Illinois Journal of Mathematics Volume 48, Number 1, Spring 2004, Pages 71–87 S 0019-2082

LOCAL COMPACTNESS FOR FAMILIES OF A-HARMONIC FUNCTIONS

K. ROGOVIN

ABSTRACT. We show that if a family of \mathcal{A} -harmonic functions that admits a common growth condition is closed in L^p_{loc} , then this family is locally compact on a dense open set under a family of topologies, all generated by norms. This implies that when this family of functions is a vector space, then such a vector space of \mathcal{A} -harmonic functions is finite dimensional if and only if it is closed in L^p_{loc} . We then apply our theorem to the family of all *p*-harmonic functions on the plane with polynomial growth at most *d* to show that this family is essentially small.

1. Introduction

A classical theorem states that the vector space of harmonic functions in \mathbb{R}^n that have polynomial growth of order at most d is finite dimensional with dimension depending on d and n. Recently, Colding and Minicozzi showed in [CMI98] that the same theorem holds on a Riemannian manifold that admits a (1, 2)-Poincaré inequality (with a bound on the dimension depending only on d and the quantitative data of the manifold).

Often one views \mathcal{A} -harmonic functions (in the sense of [HKM93]) as a natural generalization of harmonic functions. However, \mathcal{A} -harmonicity is not in general a linear condition. We will call a family of \mathcal{A} -harmonic functions small if there exists a topology generated by a norm for which this family is locally compact. Note that for a vector space local compactness is equivalent to having finite dimension. We pursue a slightly weaker condition than local compactness, though in the context of a vector space it, too, is equivalent to having finite dimension.

DEFINITION 1.1. We will say that a family S of functions on \mathbb{R}^n has a common growth condition if there exists a non-decreasing function $g : [0, \infty) \to$ $(0, \infty)$ so that for each $f \in S$ there exists $C_f > 0$ such that $|f(\mathbf{x})| \leq C_f g(|\mathbf{x}|)$ for all $\mathbf{x} \in \mathbb{R}^n$. In particular, we will say S is of polynomial growth of order d

©2004 University of Illinois

Received January 28, 2003; received in final form March 13, 2003.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C62,\ 30C65.$

if $g(t) = 1 + t^d$. We will say a function f has polynomial growth of order d if the set $\{f\}$ is of polynomial growth of order d.

The main theorems of this paper are the following. Throughout μ is a p-admissible measure on \mathbb{R}^n and \mathcal{A} is p-acceptable under μ (see Section 2 for the definitions). We write $f \in L^q_{loc}(\mu)$ for a function $f : \mathbb{R}^n \to \mathbb{R}$ if for each r > 0, $\int_{\mathbf{B}(\mathbf{0},r)} |f|^q d\mu < \infty$. We say a net $\{f_m\}$ in $L^q_{loc}(\mu)$ converges to f in $L^q_{loc}(\mu)$ if and only if f_m converges to f in $L^q(\mathbf{B}(\mathbf{0},r),\mu)$ for each r > 0. We will write $L^q_{loc}(\mathbb{R}^n)$ for $L^q_{loc}(\lambda)$, where λ is the Lebesgue n-measure on \mathbb{R}^n .

THEOREM 1.2. Let S be a family of A-harmonic functions on \mathbb{R}^n with a common growth condition that is closed in $L^q_{loc}(\mu)$ for some $1 \leq q \leq \infty$. Then there exists a family of Banach spaces, each a subset of $L^q_{loc}(\mu)$, for which S is a closed subset, such that under each of these Banach spaces there exists a relatively dense open set of S which is locally compact. Moreover, the topology generated by each of these Banach spaces is stronger than the topology generated by $L^q_{loc}(\mu)$.

COROLLARY 1.3. Let S be a vector space of A-harmonic functions that admits a growth condition. Then S is finite dimensional if and only if S is closed in $L^q_{\text{loc}}(\mu)$ for some $1 \le q \le \infty$.

THEOREM 1.4. Let d > 0, let $1 and let S be the closure in <math>L^p_{loc}(\mathbb{R}^2)$ of all p-harmonic functions defined on the plane with polynomial growth of order at most d. Then there exists a family of Banach spaces, each a subset of $L^p_{loc}(\mathbb{R}^2)$, for which S is a closed subset, such that under each of these Banach spaces there exists a relatively dense open set of S which is locally compact. Moreover, the topology generated by each of these Banach spaces is stronger than the topology generated by $L^p_{loc}(\mathbb{R}^2)$.

