ON THE DERIVATIVE OF INFINITE BLASCHKE PRODUCTS

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

Abstract

A well known result of Privalov shows that if f is a function that is analytic in the unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$, then the condition $f^{\prime} \in H^{1}$ implies that f has a continuous extension to the closed unit disc. Consequently, if B is an infinite Blaschke product, then $B^{\prime} \notin H^{1}$. This has been proved to be sharp in a very strong sense. Indeed, for any given positive and continuous function ϕ defined on $[0,1)$ with $\phi(r) \rightarrow \infty$ as $r \rightarrow 1$, one can construct an infinite Blaschke product B having the property that (*) $\quad M_{1}\left(r, B^{\prime}\right) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|B^{\prime}\left(r e^{i t}\right)\right| d t=\mathrm{O}(\phi(r)), \quad$ as $r \rightarrow 1$. All examples of Blaschke products constructed so far to prove this result have their zeros located on a ray. Thus it is natural to ask whether an infinite Blaschke product B such that the integral means $M_{1}\left(r, B^{\prime}\right)$ grow very slowly must satisfy a condition "close" to that of having its zeros located on a ray. More generally, we may formulate the following question: Let B be an infinite Blaschke product and let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be the sequence of its zeros. Do restrictions on the growth of the integral means $M_{1}\left(r, B^{\prime}\right)$ imply some restrictions on the sequence $\left\{\operatorname{Arg}\left(a_{n}\right)\right\}_{n=1}^{\infty} ?$

In this paper we prove that the answer to these questions is negative in a very strong sense. Indeed, for any function ϕ as above we shall construct two new and quite different classes of examples of infinite Blaschke products B satisfying ($*$) with the property that every point of $\partial \Delta$ is an accumulation point of the sequence of zeros of B.

Received February 24, 2003; received in final form May 15, 2003.
2000 Mathematics Subject Classification. 30D50, 30D55.
This research has been supported in part by a grant from "El Ministerio de Ciencia y Tecnología, Spain" (BFM2001-1736) and by a grant from La Junta de Andalucía" (FQM210).

1. Introduction and main results

Let Δ denote the unit disc $\{z \in \mathbb{C}:|z|<1\}$. For $0<r<1$ and g analytic in Δ we set

$$
\begin{aligned}
M_{p}(r, g) & =\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}, \quad 0<p<\infty \\
M_{\infty}(r, g) & =\max _{|z|=r}|g(z)|
\end{aligned}
$$

For $0<p \leq \infty$ the Hardy space H^{p} consists of those functions g that are analytic in Δ and satisfy

$$
\|g\|_{H^{p}}=\sup _{0<r<1} M_{p}(r, g)<\infty
$$

We refer to [2] for the theory of Hardy spaces. We recall that if a sequence $\left\{a_{n}\right\} \subset \Delta \backslash\{0\}$ satisfies the "Blaschke condition"

$$
\sum\left(1-\left|a_{n}\right|\right)<\infty
$$

then the product

$$
B(z)=\prod_{n} \frac{\bar{a}_{n}}{\left|a_{n}\right|} \frac{a_{n}-z}{1-\bar{a}_{n} z}
$$

defines an H^{∞} function, called the Blaschke product with zeros $\left\{a_{n}\right\}$.
A classical result of Privalov [2, Th. 3.11] asserts that a function f that is analytic in Δ has a continuous extension to the closed unit disc $\bar{\Delta}$, whose boundary values are absolutely continuous on $\partial \Delta$ if and only if $f^{\prime} \in H^{1}$. In particular,

$$
f^{\prime} \in H^{1} \quad \Longrightarrow \quad f \in \mathcal{A}
$$

where, as usual, \mathcal{A} denotes the disc algebra, that is, the space of all functions f that are analytic in Δ and have a continuous extension to the closed unit $\operatorname{disc} \bar{\Delta}$.

Since the boundary values of a Blaschke product have modulus 1 almost everywhere [2], it is clear that if B is an infinite Blaschke product, then $B \notin \mathcal{A}$ and, hence, $B^{\prime} \notin H^{1}$. This is best-possible, as the following theorem shows.

