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ON THE DERIVATIVE OF INFINITE BLASCHKE
PRODUCTS

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

Abstract. A well known result of Privalov shows that if f is a function
that is analytic in the unit disc ∆ = {z ∈ C : |z| < 1}, then the condition

f ′ ∈ H1 implies that f has a continuous extension to the closed unit
disc. Consequently, if B is an infinite Blaschke product, then B′ /∈ H1.
This has been proved to be sharp in a very strong sense. Indeed, for any
given positive and continuous function φ defined on [0, 1) with φ(r)→∞
as r → 1, one can construct an infinite Blaschke product B having the

property that

(∗) M1(r,B′)
def
=

1

2π

∫ π

−π
|B′(reit)| dt = O (φ(r)) , as r → 1.

All examples of Blaschke products constructed so far to prove this result
have their zeros located on a ray. Thus it is natural to ask whether

an infinite Blaschke product B such that the integral means M1(r,B′)
grow very slowly must satisfy a condition “close” to that of having its
zeros located on a ray. More generally, we may formulate the following
question: Let B be an infinite Blaschke product and let {an}∞n=1 be the

sequence of its zeros. Do restrictions on the growth of the integral means
M1(r,B′) imply some restrictions on the sequence {Arg(an)}∞n=1?

In this paper we prove that the answer to these questions is negative
in a very strong sense. Indeed, for any function φ as above we shall
construct two new and quite different classes of examples of infinite

Blaschke products B satisfying (∗) with the property that every point
of ∂∆ is an accumulation point of the sequence of zeros of B.
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1. Introduction and main results

Let ∆ denote the unit disc {z ∈ C : |z| < 1}. For 0 < r < 1 and g analytic
in ∆ we set

Mp(r, g) =
(

1
2π

∫ π

−π

∣∣g(reiθ)
∣∣p dθ)1/p

, 0 < p <∞,

M∞(r, g) = max
|z|=r

|g(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions g that are
analytic in ∆ and satisfy

||g||Hp = sup
0<r<1

Mp(r, g) <∞.

We refer to [2] for the theory of Hardy spaces. We recall that if a sequence
{an} ⊂ ∆ \ {0} satisfies the “Blaschke condition”∑

(1− |an|) <∞,

then the product

B(z) =
∏
n

an
|an|

an − z
1− anz

defines an H∞ function, called the Blaschke product with zeros {an}.
A classical result of Privalov [2, Th. 3.11] asserts that a function f that

is analytic in ∆ has a continuous extension to the closed unit disc ∆, whose
boundary values are absolutely continuous on ∂∆ if and only if f ′ ∈ H1. In
particular,

f ′ ∈ H1 =⇒ f ∈ A,
where, as usual, A denotes the disc algebra, that is, the space of all functions
f that are analytic in ∆ and have a continuous extension to the closed unit
disc ∆.

Since the boundary values of a Blaschke product have modulus 1 almost
everywhere [2], it is clear that if B is an infinite Blaschke product, then B /∈ A
and, hence, B′ /∈ H1. This is best-possible, as the following theorem shows.

Theorem A. Let φ be a positive and continuous function defined on [0, 1)
with φ(r) → ∞ as r → 1. Then there exists an infinite Blaschke product B
with positive zeros having the property that

(1) M1(r,B′) = O(φ(r)), as r → 1.

Different proofs of this result have been given in [3], [4] and [5]. It is natural
to ask whether an infinite Blaschke product B such that the integral means
M1(r,B′) grow very slowly must satisfy a condition “close” to that of having
its zeros located on a ray. More generally, we may formulate the following
question:



ON THE DERIVATIVE OF INFINITE BLASCHKE PRODUCTS 123

Let B be an infinite Blaschke product and let {an}∞n=1 be the sequence of
its zeros. Do restrictions on the growth of the integral means M1(r,B′) imply
some restrictions on the sequence {Arg(an)}∞n=1?

We shall prove that the answer to these questions is negative in a very
strong sense. Indeed, for any function φ as in Theorem A we shall construct
two new and quite different classes of examples of infinite Blaschke products
B satisfying (1) with the property that every point of ∂∆ is an accumula-
tion point of the sequence of zeros of B. Our first construction is given in
Theorem 1.

Theorem 1. Let φ be a positive and continuous function defined on [0, 1)
with φ(r)→∞ as r → 1. Then there exists an increasing sequence {rk}∞k=1 ⊂
(0, 1) with

∑∞
k=1(1 − rk) < ∞ such that if, for every k, ak is a complex

number with |ak| = rk and B is the Blaschke product whose sequence of zeros
is {ak}∞k=1, then B satisfies (1).

