D, but F is not normal in D.

Example 5. For l ≥ 3, let F = {n2z2 : n = 1, 2, . . . }; for l = 2, let
F = {(nz − 1)z2 : n = 1, 2, . . . }. Let a(z) = z and D = {z : |z| < 1}. Then
for any f ∈ F , f(z) = 0 =⇒ f ′(z) = a(z); and f ′(z) = a(z) =⇒ |f (l)(z)| ≤ 4
for any z ∈ D, but F is not normal in D.

Remark 4. Theorems 1, 3 and 4 do not hold for meromorphic a.

Example 6. Let F = {(nz − 1)k : n = 1, 2, 3, . . . }; let a(z) = k!/zk,
h = 1; and let D = {z : |z| < 1}. Then, for any f ∈ F , f(z) = 0 =⇒
f (k)(z) = a(z), and f (k)(z) = a(z) =⇒ |f (k+1)(z)| ≤ h for any z ∈ D, but F
is not normal in D.
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2. Some lemmas

In order to prove our theorems, we require the following results. We assume
the standard notation of value distribution theory, as presented and used in
[7].

Lemma 1 ([12, Lemma 2]). Let F be a family of functions holomorphic
on the unit disc, all of whose zeros have multiplicity at least k, and suppose
that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0. Then if F
is not normal, there exist, for each 0 ≤ α ≤ k,

(a) a number 0 < r < 1;
(b) points zn, |zn| < r;
(c) functions fn ∈ F ; and
(d) positive numbers ρn → 0

such that ρ−αn fn(zn + ρnζ) = gn(ζ) → g(ζ) locally uniformly, where g is a
nonconstant entire function on C, all of whose zeros have multiplicity at least
k, such that g#(ζ) ≤ g#(0) = kA+ 1.

Here, as usual, g#(ζ) = |g′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.

Lemma 2 ([5]). Let f be an entire function, and let M be a positive num-
ber. If f#(z) ≤M for all z ∈ C, then ρ(f) ≤ 1.

Here and in the sequel, ρ(f) is the order of f .

Lemma 3 (see [1, Theorem 1], [3, Lemma 4]). Let P be a nonzero poly-
nomial; let k be a positive integer; and let g 6≡ 0 be a solution of the equation

(2.1) g(k) = Pg.

Then ρ(g) = 1 + d/k, where d = degP .

Lemma 4 (see [8]). Let f be meromorphic in |z| < ∞. If f(0) 6= 0,∞,
then

m

(
r,
f (k)

f

)
≤ Ck

{
1 + log+ log+ 1

|f(0)|
+ log+ 1

r
+ log+ r + log+ T (2r, f)

}
,

where k is a positive integer, and Ck depends only on k. In particular, when
f is of finite order,

(2.2) m

(
r,
f (k)

f

)
= O(log r), as r →∞.

Lemma 5. Let g be a nonconstant entire function with ρ(g) ≤ 1 whose
zeros have multiplicity at least k, and let a be a nonzero value. If g(z) = 0 =⇒
g(k)(z) = a and g(k)(z) = a =⇒ g(k+1)(z) = 0, then

(i) g(z) = a
k! (z − z0)k, for k 6= 2;
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(ii) either g(z) = a
2 (z − z0)2 or g(z) = (Aeλz − a

8Aλ2 e
−λz)2, for k = 2.

Proof . Since g(z) = 0 =⇒ g(k)(z) = a 6= 0 and the multiplicities of the
zeros of g(z) are at least k, the multiplicity of the zeros of g(z) is exactly k.
Since g is entire, there exists a nonconstant entire function h, all of whose
zeros are simple, such that

(2.3) g(z) = hk(z).

Let z = z0 be a zero of h. We have (near z0)

(2.4) h(z) = a1(z − z0) + a2(z − z0)2 +O((z − z0)3), (a1 6= 0).

Thus

g(z) = (h(z))k = ak1(z − z0)k + kak−1
1 a2(z − z0)k+1 +O((z − z0)k+2),

so

(2.5) g(k+1)(z0) = (k + 1)!kak−1
1 a2.