Theorem A. Let ϕ be a positive and continuous function defined on $[0,1)$ with $\phi(r) \rightarrow \infty$ as $r \rightarrow 1$. Then there exists an infinite Blaschke product B with positive zeros having the property that

$$
\begin{equation*}
M_{1}\left(r, B^{\prime}\right)=\mathrm{O}(\phi(r)), \quad \text { as } r \rightarrow 1 \tag{1}
\end{equation*}
$$

Different proofs of this result have been given in [3], [4] and [5]. It is natural to ask whether an infinite Blaschke product B such that the integral means $M_{1}\left(r, B^{\prime}\right)$ grow very slowly must satisfy a condition "close" to that of having its zeros located on a ray. More generally, we may formulate the following question:

Let B be an infinite Blaschke product and let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be the sequence of its zeros. Do restrictions on the growth of the integral means $M_{1}\left(r, B^{\prime}\right)$ imply some restrictions on the sequence $\left\{\operatorname{Arg}\left(a_{n}\right)\right\}_{n=1}^{\infty}$?

We shall prove that the answer to these questions is negative in a very strong sense. Indeed, for any function ϕ as in Theorem A we shall construct two new and quite different classes of examples of infinite Blaschke products B satisfying (1) with the property that every point of $\partial \Delta$ is an accumulation point of the sequence of zeros of B. Our first construction is given in Theorem 1.

Theorem 1. Let ϕ be a positive and continuous function defined on $[0,1)$ with $\phi(r) \rightarrow \infty$ as $r \rightarrow 1$. Then there exists an increasing sequence $\left\{r_{k}\right\}_{k=1}^{\infty} \subset$ $(0,1)$ with $\sum_{k=1}^{\infty}\left(1-r_{k}\right)<\infty$ such that if, for every k, a_{k} is a complex number with $\left|a_{k}\right|=r_{k}$ and B is the Blaschke product whose sequence of zeros is $\left\{a_{k}\right\}_{k=1}^{\infty}$, then B satisfies (1).

Notice that if $\left\{r_{k}\right\}_{k=1}^{\infty}$ is the sequence constructed in Theorem $1,\left\{\theta_{k}\right\}_{k=1}^{\infty}$ is any sequence of real numbers that is dense in \mathbb{R} and we set $a_{k}=r_{k} e^{i \theta_{k}}$ ($k \geq 1$), then every point of $\partial \Delta$ is an accumulation point of the sequence $\left\{a_{k}\right\}$ and the Blaschke product with zeros $\left\{a_{k}\right\}$ satisfies (1).

Our second class of examples is given in Theorem 2. The Blaschke products B constructed in Theorem 1 have the property that for any $r \in(0,1)$ at most one zero of B lies on the circle $\{|z|=r\}$. The Blaschke products that we construct in Theorem 2 are quite different: If B is any of these products, then there exist a sequence $\left\{r_{k}\right\} \uparrow 1$ and a sequence of natural numbers $\left\{n_{k}\right\} \uparrow \infty$ such that, for all k, n_{k} of the zeros of B lie on the circle $\left\{|z|=r_{k}\right\}$.

TheOrem 2. Let ϕ be a positive and continuous function defined on $[0,1)$ with $\phi(r) \rightarrow \infty$ as $r \rightarrow 1$. Then there exist an increasing sequence $\left\{r_{k}\right\}_{k=1}^{\infty} \subset$ $(0,1)$ and a sequence of natural numbers $\left\{n_{k}\right\}_{k=1}^{\infty}$ with $\lim _{k \rightarrow \infty} n_{k}=\infty$ satisfying

$$
\sum_{k=1}^{\infty} n_{k}\left(1-r_{k}\right)<\infty
$$

such that if B is the Blaschke product whose zeros are

$$
\left\{r_{k} e^{2 \pi i j / n_{k}}: j=0,1, \ldots, n_{k}-1, k=1,2, \ldots\right\}
$$

that is,

$$
\begin{equation*}
B(z)=\prod_{k=1}^{\infty} \frac{r_{k}^{n_{k}}-z^{n_{k}}}{1-r_{k}^{n_{k}} z^{n_{k}}}, \quad z \in \Delta \tag{2}
\end{equation*}
$$

then $M_{1}\left(r, B^{\prime}\right)=\mathrm{O}(\phi(r))$ as $r \rightarrow 1$.

We mention that Blaschke products like those constructed in Theorem 2 were used by Lohwater and Piranian [6] (see also Theorem 2.22 on p. 43 of [1]) to show that Fatou's theorem is best possible and by Piranian [11] to construct a Blaschke product B with $\iint_{\Delta}\left|B^{\prime}(z)\right| d x d y=\infty$.