2. Definitions

Throughout let $1\leq p<\infty$ and let μ be a measure on \mathbb{R}^n that satisfies the following conditions.

- (1) $d\mu(x) = \omega(x)dx$, where ω is a locally integrable a.e. positive function on \mathbb{R}^n .
- (2) μ is a doubling measure, i.e., there exists a constant C_{μ} such that for every $x \in \mathbb{R}^n$ and $0 < r < \infty$ we have $\mu(\mathbf{B}(x, 2r)) \leq C_{\mu}\mu(\mathbf{B}(x, r))$.
- (3) There exists a constant $C_{\rm I}$ such that

$$\int_{\mathbf{B}(x,r)} |\psi - \psi_{\mathbf{B}(x,r)}| d\mu \le C_{\mathbf{I}} r \left(\int_{\mathbf{B}(x,r)} |\nabla \psi|^p d\mu \right)^{1/p}$$

for every ball $\mathbf{B}(x,r)$ and each $\psi \in C^{\infty}(\mathbf{B}(x,r)) \cap L^1(\mathbf{B}(x,r),\mu)$.

Here and throughout, we set $\int_A f d\mu := \frac{1}{\mu(A)} \int_A f d\mu$. Condition (3) is often called a (1, p)-Poincaré inequality. The above hypotheses imply the following three conditions.

- (A) If Ω is an open set in \mathbb{R}^n and $\{\psi_j\} \subset C^{\infty}(\Omega)$ is such that $\int_{\Omega} |\psi_j|^p d\mu \to 0$ and $\int_{\Omega} |\nabla \psi_j \mathbf{v}|^p d\mu \to 0$ as $j \to \infty$ with \mathbf{v} a Borel measurable vector field in $L^p(\Omega, \mu)$, then $\mathbf{v} = 0$ almost everywhere.
- (B) There exist constants $\chi = \chi(C_{\rm I}, C_{\mu}) > 1$ and $C_{\rm II} = C_{\rm II}(C_{\rm I}, C_{\mu})$ such that

$$\left(\oint_{\mathbf{B}(x,r)} |\psi|^{\chi p} d\mu \right)^{1/\chi p} \le C_{\mathrm{II}} r \left(\oint_{\mathbf{B}(x,r)} |\nabla \psi|^p d\mu \right)^{1/p}$$

for every ball $\mathbf{B}(x,r)$ and every $\psi \in C_c^{\infty}(\mathbf{B}(x,r))$.

(C) There exists a constant $C_{\rm III}=C_{\rm III}(C_{\rm I},C_{\mu})$ such that

$$\int_{\mathbf{B}(x,r)} |\psi - \psi_{\mathbf{B}(x,r)}|^p d\mu \le C_{\mathrm{III}} r^p \int_{\mathbf{B}(x,r)} |\nabla \psi|^p d\mu$$

for every ball $\mathbf{B}(x,r)$ and every $\psi \in C^{\infty}(\mathbf{B}(x,r)) \cap L^{1}(\mathbf{B}(x,r),\mu)$.

Hajłasz, Koskela and Franchi showed (A) in Theorem 10 of [FHK99] under much more general conditions. Heinonen and Koskela showed (C) in Lemma 5.15 of [HK98] (see also Theorem 4.18 of [Hei01]) in the context of geodesic metric spaces. Hajłasz and Koskela showed (B) in Theorem 5.1 of [HK00], also in a much more general setting than a manifold. We follow [HKM93] and call a measure μ satisfying (1)–(3) above *p*-admissible. Hölder's inequality shows that if μ is *p*-admissible, then for all q > p, μ is *q*-admissible.

If μ is a *p*-admissible measure, for each open set Ω of \mathbb{R}^n we can form the Sobolev space $H^{1,p}(\Omega,\mu)$; see Chapter 1 of [HKM93] for its properties. We also define $H^{1,p}_{\text{loc}}(\mu)$ as the set of measurable functions f defined on all of \mathbb{R}^n such that for each bounded open set Ω the function f is an element of $H^{1,p}(\Omega,\mu)$.

We say a function $f \in H^{1,p}_{loc}(\mu)$ is \mathcal{A} -harmonic if it weakly satisfies the equation

$$\operatorname{div}(\mathcal{A}(x,\nabla f)) = 0,$$

i.e., if for each $\phi \in C_c^{\infty}(\mathbb{R}^n)$ we have

$$\int_{\mathbb{R}^n} \left\langle \mathcal{A}(x,\nabla f), \nabla \phi \right\rangle dx = 0 \ ,$$

where $\mathcal{A}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the following conditions.