Notice that if {rk}∞k=1 is the sequence constructed in Theorem 1, {θk}∞k=1

is any sequence of real numbers that is dense in R and we set ak = rke
iθk

(k ≥ 1), then every point of ∂∆ is an accumulation point of the sequence {ak}
and the Blaschke product with zeros {ak} satisfies (1).

Our second class of examples is given in Theorem 2. The Blaschke products
B constructed in Theorem 1 have the property that for any r ∈ (0, 1) at most
one zero of B lies on the circle {|z| = r}. The Blaschke products that we
construct in Theorem 2 are quite different: If B is any of these products, then
there exist a sequence {rk} ↑ 1 and a sequence of natural numbers {nk} ↑ ∞
such that, for all k, nk of the zeros of B lie on the circle {|z| = rk}.

Theorem 2. Let φ be a positive and continuous function defined on [0, 1)
with φ(r)→∞ as r → 1. Then there exist an increasing sequence {rk}∞k=1 ⊂
(0, 1) and a sequence of natural numbers {nk}∞k=1 with limk→∞ nk = ∞ sat-
isfying

∞∑
k=1

nk(1− rk) <∞,

such that if B is the Blaschke product whose zeros are{
rke

2πij/nk : j = 0, 1, . . . , nk − 1, k = 1, 2, . . .
}
,

that is,

(2) B(z) =
∞∏
k=1

rnkk − znk
1− rnkk znk

, z ∈ ∆,

then M1(r,B′) = O(φ(r)) as r → 1.
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We mention that Blaschke products like those constructed in Theorem 2
were used by Lohwater and Piranian [6] (see also Theorem 2.22 on p. 43 of
[1]) to show that Fatou’s theorem is best possible and by Piranian [11] to
construct a Blaschke product B with

∫∫
∆
|B′(z)|dxdy =∞.

2. Proof of Theorem 1

If f is an analytic function in ∆, we let n(r, f) (0 < r < 1) denote the
number of zeros of f in the disc {z : |z| ≤ r}. Our proof of Theorem 1 will be
based on the following result, which is an extension of Theorem 1 on p. 3 of
[5].

Theorem 3. Given α ∈ (0, 1) there exist two positive constants C1(α)
and C2(α) such that if {an}∞n=1 is any sequence in ∆ \ {0} satisfying

(3) (1− |an+1|) ≤ α(1− |an|), n ≥ 1,

and B is the Blaschke product whose sequence of zeros is {an}∞n=1, then, for
all r sufficiently close to 1,

(4) C1(α)n(r,B) ≤M1(r,B′) ≤ C2(α)n(r,B).

Proof. Take α ∈ (0, 1) and let {an}∞n=1 be a sequence in ∆ \ {0} satisfying
(3). Let B be the Blaschke product whose sequence of zeros is {an}∞n=1.
Define

(5) r2k−1 = |ak|, k = 1, 2, 3, . . .

and

(6) r2k =
r2k−1 + r2k+1

2
=
|ak|+ |ak+1|

2
, k = 1, 2, 3, . . . .

Set β = 1
2 (1 + α). Then 0 < β < 1 and it is easy to see that we have

1− rk+1 ≤ β(1− rk), for all k.

Using Theorem 9.2 of [2], we see that the sequence {rk} is uniformly separated,
that is, there exists a constant δ > 0 such that

(7)
∞∏
j=1
j 6=k

∣∣∣∣ rj − rk1− rjrk

∣∣∣∣ ≥ δ, for all k.

Actually, an examination of the proof of Theorem 9.2 on pp. 155–156 of [2]
shows that the constant δ depends only on β (or, equivalently, on α). Using
the lemma on p. 154 of [2], we see that

min
|z|=r

∣∣∣∣ aj − z1− ajz

∣∣∣∣ ≥ ∣∣∣∣ |aj | − r1− |aj |r

∣∣∣∣ , 0 < r < 1, j = 1, 2, . . .
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and, hence,

min
|z|=r

|B(z)| ≥
∞∏
j=1

∣∣∣∣ |aj | − r1− |aj |r

∣∣∣∣ =
∞∏
j=1

∣∣∣∣ r2j−1 − r
1− r2j−1r

∣∣∣∣ , 0 < r < 1.

Taking r = r2k and using (7), we obtain

(8) min
|z|=r2k

|B(z)| ≥
∞∏
j=1

∣∣∣∣ r2j−1 − r2k

1− r2j−1r2k

∣∣∣∣ ≥ ∞∏
j=1
j 6=2k

∣∣∣∣ rj − r2k

1− rjr2k

∣∣∣∣ ≥ δ, k = 1, 2, . . .

Once (8) has been established, the argument used on pp. 5–6 of [5] gives that
there exists %1 ∈ (0, 1) such that

M1(r,B′) ≥ δ

2
n(r,B), ρ1 < r < 1.