Since g(z) = 0 =⇒ g(k+1)(z) = 0, we get a2 = 0. This means h′′(z0) = 0.
Thus we have shown that

(2.6) h(z) = 0 =⇒ h′′(z) = 0.

Set

(2.7) P =
h′′

h
.

Since the zeros of h are all simple, P is an entire function. Moreover, since
ρ(g) ≤ 1, it is clear from (2.3) that ρ(h) ≤ 1. By Lemma 4, we have

T (r, P ) = T

(
r,
h′′

h

)
= m

(
r,
h′′

h

)
= O(log r), as r →∞.

So P is a polynomial. Now we consider two cases.

Case 1. P ≡ 0. Then by (2.7), h′′ ≡ 0. Thus h(z) = cz + d, where
c(6= 0), d are constants. Hence

g(z) = (cz + d)k,

and
g(k)(z) ≡ k!ck.

By the condition, k!ck = a. Thus

g(z) =
a

k!
(z − z0)k.

Case 2. P 6≡ 0. By (2.7), h is a transcendental entire function. Thus by
Lemma 3, the order of h is 1 + degP/2. Since ρ(h) ≤ 1, degP = 0. Thus P
is a nonzero constant. Solving the equation (2.7), we obtain

h = Aeλz +Be−λz,
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where A,B are two constants and λ(6= 0) is a solution of the equation z2 = P .
Obviously, from the assumptions of the lemma, A 6= 0 and B 6= 0. Thus

by (2.3), we have

(2.8) g(z) =
(
Aeλz +Be−λz

)k
=

k∑
j=0

(
k

j

)
AjBk−je(2j−k)λz.

Hence

(2.9) g(k)(z) = λk
k∑
j=0

(
k

j

)
AjBk−j(2j − k)ke(2j−k)λz

and

(2.10) g(k+1)(z) = λk+1
k∑
j=0

(
k

j

)
AjBk−j(2j − k)k+1e(2j−k)λz.

Let z0 be a zero of g. Then by (2.8), we have

e2λz0 = −B
A
.

Now we consider two subcases.

Case 2.1. k = 2m + 1. Let eλz0 = K and eλz1 = −K, where K is a
constant satisfying K2 = −B/A. Then by (2.8), g(z0) = 0 and g(z1) = 0. So
by g(z) = 0 =⇒ g(k)(z) = a, we get a = g(k)(z0) = g(k)(z1). Thus by (2.9),
we have

2a = g(k)(z0) + g(k)(z1)(2.11)

= λ2m+1
2m+1∑
j=0

(
2m+ 1

j

)
AjB2m+1−j(2j − 2m− 1)2m+1

×
[
K2j−2m−1 + (−K)2j−2m−1

]
= 0,

which contradicts a 6= 0.

Case 2.2. k = 2m. Then by (2.9), we get

(2.12) a = λ2mAmBm
2m∑
j=0

(−1)j−m
(

2m
j

)
(2j − 2m)2m.

By (2.9)–(2.10), we have

(2.13) g(2m)(z) = λ2m
2m∑
j=0

(
2m
j

)
AjB2m−j(2j − 2m)2me2(j−m)λz,
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(2.14) g(2m+1)(z) = λ2m+1
2m∑
j=0

(
2m
j

)
AjB2m−j(2j − 2m)2m+1e2(j−m)λz.

If m = 1, then
a = −8ABλ2;

and it follows from (2.8) that

g =
(
Aeλz − a

8Aλ2
e−λz

)2

.

Assume now that m ≥ 2.
By (2.12)–(2.14), we have

g(2m)(z)− a = (2λ)2mB2me−2mλz

{
2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2m

(
−A
B
e2λz

)j(2.15)

−
(
−A
B
e2λz

)m 2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2m

}
and

g(2m+1)(z) = (2λ)2m+1B2me−2mλz
2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2m+1

(
−A
B
e2λz

)j
.

(2.16)

Let

ω = −A
B
e2λz.

Since g(2m)(z) = a =⇒ g(2m+1)(z) = 0, every solution of the equation

(2.17)
2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2mωj = ωm

2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2m

is also a solution of the equation

(2.18)
2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2m+1ωj = 0.