2. Proof of Theorem 1

If f is an analytic function in Δ, we let $n(r, f)(0<r<1)$ denote the number of zeros of f in the disc $\{z:|z| \leq r\}$. Our proof of Theorem 1 will be based on the following result, which is an extension of Theorem 1 on p. 3 of [5].

Theorem 3. Given $\alpha \in(0,1)$ there exist two positive constants $C_{1}(\alpha)$ and $C_{2}(\alpha)$ such that if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is any sequence in $\Delta \backslash\{0\}$ satisfying

$$
\begin{equation*}
\left(1-\left|a_{n+1}\right|\right) \leq \alpha\left(1-\left|a_{n}\right|\right), \quad n \geq 1 \tag{3}
\end{equation*}
$$

and B is the Blaschke product whose sequence of zeros is $\left\{a_{n}\right\}_{n=1}^{\infty}$, then, for all r sufficiently close to 1 ,

$$
\begin{equation*}
C_{1}(\alpha) n(r, B) \leq M_{1}\left(r, B^{\prime}\right) \leq C_{2}(\alpha) n(r, B) \tag{4}
\end{equation*}
$$

Proof. Take $\alpha \in(0,1)$ and let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\Delta \backslash\{0\}$ satisfying (3). Let B be the Blaschke product whose sequence of zeros is $\left\{a_{n}\right\}_{n=1}^{\infty}$. Define

$$
\begin{equation*}
r_{2 k-1}=\left|a_{k}\right|, \quad k=1,2,3, \ldots \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2 k}=\frac{r_{2 k-1}+r_{2 k+1}}{2}=\frac{\left|a_{k}\right|+\left|a_{k+1}\right|}{2}, \quad k=1,2,3, \ldots \tag{6}
\end{equation*}
$$

Set $\beta=\frac{1}{2}(1+\alpha)$. Then $0<\beta<1$ and it is easy to see that we have

$$
1-r_{k+1} \leq \beta\left(1-r_{k}\right), \quad \text { for all } k
$$

Using Theorem 9.2 of [2], we see that the sequence $\left\{r_{k}\right\}$ is uniformly separated, that is, there exists a constant $\delta>0$ such that

$$
\begin{equation*}
\prod_{\substack{j=1 \\ j \neq k}}^{\infty}\left|\frac{r_{j}-r_{k}}{1-r_{j} r_{k}}\right| \geq \delta, \quad \text { for all } k \tag{7}
\end{equation*}
$$

Actually, an examination of the proof of Theorem 9.2 on pp. 155-156 of [2] shows that the constant δ depends only on β (or, equivalently, on α). Using the lemma on p. 154 of [2], we see that

$$
\min _{|z|=r}\left|\frac{a_{j}-z}{1-\overline{a_{j}} z}\right| \geq\left|\frac{\left|a_{j}\right|-r}{1-\left|a_{j}\right| r}\right|, \quad 0<r<1, \quad j=1,2, \ldots
$$

and, hence,

$$
\min _{|z|=r}|B(z)| \geq \prod_{j=1}^{\infty}\left|\frac{\left|a_{j}\right|-r}{1-\left|a_{j}\right| r}\right|=\prod_{j=1}^{\infty}\left|\frac{r_{2 j-1}-r}{1-r_{2 j-1} r}\right|, \quad 0<r<1
$$

Taking $r=r_{2 k}$ and using (7), we obtain
(8) $\min _{|z|=r_{2 k}}|B(z)| \geq \prod_{j=1}^{\infty}\left|\frac{r_{2 j-1}-r_{2 k}}{1-r_{2 j-1} r_{2 k}}\right| \geq \prod_{\substack{j=1 \\ j \neq 2 k}}^{\infty}\left|\frac{r_{j}-r_{2 k}}{1-r_{j} r_{2 k}}\right| \geq \delta, \quad k=1,2, \ldots$

Once (8) has been established, the argument used on pp. 5-6 of [5] gives that there exists $\varrho_{1} \in(0,1)$ such that

$$
M_{1}\left(r, B^{\prime}\right) \geq \frac{\delta}{2} n(r, B), \quad \rho_{1}<r<1
$$

This gives the first inequality of (4) for all $r \in\left(\rho_{1}, 1\right)$ with $C_{1}(\alpha)=\delta / 2$.
The second inequality with $C_{2}(\alpha)=5$ follows from the argument on pp. 6-7 of [5].