This gives the first inequality of (4) for all r ∈ (ρ1, 1) with C1(α) = δ/2.
The second inequality with C2(α) = 5 follows from the argument on pp. 6–7

of [5]. �

Proof of Theorem 1. With Theorem 3 established, the proof of Theorem 1
follows the lines of the proof of Theorem A in [5]. Let φ be as in Theorem 1.
We may assume without loss of generality that φ(0) < 1. Define

(9) bn = max{r ∈ (0, 1) : φ(r) = n}, n = 1, 2, 3, . . . .

It is clear that the sequence {bn}∞n=1 is well defined, increasing, and that
bn → 1 as n→∞.

Given r ∈ (0, 1), let N(r) denote the number of elements of the sequence
which are smaller than or equal to r. It is clear that

n > φ(r) =⇒ bn > r,

and thus

(10) N(r) ≤ φ(r).

Since bn ↑ 1, we can extract a subsequence {bnk} of {bn} such that

(11) (1− bnk+1) ≤ 1
2

(1− bnk), k ≥ 1.

Set rk = bnk (k ≥ 1) and let {ak}∞k=1 be a sequence of complex numbers with
|ak| = rk for all k. Notice that (11) implies that {ak} satisfies the Blaschke
condition. Let B be the Blaschke product whose sequence of zeros is {ak}∞k=1.
Since {|ak|} is a subsequence of {bn}, it is clear that

n(r,B) ≤ N(r), for all r ∈ (0, 1).

Then (10) shows that

n(r,B) ≤ φ(r), 0 < r < 1,
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which, using Theorem 3 with α = 1/2, gives

M1(r,B′) = O(φ(r)), as r → 1.

This finishes the proof. �

3. Proof of Theorem 2

The proofs of Theorem A in [3] and [4] make essential use of certain se-
quences introduced by K. I. Oskolkov in several contexts (see [7], [8], [9] and
[10]). The proof given in [5] is simpler and independent of the Oskolkov’s
sequences. However, for the proof of Theorem 2 we shall again need to make
use of Oskolkov’s sequences.

Definition 1. Let ω : [0, 1] → [0,∞) be a continuous function with
ω(0) = 0 and

(12)
ω(δ)
δ
→∞, as δ → 0.

Take a fixed number λ with 0 < λ < 1 and consider the sequence of numbers
{δj}∞j=0, defined inductively by

(13)

{
δ0 = 1,

δj+1 = min
{
δ ∈ [0, 1) : max

[
ω(δ)
ω(δj)

,
ω(δj)δ
δjω(δ)

]
= λ

}
, j ≥ 0.

Then {δj}∞j=0 is called the “λ-Oskolkov sequence associated with ω”.

It is clear that the definition of {δj} makes sense. The main properties of
the sequence {δj} that will be used in the sequel are stated and proved in
Lemma 2 of [4]. We state them here for the sake of completeness.

Lemma 1. Let ω : [0, 1]→ [0,∞) be a continuous function with ω(0) = 0
satisfying (12). Let 0 < λ < 1 and let {δj}∞j=0 be the “λ-Oskolkov sequence
associated with ω”. Then {δj} is a decreasing sequence of positive numbers
with δj → 0 as j →∞. Moreover, for all j ≥ 0, we have

(14) ω(δj+1) ≤ λω(δj),

(15) δj+1 ≤ λ2δj ,

(16) ω(δj+1)δj+1 ≤ λ3ω(δj)δj ,

(17)
ω(δj)
δj
≤ λk−j ω(δk)

δk
, 0 ≤ j ≤ k,

(18) ω(δj) ≤ λj−kω(δk), j ≥ k.
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In the following lemma we obtain an upper bound for the integral means
M1(r,B′) of Blaschke products B of the type considered in Theorem 2. It is
similar to an inequality proved by D. Protas on p. 394 of [12].

Lemma 2. Let {rk}∞k=1 be an increasing sequence of numbers in (0, 1) and
let {nk}∞k=1 be a sequence of natural numbers with limk→∞ nk =∞ satisfying

(19)
∞∑
k=1

nk(1− rk) <∞.

Let B be the Blaschke product whose zeros are{
rke

2πij/nk : j = 0, 1, . . . , nk − 1, k = 1, 2, . . .
}
,

that is,

(20) B(z) =
∞∏
k=1

rnkk − znk
1− rnkk znk

, z ∈ ∆.

Then

(21) M1(r,B′) ≤ 4
∞∑
j=1

nj(1− r
nj
j )

(1− r) + (1− rnjj )
, 0 < r < 1.