By (2.18) and (2.17), for every solution ω = ω0 of (2.17), we have
2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2mjωj0 = m

2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2mωj0

= mωm0

2m∑
j=0

(−1)j
(

2m
j

)
(j −m)2m.
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Thus, since ω = 0 is not a solution of (2.17), every solution of the equation
(2.17) is multiple. Equation (2.17) can be rewritten as

(2.19)
m−1∑
j=0

(−1)j
(

2m
j

)
(j −m)2m(ωj + ω2m−j − 2ωm) = 0.

Denote the left side of (2.19) by Q(ω). Then Q(ω) is a polynomial with integer
coefficients. It is easy to see that

(2.20) Q(ω) = (ω − 1)2
m−1∑
j=0

(−1)j
(

2m
j

)
(j −m)2mωj

(
m−1−j∑
s=0

ωs

)2

.

By the factorization theorem for polynomials in Z[ω] (see [4, pp. 134,167]),
we have

(2.21) Q(ω) = N0(ω − 1)p0Qp1
1 (ω)Qp2

2 (ω) · · · · ·Qpnn (ω),

where Qj(ω) (1 ≤ j ≤ n) are distinct primitive irreducible polynomials in
Z[ω], pj (≥ 2, 0 ≤ j ≤ n) are integers, and N0 is the greatest common divisor
of the coefficients of Q(ω) and hence also of the coefficients of Q(ω)/(ω− 1)2.

Now we discuss two subcases.

Case 2.2.1. m ≥ 2 is even. Let

aj = (−1)j
1

2m

(
2m
j

)
(j −m)2m (0 ≤ j ≤ m− 1).

Then aj are integers for j = 0, 1, . . . ,m− 1, and

a0 =
1
2
m2m−1 = 2k1, a1 = −(m− 1)2m = 2k2 + 1,

where k1 and k2 are integers.
Then N0 = 2m(2l + 1), where l is an integer; and R(ω) = Q(ω)/(2m) has

integer coefficients. By (2.20), we have

R(ω) = (ω − 1)2
m−1∑
j=0

ajω
j

(
m−1−j∑
s=0

ωs

)2

(2.22)

= 2k1(ω − 1)2

(
m−1∑
s=0

ωs

)2

+ ω

[
(2k2 + 1)(ω − 1)2

(
m−2∑
s=0

ωs

)2

+
m−1∑
j=2

ajω
j−1(ω − 1)2

(
m−1−j∑
s=0

ωs

)2]
= 2k1A(ω) + ω [(2k2 + 1)B(ω) + C(ω)] ,
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where

A(ω) = (ω − 1)2

(
m−1∑
s=0

ωs

)2

,

B(ω) = (ω − 1)2

(
m−2∑
s=0

ωs

)2

,

C(ω) =
m−1∑
j=2

ajω
j−1(ω − 1)2

(
m−1−j∑
s=0

ωs

)2

.

Hence by (2.21), we get

(2l + 1)(ω − 1)p0Qp1
1 (ω)Qp2

2 (ω) · · · · ·Qpnn (ω)(2.23)

= 2k1A(ω) + ω[(2k2 + 1)B(ω) + C(ω)].

Let ω = 0. Then we have

(2l + 1)(−1)p0Qp1
1 (0)Qp2

2 (0) · · · · ·Qpnn (0) = 2k1.

Hence there exists j such that Qpjj (0) is an even number. Without loss of
generality, we may assume j = 1. Thus Q1(0) is an even number, say Q1(0) =
2k3, where k3 is an integer. Hence

(2.24) Q1(ω) = ωQ11(ω) +Q1(0) = ωQ11(ω) + 2k3.