Proof of Theorem 1. With Theorem 3 established, the proof of Theorem 1 follows the lines of the proof of Theorem A in [5]. Let ϕ be as in Theorem 1. We may assume without loss of generality that $\phi(0)<1$. Define

$$
\begin{equation*}
b_{n}=\max \{r \in(0,1): \phi(r)=n\}, \quad n=1,2,3, \ldots \tag{9}
\end{equation*}
$$

It is clear that the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is well defined, increasing, and that $b_{n} \rightarrow 1$ as $n \rightarrow \infty$.

Given $r \in(0,1)$, let $N(r)$ denote the number of elements of the sequence which are smaller than or equal to r. It is clear that

$$
n>\phi(r) \quad \Longrightarrow \quad b_{n}>r
$$

and thus

$$
\begin{equation*}
N(r) \leq \phi(r) \tag{10}
\end{equation*}
$$

Since $b_{n} \uparrow 1$, we can extract a subsequence $\left\{b_{n_{k}}\right\}$ of $\left\{b_{n}\right\}$ such that

$$
\begin{equation*}
\left(1-b_{n_{k+1}}\right) \leq \frac{1}{2}\left(1-b_{n_{k}}\right), \quad k \geq 1 \tag{11}
\end{equation*}
$$

Set $r_{k}=b_{n_{k}}(k \geq 1)$ and let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be a sequence of complex numbers with $\left|a_{k}\right|=r_{k}$ for all k. Notice that (11) implies that $\left\{a_{k}\right\}$ satisfies the Blaschke condition. Let B be the Blaschke product whose sequence of zeros is $\left\{a_{k}\right\}_{k=1}^{\infty}$. Since $\left\{\left|a_{k}\right|\right\}$ is a subsequence of $\left\{b_{n}\right\}$, it is clear that

$$
n(r, B) \leq N(r), \quad \text { for all } r \in(0,1)
$$

Then (10) shows that

$$
n(r, B) \leq \phi(r), \quad 0<r<1
$$

which, using Theorem 3 with $\alpha=1 / 2$, gives

$$
M_{1}\left(r, B^{\prime}\right)=\mathrm{O}(\phi(r)), \quad \text { as } r \rightarrow 1
$$

This finishes the proof.

3. Proof of Theorem 2

The proofs of Theorem A in [3] and [4] make essential use of certain sequences introduced by K. I. Oskolkov in several contexts (see [7], [8], [9] and [10]). The proof given in [5] is simpler and independent of the Oskolkov's sequences. However, for the proof of Theorem 2 we shall again need to make use of Oskolkov's sequences.

Definition 1. Let $\omega:[0,1] \rightarrow[0, \infty)$ be a continuous function with $\omega(0)=0$ and

$$
\begin{equation*}
\frac{\omega(\delta)}{\delta} \rightarrow \infty, \quad \text { as } \delta \rightarrow 0 \tag{12}
\end{equation*}
$$

Take a fixed number λ with $0<\lambda<1$ and consider the sequence of numbers $\left\{\delta_{j}\right\}_{j=0}^{\infty}$, defined inductively by

$$
\left\{\begin{array}{l}
\delta_{0}=1 \tag{13}\\
\delta_{j+1}=\min \left\{\delta \in[0,1): \max \left[\frac{\omega(\delta)}{\omega\left(\delta_{j}\right)}, \frac{\omega\left(\delta_{j}\right) \delta}{\delta_{j} \omega(\delta)}\right]=\lambda\right\}, \quad j \geq 0
\end{array}\right.
$$

Then $\left\{\delta_{j}\right\}_{j=0}^{\infty}$ is called the " λ-Oskolkov sequence associated with ω ".
It is clear that the definition of $\left\{\delta_{j}\right\}$ makes sense. The main properties of the sequence $\left\{\delta_{j}\right\}$ that will be used in the sequel are stated and proved in Lemma 2 of [4]. We state them here for the sake of completeness.