- (1) \mathcal{A} is Borel.
- (2) For a.e. $x \in \mathbb{R}^n$, the mapping $\mathbf{v} \to \mathcal{A}(x, \mathbf{v})$ is continuous.
- (3) There exists $C_i > 0$ such that $|\mathcal{A}(x, \mathbf{v})| \leq C_i |\mathbf{v}|^{p-1} \omega(x)$.

(4) If $\lambda \neq 0$, then for a.e. $x \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ we have

$$\mathcal{A}(x, \lambda \mathbf{v}) = \lambda |\lambda|^{p-2} \mathcal{A}(x, \mathbf{v})$$

(5) There exists $C_{ii} > 0$ such that for a.e. x and for all **v** in \mathbb{R}^n we have

$$\langle \mathcal{A}(x,\mathbf{v}),\mathbf{v}\rangle \geq C_{\mathrm{ii}}|\mathbf{v}|^p\omega(x)$$

(6) For a.e. x in \mathbb{R}^n and every \mathbf{v} and \mathbf{w} in \mathbb{R}^n with $\mathbf{v} \neq \mathbf{w}$ we have

$$\langle \mathcal{A}(x,\mathbf{v}) - \mathcal{A}(x,\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle > 0$$
.

We will write $C_{\mathcal{A}}$ to represent the constants C_{i} and C_{ii} . We will call \mathcal{A} *p*-acceptable with constants C_{i} and C_{ii} under μ whenever it satisfies conditions (1)–(6) above. For each $1 , <math>\mathcal{A}_{p}(x, \mathbf{v}) := |\mathbf{v}|^{p-2}\mathbf{v}$ is *p*-acceptable under the Lebesgue measure. Functions which are \mathcal{A}_{p} -harmonic are called *p*-harmonic functions.

The following can be found in Chapters 3 and 6 of [HKM93].

PROPOSITION 2.1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be A-harmonic. Then the following hold.

- (1) The function f has a continuous representative.
- (2) There exist constants $\alpha = \alpha(C_{\mu}, C_I, C_A) > 0$ and $C = C(C_{\mu}, C_I, C_A) > 0$ such that for each $x \in \mathbb{R}^n$ and $0 < r < R < \infty$ we have

$$\operatorname{osc}_{\mathbf{B}(x,r)} f \le C(r/R)^{\alpha} \operatorname{osc}_{\mathbf{B}(x,R)} f$$

(3) There exists a constant $C = C(C_{\mu}, C_{I}, C_{A})$ such that

$$r^p \int_{\mathbf{B}(x,r)} |\nabla f|^p d\mu \le C \int_{\mathbf{B}(x,2r)} |f|^p d\mu$$

for each r > 0 and x in \mathbb{R}^n .

(4) For each $0 < q < \infty$ and each $\tau > 1$ there exists a constant $C = C(C_{\mu}, C_{I}, C_{\mathcal{A}}, \tau, q)$ such that

$$\sup_{\mathbf{B}(x,r)} |f| \leq C \left(\oint_{\mathbf{B}(x,\tau r)} |f|^q d\mu \right)^{1/q}$$

for each r > 0 and x in \mathbb{R}^n .

When we refer to an \mathcal{A} -harmonic function we will always refer to the pointwise defined continuous representative of f.

REMARK 2.2. Using the Arzela-Ascoli theorem, properties (2) and (4) immediately imply that if $\{f_n\}$ is a sequence of \mathcal{A} -harmonic functions that converges to a function f in $L^1_{\text{loc}}(\mu)$, then this sequence also converges to f in $L^q_{\text{loc}}(\mu)$ for every $1 \leq q \leq \infty$. Moreover, Theorem 6.13 of [HKM93] shows that the convergence in $L^\infty_{\text{loc}}(\mu)$ implies that f is also \mathcal{A} -harmonic. Hence a set S of \mathcal{A} -harmonic functions is closed in $L^q_{\text{loc}}(\mu)$ for some $1 \leq q \leq \infty$ if and

only if it is closed in $L^s_{loc}(\mu)$ for each $1 \leq s \leq \infty$. Property (4) implies that if S is a set of A-harmonic functions, then S is bounded in $L^1_{\text{loc}}(\mu)$ if and only if S is bounded in $L^q_{\text{loc}}(\mu)$ for every $1 \le q \le \infty$. Additionally, property (3) implies that S is bounded in $H^{1,p}_{\text{loc}}(\mu)$ if and only if S is bounded in $L^p_{\text{loc}}(\mu)$. Moreover, the Arzela-Ascoli theorem also gives the following result.