Thus by (2.23) and (2.24),

(2l + 1)(ω − 1)p0 [ωp1Qp1
11(ω) + 2k3D(ω)]Qp2

2 (ω) · · · · ·Qpnn (ω)

= 2k1A(ω) + ω[(2k2 + 1)B(ω) + C(ω)],

where D(ω) is a polynomial with integer coefficients. Hence

(2l + 1)(ω − 1)p0ωp1Qp1
11(ω)Qp2

2 (ω) · · · · ·Qpnn (ω)(2.25)

+ 2(2l + 1)k3D(ω)(ω − 1)p0Qp2
2 (ω) · · · · ·Qpnn (ω)

= 2k1A(ω) + ω[(2k2 + 1)B(ω) + C(ω)].

Differentiating the two sides of (2.25) yields

(2l + 1)p1ω
p1−1(ω − 1)p0Qp1

11(ω)Qp2
2 (ω) · · · · ·Qpnn (ω)(2.26)

+ (2l + 1)ωp1 [(ω − 1)p0Qp1
11(ω)Qp2

2 (ω) · · · · ·Qpnn (ω)]′

+ 2(2l + 1)k3[D(ω)(ω − 1)p0Qp2
2 (ω) · · · · ·Qpnn (ω)]′

= 2k1A
′(ω) + [(2k2 + 1)B(ω) + C(ω)]

+ ω[(2k2 + 1)B′(ω) + C ′(ω)].

Setting ω = 0 in (2.26), we see that 2k2 + 1 must be even, a contradiction.
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Case 2.2.2. m ≥ 3 is odd. Let p be a prime divisor of m, and set

bj = (−1)j
1
m

(
2m
j

)
(j −m)2m (0 ≤ j ≤ m− 1).

Then bj are integers for j = 0, 1, . . . ,m− 1, and

b0 = m2m−1 = k1p, b1 = −2(m− 1)2m = k2p− 2,

where k1 and k2 are integers. Then N0 = m(lp + q), where l, q are integers
and 1 ≤ q ≤ p − 1; and S(ω) = Q(ω)/m has integer coefficients. By (2.20),
we have

S(ω) = (ω − 1)2
m−1∑
j=0

bjω
j

(
m−1−j∑
s=0

ωs

)2

(2.27)

= k1p(ω − 1)2

(
m−1∑
s=0

ωs

)2

+ ω

(k2p+ 2)(ω − 1)2

(
m−2∑
s=0

ωs

)2

+
m−1∑
j=2

bjω
j−1(ω − 1)2

(
m−1−j∑
s=0

ωs

)2


= k1pA(ω) + ω[(k2p− 2)B(ω) + C(ω)],

where A(ω), B(ω), and C(ω) are as in (2.22).
Using an argument similar to that in Case 2.2.1, we obtain the contradiction

that k2p− 2 = λp, where k2, λ are integers and p ≥ 3 is a prime number. We
omit the details. This completes the proof of Lemma 5. �

In a similar way, we can prove the following result.

Lemma 6. Let g be a nonconstant entire function with ρ(g) ≤ 1 whose
zeros are of multiplicity at least 2; let a be a nonzero finite value; and let s ≥ 4
be an even integer. If g(z) = 0 =⇒ g′′(z) = a and g′′(z) = a =⇒ g′′′(z) =
g(s)(z) = 0, then g(z) = a(z − z0)2/2, where z0 is a constant.

Lemma 7 ([7, Corollary to Theorem 3.5]). Let f be a transcendental mero-
morphic function, and let a be a non-zero value. Then, for each positive
integer k, either f or f (k) − a has infinitely many zeros.

Lemma 8. Let g be a nonconstant entire function with ρ(g) ≤ 1; let k ≥ 2
be an integer; and let a be a nonzero finite value. If g(z) = 0 =⇒ g′(z) = a,
and g′(z) = a =⇒ g(k)(z) = 0, then

(2.28) g(z) = a(z − z0),

where z0 is a constant.
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Proof. Suppose that g is a nonconstant polynomial. Since g(z) = 0 =⇒
g′(z) = a, all zeros of g are simple. Let

g(z) = alz
l + al−1z

l−1 + · · ·+ a0, where al 6= 0.

Then there exist z1, z2, . . . , zl such that g(zj) = 0 (j = 1, 2, . . . , l) and zi 6= zj .
Hence g′(zj) = a for j = 1, 2, . . . , l, so g′(z) ≡ a, and l = 1. Thus we get
(2.28).