Lemma 1. Let $\omega:[0,1] \rightarrow[0, \infty)$ be a continuous function with $\omega(0)=0$ satisfying (12). Let $0<\lambda<1$ and let $\left\{\delta_{j}\right\}_{j=0}^{\infty}$ be the " λ-Oskolkov sequence associated with ω ". Then $\left\{\delta_{j}\right\}$ is a decreasing sequence of positive numbers with $\delta_{j} \rightarrow 0$ as $j \rightarrow \infty$. Moreover, for all $j \geq 0$, we have

$$
\begin{gather*}
\omega\left(\delta_{j+1}\right) \leq \lambda \omega\left(\delta_{j}\right) \tag{14}\\
\delta_{j+1} \leq \lambda^{2} \delta_{j} \tag{15}\\
\omega\left(\delta_{j+1}\right) \delta_{j+1} \leq \lambda^{3} \omega\left(\delta_{j}\right) \delta_{j} \tag{16}\\
\frac{\omega\left(\delta_{j}\right)}{\delta_{j}} \leq \lambda^{k-j} \frac{\omega\left(\delta_{k}\right)}{\delta_{k}}, \quad 0 \leq j \leq k \tag{17}\\
\omega\left(\delta_{j}\right) \leq \lambda^{j-k} \omega\left(\delta_{k}\right), \quad j \geq k \tag{18}
\end{gather*}
$$

In the following lemma we obtain an upper bound for the integral means $M_{1}\left(r, B^{\prime}\right)$ of Blaschke products B of the type considered in Theorem 2. It is similar to an inequality proved by D. Protas on p. 394 of [12].

LEMMA 2. Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of numbers in $(0,1)$ and let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be a sequence of natural numbers with $\lim _{k \rightarrow \infty} n_{k}=\infty$ satisfying

$$
\begin{equation*}
\sum_{k=1}^{\infty} n_{k}\left(1-r_{k}\right)<\infty \tag{19}
\end{equation*}
$$

Let B be the Blaschke product whose zeros are

$$
\left\{r_{k} e^{2 \pi i j / n_{k}}: j=0,1, \ldots, n_{k}-1, k=1,2, \ldots\right\}
$$

that is,

$$
\begin{equation*}
B(z)=\prod_{k=1}^{\infty} \frac{r_{k}^{n_{k}}-z^{n_{k}}}{1-r_{k}^{n_{k}} z^{n_{k}}}, \quad z \in \Delta \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
M_{1}\left(r, B^{\prime}\right) \leq 4 \sum_{j=1}^{\infty} \frac{n_{j}\left(1-r_{j}^{n_{j}}\right)}{(1-r)+\left(1-r_{j}^{n_{j}}\right)}, \quad 0<r<1 \tag{21}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
\left|B^{\prime}(z)\right| & =\left|\sum_{j=1}^{\infty} \frac{-n_{j} z^{n_{j}-1}\left(1-r_{j}^{2 n_{j}}\right)}{\left(1-r_{j}^{n_{j}} z^{n_{j}}\right)^{2}} \prod_{\substack{k=1 \\
k \neq j}}^{\infty} \frac{r_{k}^{n_{k}}-z^{n_{k}}}{1-r_{k}^{n_{k}} z^{n_{k}}}\right| \tag{22}\\
& \leq \sum_{j=1}^{\infty} \frac{n_{j}\left(1-r_{j}^{2 n_{j}}\right)}{\left|1-r_{j}^{n_{j}} z^{n_{j}}\right|^{2}} \leq 2 \sum_{j=1}^{\infty} \frac{n_{j}\left(1-r_{j}^{n_{j}}\right)}{\left|1-r_{j}^{n_{j}} z^{n_{j}}\right|^{2}}, \quad z \in \Delta .
\end{align*}
$$

Now, a simple calculation shows that

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d t}{\left|1-r_{j}^{n_{j}} r^{n_{j}} e^{i n_{j} t}\right|^{2}} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d t}{\left|1-r_{j}^{n_{j}} r^{n_{j}} e^{i t}\right|^{2}} \\
& =\frac{1}{1-r_{j}^{2 n_{j}} r^{2 n_{j}}} \leq \frac{2}{\left(1-r^{n_{j}}\right)+\left(1-r_{j}^{n_{j}}\right)} \\
& \leq \frac{2}{(1-r)+\left(1-r_{j}^{n_{j}}\right)}, \quad 0<r<1
\end{aligned}
$$

which together with (22) gives (21). This finishes the proof.
Proof of Theorem 2. We may assume without loss of generality that $\phi(r) \geq$ $1,0 \leq r<1$. Define

$$
\phi_{1}(r)=\min \left(\phi(r), \frac{2}{(1-r)^{1 / 2}}\right), \quad 0<r<1
$$