PROPOSITION 2.3. Let $\{f_n\}$ be a sequence of A-harmonic functions that is bounded in $L^q_{loc}(\mu)$ for some $1 \leq q \leq \infty$. Then there exists a subsequence that converges in $L^r_{loc}(\mu)$ for every $1 \leq r \leq \infty$ to an A-harmonic function f.

3. Norms

DEFINITION 3.1. We call a non-decreasing continuous function $h: [1, \infty) \rightarrow \infty$ $(0,\infty)$ with $\int_1^\infty \frac{1}{h(t)} dt < \infty$ a growth condition.

DEFINITION 3.2. Let $h, k : [1, \infty) \to (0, \infty)$ be growth conditions. We say k dominates h if

$$\lim_{t \to \infty} \frac{h(t)}{k(t)} = 0 \; .$$

DEFINITION 3.3. Let $h: [1,\infty) \to (0,\infty)$ be a growth condition, $1 \leq 1$ $q, r < \infty$, and $f \in L^q_{\text{loc}}(\mu)$. Set

$$\|f\|_{(q,r,h)} := \left(\int_1^\infty \frac{1}{h(t)} \left(\oint_{\mathbf{B}(\mathbf{0},t)} |f|^q d\mu \right)^{r/q} dt \right)^{1/q}$$

and

$$\|f\|_{(\infty,r,h)} := \left(\int_1^\infty \frac{1}{h(t)} \left(\operatorname{ess\,sup}_{\mathbf{B}(\mathbf{0},t)} |f|\right)^r dt\right)^{1/r} \,.$$

The following proposition can easily be proved by mimicking a common proof of Minokowski's inequality.

PROPOSITION 3.4. Let h be a growth condition, let $1 \leq r < \infty$ and let $1 \leq q \leq \infty$. Then on the set

$$L^{(q,r,h)}(\mu) := \{ f \in L^q_{\text{loc}}(\mu) \mid ||f||_{(q,r,h)} < \infty \},\$$

 $\|\cdot\|_{(q,r,h)}$ is a norm.

PROPOSITION 3.5. Let h be a growth condition, $1 \le q \le \infty$ and $1 \le r <$ ∞ . We then have the following for each sequence $\{f_j\} \subset L^{(q,r,h)}(\mu)$.

- (1) If $f \in L^{(q,r,h)}(\mu)$ with $\lim_{j\to\infty} ||f f_j||_{(q,r,h)} = 0$, then $f_j \to f$ in (2) If $f_j \to f$ in $L^q_{loc}(\mu)$, then $||f||_{(q,r,h)} \le \liminf_{j\to\infty} ||f_j||_{(q,r,h)}$.

- (3) If k is another growth condition with $k \ge Ch$ for some constant C, then $L^{(q,r,h)}(\mu) \subset L^{(q,r,k)}(\mu)$ and $\|\cdot\|_{(q,r,k)} \le C'\|\cdot\|_{(q,r,h)}$ with C' = C'(C,r).
- (4) If $S \subset L^{(q,r,h)}(\mu)$ is bounded in $L^{(q,r,h)}(\mu)$, then S is bounded in $L^q_{loc}(\mu)$.
- (5) If $f_j \to f$ in $L^q_{loc}(\mu)$ and $\sup_j ||f_j||_{(q,r,h)} < \infty$ and if k is another growth condition that dominates h, then $\lim_{j\to\infty} ||f f_j||_{(q,r,k)} = 0$.

Proof. Items (1), (3) and (4) are immediate consequences of the definition. Item (2) follows from Fatou's lemma. To prove item (5), note that by items (2) and (3) we have $f \in L^{(q,r,h)}(\mu) \subset L^{(q,r,k)}(\mu)$ with $||f||_{(q,r,h)} \leq M$, where $M = \sup_{i} ||f_{j}||_{(q,r,h)}$. Now, for each m > 1 we have