Assume now that g is transcendental. Using the same reasoning as in
Lemma 5, we see that

(2.29) P =
g(k)

g

is a nonzero constant. Let ck = 1/P and f(z) = g(cz). Then, by (2.29), we
have

(2.30) f (k) ≡ f,

and

(2.31) f(z) = 0⇐⇒ f ′(z) = ac.

By (2.30), we have

(2.32) f(z) =
k−1∑
j=0

Cj exp(ωjz),

where ω = exp(2πi/k) and Cj are constants.
Since f is transcendental, there exists Cj ∈ {C1, C2, . . . , Ck−1} such that

Cj 6= 0. We denote the nonzero constants in {Cj} by Cjm (0 ≤ jm ≤ k − 1,
m = 0, 1, · · · , s, s ≤ k − 1). Thus we have

(2.33) f(z) =
s∑

m=0

Cjm exp(ωjmz).

By Lemma 7, f has infinitely many zeros zn = rne
iθn(n = 1, 2, · · · ), where

0 ≤ θn < 2π. Without loss of generality, we may assume that θn → θ0 and
rn → +∞ as n→∞.

Let

(2.34) L = max
0≤m≤s

cos
(
θ0 +

2jmπ
k

)
.

Then, either there exists an index m0 such that cos(θ0 + 2jm0π/k) = L or
there exist two indices m1,m2 (m1 6= m2) such that cos(θ0 + 2jm1π/k) =
cos(θ0 + 2jm2π/k) = L.

We consider these cases separately.
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Case 1. There exists an index m0 such that

cos
(
θ0 +

2jm0π

k

)
= L > cos

(
θ0 +

2jmπ
k

)
for m 6= m0. Then there exists δ > 0 such that for n sufficiently large,

(2.35) cos
(
θn +

2jm0π

k

)
− cos

(
θn +

2jmπ
k

)
≥ δ, for m 6= m0.

Since
s∑

m=0

Cjm exp(ωjmzn) = 0,

we have

(2.36) Cjm0
+
∑
m6=m0

Cjm exp(ωjmzn − ωjm0 zn) = 0.

By (2.35),

| exp(ωjmzn − ωjm0 zn)|(2.37)

= exp
{
rn

(
cos
(
θn +

2jmπ
k

)
− cos

(
θn +

2jm0π

k

))}
≤ e−δrn → 0 as n→∞.

Thus from (2.36) and (2.37), we obtain Cjm0
= 0, which contradicts our

assumption.

Case 2. There exist two indices m1,m2 (m1 6= m2) such that

(2.38) cos
(
θ0 +

2jm1π

k

)
= cos

(
θ0 +

2jm2π

k

)
= L > cos

(
θ0 +

2jmπ
k

)
for m 6= m1,m2. Thus there exists δ > 0 such that, for n sufficiently large,

(2.39) cos
(
θn +

2jm1π

k

)
− cos

(
θn +

2jmπ
k

)
≥ δ (m 6= m1, m2).

Since f(zn) = 0 and f ′(zn) = ac, we have

(2.40) Cjm1
exp(ωjm1 zn)+Cjm2

exp(ωjm2 zn)+
∑

m6=m1,m2

Cjm exp(ωjmzn) = 0

and

Cjm1
ωjm1 exp(ωjm1 zn) + Cjm2

ωjm2 exp(ωjm2 zn)(2.41)

+
∑

m6=m1,m2

Cjmω
jm exp(ωjmzn) = ac.
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Thus we get

Cjm1
(ωjm1−ωjm2 ) exp(ωjm1 zn)(2.42)

+
∑

m6=m1,m2

Cjm(ωjm − ωjm2 ) exp(ωjmzn) = ac.

Using the same reasoning as that used in proving Cjm0
= 0 above and the

fact that ωj 6= ωl (j 6= l, 0 ≤ j, l ≤ k − 1), we obtain

(2.43) exp(ωjm1 zn)→ c0 (n→∞),

where c0 6= 0 is a constant.
It follows that

(2.44) cos
(
θ0 +

2jm1π

k

)
= lim
n→∞

cos
(
θn +

2jm1π

k

)
= 0,

so by (2.38),

(2.45) cos
(
θ0 +

2jm2π

k

)
= 0.