and let ϕ_{2} denote the highest increasing minorant of ϕ_{1}, that is,

$$
\phi_{2}(r)=\inf _{r \leq s<1} \phi_{1}(s), \quad 0 \leq r<1
$$

Then it is clear that ϕ_{2} is a positive, continuous and increasing function on $[0,1)$ with $\phi_{2}(r) \geq 1$ for all $r \in[0,1)$. Also,

$$
\phi_{2}(r) \rightarrow \infty \quad \text { and } \quad(1-r) \phi_{2}(r) \rightarrow 0, \quad \text { as } r \rightarrow 1
$$

Let $\omega:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
\left\{\begin{array}{l}
\omega(0)=0 \tag{23}\\
\omega(\delta)=\delta \phi_{2}(1-\delta), \quad 0<\delta \leq 1
\end{array}\right.
$$

Hence,

$$
\begin{equation*}
\phi_{2}(r)=\frac{\omega(1-r)}{1-r}, \quad 0<r<1 \tag{24}
\end{equation*}
$$

Clearly, ω is positive and continuous on $[0,1]$ and satisfies

$$
\omega(\delta) \geq \delta \text { for all } \delta \in[0,1] \quad \text { and } \quad \frac{\omega(\delta)}{\delta} \rightarrow \infty \text { as } \delta \rightarrow 0
$$

Take and fix a real number λ with $0<\lambda<1$ and let $\left\{\delta_{j}\right\}_{j=0}^{\infty}$ be the " λ Oskolkov sequence associated with ω ". Set

$$
\begin{equation*}
n_{j}=E\left[\min \left(\frac{\omega\left(\delta_{j}\right)}{\delta_{j}}, \frac{1}{\lambda^{2 j}}\right)\right], \quad j \geq 1 \tag{25}
\end{equation*}
$$

where, for $x \geq 0, E[x]$ denotes the greatest integer which is $\leq x$. It is clear that $n_{j} \rightarrow \infty$, as $j \rightarrow \infty$, and that there exists a positive integer N such that $\omega\left(\delta_{j}\right)<1$ for all $j \geq N$. Define

$$
\begin{equation*}
r_{j}=\left(1-\delta_{j} \omega\left(\delta_{j}\right)\right)^{1 / n_{j}}, \quad j \geq N \tag{26}
\end{equation*}
$$

Using (25) and (18), we easily obtain that

$$
\sum_{j=N}^{\infty} n_{j}\left(1-r_{j}\right)<\infty
$$

Consequently, the infinite product

$$
B(z)=\prod_{j=N}^{\infty} \frac{r_{j}^{n_{j}}-z^{n_{j}}}{1-r_{j}^{n_{j}} z^{n_{j}}}
$$

is in fact a Blaschke product of the type considered in Lemma 2.
Using Lemma 2, we have

$$
\begin{equation*}
M_{1}\left(r, B^{\prime}\right) \leq 4 \sum_{j=N}^{\infty} \frac{n_{j}\left(1-r_{j}^{n_{j}}\right)}{(1-r)+\left(1-r_{j}^{n_{j}}\right)} \tag{27}
\end{equation*}
$$

Define now

$$
\begin{equation*}
\varrho_{j}=1-\delta_{j}, \quad j \geq N \tag{28}
\end{equation*}
$$

Then $\varrho_{j} \uparrow 1$ as $j \uparrow \infty$. From now on we shall use the convention that C will denote a constant which may be different at distinct occurrences. From (28), (27) and (26) we obtain

$$
\begin{equation*}
M_{1}\left(\varrho_{k+1}, B^{\prime}\right) \leq C \sum_{j=N}^{\infty} \frac{n_{j} \delta_{j} \omega\left(\delta_{j}\right)}{\delta_{k+1}+\delta_{j} \omega\left(\delta_{j}\right)}, \quad k \geq N \tag{29}
\end{equation*}
$$

Using (17) and (25) we deduce that, for $k \geq N$,

$$
\begin{align*}
\sum_{j=N}^{k} \frac{n_{j} \delta_{j} \omega\left(\delta_{j}\right)}{\delta_{k+1}+\delta_{j} \omega\left(\delta_{j}\right)} & \leq \frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=N}^{k} \lambda^{k-j} \frac{n_{j} \delta_{j}}{\omega\left(\delta_{j}\right)} \tag{30}\\
& \leq \frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=N}^{k} \lambda^{k-j} \leq \frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=0}^{\infty} \lambda^{j} \leq C \frac{\omega\left(\delta_{k}\right)}{\delta_{k}}
\end{align*}
$$