Proof. We have

|B′(z)| =

∣∣∣∣∣∣∣
∞∑
j=1

−njznj−1(1− r2nj
j )

(1− rnjj znj )2

∞∏
k=1
k 6=j

rnkk − znk
1− rnkk znk

∣∣∣∣∣∣∣(22)

≤
∞∑
j=1

nj(1− r
2nj
j )

|1− rnjj znj |2
≤ 2

∞∑
j=1

nj(1− r
nj
j )

|1− rnjj znj |2
, z ∈ ∆.

Now, a simple calculation shows that

1
2π

∫ 2π

0

dt

|1− rnjj rnjeinjt|2
=

1
2π

∫ 2π

0

dt

|1− rnjj rnjeit|2

=
1

1− r2nj
j r2nj

≤ 2
(1− rnj ) + (1− rnjj )

≤ 2
(1− r) + (1− rnjj )

, 0 < r < 1,

which together with (22) gives (21). This finishes the proof. �

Proof of Theorem 2. We may assume without loss of generality that φ(r) ≥
1, 0 ≤ r < 1. Define

φ1(r) = min
(
φ(r),

2
(1− r)1/2

)
, 0 < r < 1,
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and let φ2 denote the highest increasing minorant of φ1, that is,

φ2(r) = inf
r≤s<1

φ1(s), 0 ≤ r < 1.

Then it is clear that φ2 is a positive, continuous and increasing function on
[0, 1) with φ2(r) ≥ 1 for all r ∈ [0, 1). Also,

φ2(r)→∞ and (1− r)φ2(r)→ 0, as r → 1.

Let ω : [0, 1]→ R be defined by

(23)

{
ω(0) = 0,
ω(δ) = δφ2(1− δ), 0 < δ ≤ 1.

Hence,

(24) φ2(r) =
ω(1− r)

1− r
, 0 < r < 1.

Clearly, ω is positive and continuous on [0, 1] and satisfies

ω(δ) ≥ δ for all δ ∈ [0, 1] and
ω(δ)
δ
→∞ as δ → 0.

Take and fix a real number λ with 0 < λ < 1 and let {δj}∞j=0 be the “λ-
Oskolkov sequence associated with ω”. Set

(25) nj = E

[
min

(
ω(δj)
δj

,
1
λ2j

)]
, j ≥ 1,

where, for x ≥ 0, E[x] denotes the greatest integer which is ≤ x. It is clear
that nj →∞, as j →∞, and that there exists a positive integer N such that
ω(δj) < 1 for all j ≥ N . Define

(26) rj = (1− δjω(δj))
1/nj , j ≥ N.

Using (25) and (18), we easily obtain that
∞∑
j=N

nj(1− rj) <∞.

Consequently, the infinite product

B(z) =
∞∏
j=N

r
nj
j − znj

1− rnjj znj

is in fact a Blaschke product of the type considered in Lemma 2.
Using Lemma 2, we have

(27) M1(r,B′) ≤ 4
∞∑
j=N

nj(1− r
nj
j )

(1− r) + (1− rnjj )
.
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Define now

(28) %j = 1− δj , j ≥ N.
Then %j ↑ 1 as j ↑ ∞. From now on we shall use the convention that C will
denote a constant which may be different at distinct occurrences. From (28),
(27) and (26) we obtain

(29) M1(%k+1, B
′) ≤ C

∞∑
j=N

njδjω(δj)
δk+1 + δjω(δj)

, k ≥ N.

Using (17) and (25) we deduce that, for k ≥ N ,
k∑

j=N

njδjω(δj)
δk+1 + δjω(δj)

≤ ω(δk)
δk

k∑
j=N

λk−j
njδj
ω(δj)

(30)

≤ ω(δk)
δk

k∑
j=N

λk−j ≤ ω(δk)
δk

∞∑
j=0

λj ≤ Cω(δk)
δk

.

Using (18), (15) and (25), we obtain
∞∑

j=k+1

njδjω(δj)
δk+1 + δjω(δj)

≤
∞∑

j=k+1

njδjω(δj)
δk+1

(31)

≤ ω(δk)
δk

∞∑
j=k+1

λ−2jλ2(j−k−1)λj−kδk

=
ω(δk)
δk

∞∑
j=k+1

λj−kλ−2(k+1)δk

≤ λ−2ω(δk)
δk

∞∑
j=k+1

λj−k ≤ λ−2ω(δk)
δk

∞∑
j=0

λj

≤ Cω(δk)
δk

, k ≥ N,

which, together with (28), (30), (29) and (24), gives

(32) M1(%k+1, B
′) ≤ Cφ2(%k), k ≥ N.

Since M1(r,B′) and φ2(r) are increasing functions of r and φ2(r) ≤ φ(r)
for all r, (32) yields M1(r,B′) ≤ Cφ(r) if r ≥ %N . This finishes the proof. �
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