Thus, by (2.44)–(2.45), we have

(2.46)
∣∣∣∣2jm1π

k
− 2jm2π

k

∣∣∣∣ = π,

that is, |jm1 − jm2 | = k/2. Hence k is an even integer.
Without loss of generality, we may assume that

(2.47) jm2 = jm1 +
k

2
, θ0 +

2jm1π

k
=
π

2
.

Thus, by (2.38), (2.44), and (2.47), we have

0 > cos
(
θ0 +

2jmπ
k

)
= cos

[(
θ0 +

2jm1π

k

)
+

2(jm − jm1)π
k

]
= cos

[
π

2
+

2(jm − jm1)π
k

]
= − sin

2(jm − jm1)π
k

,

whence

(2.48) sin
2(jm − jm1)π

k
> 0, for m 6= m1,m2.
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Also,

f(z) = Cjm1
exp(ωjm1 z) + Cjm2

exp(−ωjm1 z)(2.49)

+
∑

m6=m1,m2

Cjm exp(ωjmz)

= A
{

exp[ωjm1 (z + z0)]− exp[−ωjm1 (z + z0)]
}

+
∑

m6=m1,m2

Cjm exp(ωjmz),

where A and z0 are constants satisfying

exp(2ωjm1 z0) = −
Cjm1

Cjm2

, A = Cjm1
exp(−ωjm1 z0).

Set

F (z) = A
{

exp[ωjm1 (z + z0)]− exp[−ωjm1 (z + z0)]
}
,(2.50)

φ(z) =
∑

m6=m1,m2

Cjm exp(ωjmz).(2.51)

Fix δ such that 0 < δ < 1/2. Then by (2.50), for any zero z∗n = −z0+nπiω−jm1

(n = 1, 2, 3, . . . ) of F , we have for z = z∗n + δeiθ

|F (z)| = |A|
√

exp(2δc) + exp(−2δc)− 2 cos(2δ
√

1− c2),

where c = cos(θ + 2jm1π/k). Thus, for z = z∗n + δeiθ, we have

|F (z)| ≥ |A|
√

exp(2δc) + exp(−2δc)− 2 cos(2δ)(2.52)

≥ |A|
√

2− 2 cos(2δ)

≥ 2|A| sin δ ≥ |A|δ.

On the other hand, by (2.51) and (2.48),

|φ(z)| ≤
∑

m6=m1,m2

|Cjm || exp(ωjm(z − z∗n))|| exp(ωjmz∗n)|(2.53)

=
∑

m6=m1,m2

|Cjm | | exp(ωjmδeiθ)| exp(ωjm(−z0 + nπiω−jm1 )|

≤ e
∑

m6=m1,m2

|Cjm | exp(−nπ sin
2(jm − jm1)π

k
)| exp(−ωjmz0)|

→ 0 (n→ +∞, z = z∗n + δeiθ).

Hence, by Rouché’s Theorem, for every large positive integer n, there exists
z

(1)
n ∈ ∆δ = {z : |z| < δ} such that zn = z∗n + z

(1)
n is a zero of f , that is,

(2.54) f(zn) = 0.
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Without loss of generality, we may assume that

z
(1)
2n → z

(1)
0 ∈ ∆δ, (n→∞),(2.55)

z
(1)
2n+1 → z

(1)
1 ∈ ∆δ, (n→∞).(2.56)

By (2.54), (2.43) and (2.47), we have

(2.57) exp(ωjm1 z
(1)
2n ) = exp(ωjm1 z2n) exp(ωjm1 z0)→ c0 exp(ωjm1 z0)

and

(2.58) − exp(ωjm1 z
(1)
2n+1) = exp(ωjm1 z2n+1) exp(ωjm1 z0)→ c0 exp(ωjm1 z0).