Using (18), (15) and (25), we obtain

$$
\begin{align*}
\sum_{j=k+1}^{\infty} \frac{n_{j} \delta_{j} \omega\left(\delta_{j}\right)}{\delta_{k+1}+\delta_{j} \omega\left(\delta_{j}\right)} & \leq \sum_{j=k+1}^{\infty} \frac{n_{j} \delta_{j} \omega\left(\delta_{j}\right)}{\delta_{k+1}} \tag{31}\\
& \leq \frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=k+1}^{\infty} \lambda^{-2 j} \lambda^{2(j-k-1)} \lambda^{j-k} \delta_{k} \\
& =\frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=k+1}^{\infty} \lambda^{j-k} \lambda^{-2(k+1)} \delta_{k} \\
& \leq \lambda^{-2} \frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=k+1}^{\infty} \lambda^{j-k} \leq \lambda^{-2} \frac{\omega\left(\delta_{k}\right)}{\delta_{k}} \sum_{j=0}^{\infty} \lambda^{j} \\
& \leq C \frac{\omega\left(\delta_{k}\right)}{\delta_{k}}, \quad k \geq N,
\end{align*}
$$

which, together with $(28),(30),(29)$ and (24), gives

$$
\begin{equation*}
M_{1}\left(\varrho_{k+1}, B^{\prime}\right) \leq C \phi_{2}\left(\varrho_{k}\right), \quad k \geq N \tag{32}
\end{equation*}
$$

Since $M_{1}\left(r, B^{\prime}\right)$ and $\phi_{2}(r)$ are increasing functions of r and $\phi_{2}(r) \leq \phi(r)$ for all r, (32) yields $M_{1}\left(r, B^{\prime}\right) \leq C \phi(r)$ if $r \geq \varrho_{N}$. This finishes the proof.

References

[1] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, no. 56, Cambridge University Press, Cambridge, 1966. MR 38\#325
[2] P. L. Duren, Theory of H^{p} spaces, Pure and Applied Mathematics, vol. 38, Academic Press, New York, 1970. MR 42\#3552
[3] D. Girela, On a theorem of Privalov and normal functions, Proc. Amer. Math. Soc. 125 (1997), 433-442. MR 97d:30046
[4] _ Mean Lipschitz spaces and bounded mean oscillation, Illinois J. Math. 41 (1997), 214-230. MR 98h:46019
[5] D. Girela and C. González, Mean growth of the derivative of infinite Blaschke products, Complex Variables Theory Appl. 45 (2001), 1-10. MR 2003g:30057
[6] A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. A. I. 1957 (1957), no. 239. MR 19,950c
[7] K. I. Oskolkov, An estimate of the rate of approximation of a continuous function and its conjugate by Fourier sums on a set of total measure, Izv. Acad. Nauk SSSR Ser. Mat. 38 (1974), 1393-1407; English translation in Math. USSR Izv. 8 (1976), 1372-1386. MR 50\#10663
[8] _, Uniform modulus of continuity of summable functions on sets of positive measure, Dokl. Akad. Nauk SSSR 229 (1976), 304-306; English translation in Sov. Math. Dokl. 17 (1976), 1028-1030. MR 57\#9917
[9] _ Approximation properties of summable functions on sets of full measure, Mat. Sb. (N.S.) 103(145) (1977), 563-589; English translation in Math. USSR Sbornik 32 (1977), 489-514. MR 57\#13343
[10] , Luzin's C-property for a conjugate function, Trudy Mat. Inst. Steklov. 164 (1983), 124-135; English translation in Proc. Steklov Inst. Math. 164 (1985), 141-153. MR 86e:42019
[11] G. Piranian, Bounded functions with large circular variation, Proc. Amer. Math. Soc. 19 (1968), 1255-1257. MR 37\#6464
[12] D. Protas, Blaschke products with derivative in H^{p} and B^{p}, Michigan Math. J. 20 (1973), 393-396. MR 49\#9217

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 MÁlaga, Spain

E-mail address, D. Girela: girela@uma.es
E-mail address, J. Peláez: pelaez@anamat.cie.uma.es