$$\lim_{j \to \infty} \|f - f_j\|_{(q,r,k)}^r = \lim_{j \to \infty} \int_1^\infty \frac{1}{k(t)} \left(\oint_{\mathbf{B}(\mathbf{0},t)} |f - f_j|^q d\mu \right)^{r/q} dt$$
$$= \lim_{j \to \infty} \int_1^m \frac{1}{k(t)} \left(\oint_{\mathbf{B}(\mathbf{0},t)} |f - f_j|^q d\mu \right)^{r/q} dt$$
$$+ \lim_{j \to \infty} \int_m^\infty \frac{1}{k(t)} \left(\oint_{\mathbf{B}(\mathbf{0},t)} |f - f_j|^q d\mu \right)^{r/q} dt$$
$$\leq 0 + \sup_{t \ge m} \frac{h(t)}{k(t)} \lim_{j \to \infty} \|f - f_j\|_{(q,r,h)}^r$$
$$\leq (2M)^r \sup_{t \ge m} \frac{h(t)}{k(t)},$$

which goes to zero as $m \to \infty$.

PROPOSITION 3.6. For each growth condition h, each $1 \le q \le \infty$ and each $1 \le r < \infty$, the normed space $L^{(q,r,h)}(\mu)$ is a Banach space.

Proof. Since $L^{(q,r,h)}(\mu)$ is a normed space, we only need to show that if $\{f_n\} \subset L^{(q,r,h)}(\mu)$ is a sequence such that $\sum_{n=1}^{\infty} \|f_n\|_{(q,r,h)} \leq N < \infty$, then there exists an $f \in L^{(q,r,h)}(\mu)$ such that $\lim_{n\to\infty} \|f - S_n\|_{(q,r,h)} = 0$, where $S_n = \sum_{k=1}^n f_k$. Let $T_n = \sum_{k=1}^n |f_k|$. Then for each n, $\|T_n\|_{(q,r,h)} \leq N$. Hence $\{T_n\}$ is bounded in $L^{(q,r,h)}(\mu)$. Applying Proposition 3.5(4) yields that for every R > 0, $\{T_n\}$ is bounded in $L^q(\mathbf{B}(\mathbf{0},R),\mu)$. Since $T_n = \sum_{k=1}^n |f_k|$, and for each ball $\mathbf{B}(\mathbf{0},R)$, $L^q(\mathbf{B}(\mathbf{0},R),\mu)$ is a Banach space, there exists $f^{(R)}$ such that $S_n \to f^{(R)}$ in $L^q(\mathbf{B}(\mathbf{0},R),\mu)$. Since limits are unique, we have $f^{(R)} = f^{(r)}$ almost everywhere on $\mathbf{B}(\mathbf{0},R)$. We have that $S_n \to f$ in $L^q_{\text{loc}}(\mu)$.

Thus, by Proposition 3.5(2),

$$\|f\|_{(q,r,h)} \le \liminf_{n \to \infty} \|S_n\|_{(q,r,h)}$$
$$\le \liminf_{n \to \infty} \|T_n\|_{(q,r,h)} \le N .$$

Hence, $f \in L^{(q,r,h)}(\mu)$. Also, for almost every y, we have $f(y) = \sum_{n=1}^{\infty} f_n(y)$. Using that

$$\sum_{k=1}^{\infty} \|f_k\|_{(q,r,h)} \le N < \infty ,$$

we have

$$\lim_{n \to \infty} \|f - S_n\|_{(q,r,h)} = \lim_{n \to \infty} \left\| \left| \sum_{k=1}^{\infty} f_k - \sum_{k=1}^n f_k \right| \right|_{(q,r,h)}$$
$$\leq \lim_{n \to \infty} \sum_{k=n+1}^{\infty} \|f_k\|_{(q,r,h)} = 0 . \qquad \Box$$

We are now ready to prove our first main theorem.

THEOREM 3.7. Let $S \subset L^{(q,r,h)}(\mu)$, with h a growth condition, $1 \leq q \leq \infty$ and $1 \leq r < \infty$, be a family of \mathcal{A} -harmonic functions that is closed in $L^q_{\text{loc}}(\mu)$. Then for every growth function k that dominates h there exists a set $G_{(q,h),(q,k)} \subset S$ which is locally compact in $L^{(q,r,k)}(\mu)$, open and dense in S under the topology of $L^{(q,r,k)}(\mu)$. Also, if k_2 is another growth function that dominates k, then $G_{(q,h),(q,k_2)} \subset G_{(q,h),(q,k)}$ and the topologies of $L^{(q,r,k)}(\mu)$ and $L^{(q,r,k_2)}(\mu)$ agree on $G_{(q,h),(q,k_2)}$. Moreover, the set $G_{(q,h),(q,k)}$ is canonically defined by q, r, h and k.