It follows from (2.55)–(2.58) that

exp(ωjm1 z
(1)
0 ) + exp(ωjm1 z

(1)
1 ) = 0,

which leads to the contradiction π ≤ |z(1)
0 − z(1)

1 | ≤ 2δ ≤ 1. The proof of
Lemma 8 is complete. �

3. Proofs of Theorems 1–4

Proof of Theorem 1. It suffices to show that F is normal on each disc ∆
contained, with its closure, in D. We may assume that ∆ is the unit disc.
Suppose that F is not normal on ∆. Then by Lemma 1, we can find fn ∈ F ,
zn ∈ ∆, |zn| < r < 1, and ρn → 0+ such that gn(ζ) = ρ−kn fn(zn + ρnζ)
converges locally uniformly to a nonconstant entire function g on C, which
satisfies g#(ζ) ≤ g#(0) = k(|d|+ 1) + 1, where d = max{|a(z)| : |z| ≤ 1}, and
the zeros of g are of multiplicity at least k. By Lemma 2, ρ(g) ≤ 1. Taking a
subsequence and renumbering, we may assume that zn → z0 ∈ ∆.

We claim
(i) g(ζ) = 0 =⇒ g(k)(ζ) = a(z0); and
(ii) g(k)(ζ) = a(z0) =⇒ g(k+1)(ζ) = 0.

Suppose that g(ζ0) = 0. Then by Hurwitz’s Theorem, there exist ζn,
ζn → ζ0, such that (for n sufficiently large)

gn(ζn) = ρ−kn fn(zn + ρnζn) = 0.

Thus fn(zn + ρnζn) = 0. Since fn(ζ) = 0 =⇒ f
(k)
n (ζ) = a(ζ), we have

g(k)
n (ζn) = f (k)

n (zn + ρnζn) = a(zn + ρnζn).

Hence g(k)(ζ0) = lim
n→∞

g(k)
n (ζn) = a(z0). Thus g(ζ) = 0 =⇒ g(k)(ζ) = a(z0).

This proves (i).
Next we prove (ii). Suppose that g(k)(ζ0) = a(z0). Then g(ζ0) 6= ∞. Fur-

ther, g(k)(ζ) 6≡ a(z0), for otherwise g(ζ) = a(z0)
k! (ζ−ζ1)k. A simple calculation

then shows that

g#(0) ≤

{
k/2 if |ζ1| ≥ 1,
|a(z0)| if |ζ1| < 1,
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so that g#(0) < k(|d| + 1) + 1, a contradiction. Since g(k)(ζ0) − a(z0) = 0
and g

(k)
n (zn + ρnζ) − a(zn + ρnζ) → g(k)(ζ) − a(z0) on a neighborhood of

ζ0, by Hurwitz’s Theorem, there exist ζn, ζn → ζ0, such that (for n suf-
ficiently large) f (k)

n (zn + ρnζn) = g
(k)
n (ζn) = a(zn + ρnζn). It follows that

|f (k + 1)
n (zn + ρnζn)| ≤ h, so that |g(k+1)

n (ζn)| = |ρnf (k+1)
n (zn+ρnζn)| ≤ ρnh.

Thus g(k+1)(ζ0) = lim
n→∞

g(k+1)
n (ζn) = 0. This proves (ii).

Thus, by Lemma 5, g(ζ) = (a(z0)/k!)(ζ − ζ1)k. It follows that g#(0) <
k(|d| + 1) + 1, which is a contradiction. Thus F is normal on ∆ and hence
on D . �

Proof of Theorem 2. We may assume that D = ∆, the unit disc. Suppose
that F is not normal on ∆. Then by Lemma 1, we can find fn ∈ F , zn ∈ ∆,
and ρn → 0+ such that gn(ζ) = ρ−2

n fn(zn + ρnζ) converges locally uniformly
to a nonconstant entire function g, all of whose zeros are multiple, which
satisfies g#(ζ) ≤ g#(0) = 2(|a|+ 1) + 1. By Lemma 2, ρ(g) ≤ 1.

As in the proof of Theorem 1, we have

(i) g(ζ) = 0 =⇒ g′′(ζ) = a; and
(ii) g′′(ζ) = a =⇒ g′′′(ζ) = 0.

If g 6= 0, then g(ζ) = eAζ+B , where A 6= 0, B are constants. Thus

g′′(ζ) = A2eAz+B , and g′′′(ζ) = A3eAζ+B .

Let g′′(ζ0) = a. Then A3eAζ0+B = g′′′(ζ0) = 0, which is impossible. Hence,
there exists ζ0 such that g(ζ0) = 0. Now g′′ 6≡ a, for otherwise g(ζ) =
a
2 (ζ − ζ1)2 which, as in the proof of Theorem 1, would contradict g#(0) =
2(|a|+ 1) + 1. Thus by (i) and (ii), ζ0 is a zero of g′′(ζ)− a with multiplicity
m ≥ 2. Hence g(2+m)(ζ0) 6= 0, and there exists δ > 0 such that for |ζ−ζ0| < δ,

(3.1) g(2+m)(ζ) 6= 0.

So, by Hurwitz’s theorem, there exist m sequences {ζin}, i = 1, 2, . . . ,m, such
that lim

n→∞
ζin = ζ0, and for large n,

(3.2) g′′n(ζin) = a, i = 1, 2, . . . ,m.

Hence, by f ′′n (z) = a =⇒ f ′′′n (z) 6= 0, we have

(3.3) g′′′n (ζin) = ρnf
′′′
n (zn + ρnζin) 6= 0, (i = 1, 2, . . . ,m).

Thus

(3.4) ζin 6= ζjn, 1 ≤ i < j ≤ m.

Hence by (3.2) and (3.4), g(2+m)(ζ0) = 0, which contradicts (3.1).
Hence F is normal in D. This proves Theorem 2. �
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Proof of Theorem 3. As in the proof of Theorem 1, we show that F is
normal on each disc ∆ contained, with its closure, in D. We may assume
that ∆ is the unit disc. Suppose that F is not normal on ∆. Then by
Lemma 1, we can find fn ∈ F , zn ∈ ∆, |zn| < r < 1, and ρn → 0+ such
that gn(ζ) = ρ−2

n fn(zn + ρnζ) converges locally uniformly to a nonconstant
entire function g, which satisfies g#(ζ) ≤ g#(0) = 2(|d| + 1) + 1, where
d = max{|a(z)| : |z| ≤ 1}. As before, we may also assume that zn → z0 ∈ ∆.

As in the proof of Theorem 1, we have
(i) g(ζ) = 0 =⇒ g′′(ζ) = a(z0); and
(ii) g′′(ζ) = a(z0) =⇒ g′′′(ζ) = g(s)(ζ) = 0.

Thus by Lemma 6, g(ζ) = a(z0)(ζ − ζ1)2/2. But then g#(0) < 2(|d|+ 1) + 1,
which is a contradiction.

Thus F is normal on ∆ and hence on D. This proves Theorem 3. �

Proof of Theorem 4. Again we prove that F is normal on each disc ∆ con-
tained, with its closure, in D. As before, we may assume that ∆ is the unit
disc. Suppose that F is not normal on ∆. Then by Lemma 1, we can find
fn ∈ F , zn ∈ ∆, |zn| < r < 1, and ρn → 0+ such that gn(ζ) = ρ−1

n fn(zn+ρnζ)
converges locally uniformly to a nonconstant entire function g on C which sat-
isfies g#(ζ) ≤ g#(0) = |d| + 2, where d = max{|a(z)| : |z| ≤ 1}. Moreover, g
is of order at most one. Again, we may assume that zn → z0 ∈ ∆.

As in the proof of Theorem 1, we have
(i) g(ζ) = 0 =⇒ g′(ζ) = a(z0); and
(ii) g′(ζ) = a(z0) =⇒ g(k)(ζ) = 0.

Thus by Lemma 8, g(ζ) = a(z0)(ζ − ζ1). So g#(0) ≤ |a(z0)| < |d| + 2, a
contradiction.

Thus F is normal on ∆ and hence on D. This completes the proof of
Theorem 4. �
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