Proof. Let

$$\bar{G}_{(q,h),(q,k)} = \left\{ f \in S \mid \exists R > 0, \exists \delta > 0 \text{ s.t.} \right.$$
$$\operatorname{Cl}_{(q,r,k)}(\mathbf{B}_{(q,r,h)}^{S}(0,R)) \supseteq \mathbf{B}_{(q,r,k)}^{S}(f,\delta) \right\}$$

and

$$G_{(q,h),(q,k)} = \left\{ f \in S \mid \exists R > 0, \exists \delta > 0 \text{ s.t.} \right.$$
$$\mathbf{B}_{(q,r,h)}^{S}(0,R) \supseteq \mathbf{B}_{(q,r,k)}^{S}(f,\delta) \right\},$$

where, for a growth function l,

$$\mathbf{B}_{(q,r,l)}^{S}(f,\delta) = \{g \in S \mid \|f - g\|_{(q,r,l)} < \delta\}$$

and for every $T \subseteq S$,

$$\operatorname{Cl}_{(q,r,k)}(T) = \operatorname{Closure of } T \text{ under } \| \cdot \|_{(q,r,k)}$$

We define

$$\overline{\mathbf{B}}_{(q,r,k)}^{\mathcal{S}}(f,s) = \{g \in S \mid \|f - g\|_{(q,r,k)} \le s\}$$

and define $\overline{\mathbf{B}}_{(q,r,h)}^{S}(f,s)$ similarly. Because S is closed in $L^{q}_{\text{loc}}(\mu)$ and convergence in $\|\cdot\|_{(q,r,k)}$ implies convergence in $L^{q}_{\text{loc}}(\mu)$ for sequences, we have that for every subset T of S, $\text{Cl}_{(q,r,k)}(T) \subseteq S$. We first claim that $\bar{G}_{(q,h),(q,k)} = G_{(q,h),(q,k)}$. Clearly,

$$\operatorname{Cl}_{(q,r,k)}(\mathbf{B}^{S}_{(q,r,h)}(0,R)) \supseteq \mathbf{B}^{S}_{(q,r,h)}(0,R),$$

which implies that $G_{(q,h),(q,k)} \subseteq \overline{G}_{(q,h),(q,k)}$. For the other set inclusion, note that by Proposition 3.5(2), $\|g\|_{(q,r,h)} \leq \liminf_{n\to\infty} \|g_n\|_{(q,r,h)}$ whenever $\{g_n\}_{n=1}^{\infty}$ is a sequence in $L^q_{loc}(\mu)$ that converges to g in $L^q_{loc}(\mu)$. Hence

$$\operatorname{Cl}_{(q,r,k)}(\mathbf{B}_{(q,r,h)}^{S}(0,R)) \subseteq \overline{\mathbf{B}}_{(q,r,h)}^{S}(0,R) \subset \mathbf{B}_{(q,r,h)}^{S}(0,R+1),$$

which implies that $G_{(q,h),(q,k)} \supseteq \overline{G}_{(q,h),(q,k)}$. We will now show that $G_{(q,h),(q,k)}$ is a relatively open subset of S in the topology generated by $L^{(q,r,k)}(\mu)$. For each $f \in G_{(q,h),(q,k)}$, there exists an R > 0 and a $\delta > 0$ such that

$$\mathbf{B}_{(q,r,h)}^{S}(0,R) \supseteq \mathbf{B}_{(q,r,k)}^{S}(f,\delta) .$$

Let $g \in \mathbf{B}_{(q,r,k)}^{S}(f,\delta/2)$. We then have

$$\mathbf{B}^S_{(q,r,h)}(0,R) \supseteq \mathbf{B}^S_{(q,r,k)}(f,\delta) \supseteq \mathbf{B}^S_{(q,r,k)}(g,\delta/2) \ .$$

We conclude that $\mathbf{B}_{(q,r,k)}^{S}(f,\delta/2) \subseteq G_{(q,h),(q,k)}$.

We will now show that $G_{(q,h),(q,k)}$ is locally compact in $L^{(q,r,k)}(\mu)$. Indeed, fix an $f \in G_{(q,h),(q,k)}$ and let R > 0 and $\delta > 0$ be as in the definition of $G_{(q,h),(q,k)}$. It suffices to show that $\overline{\mathbf{B}}_{(q,r,k)}^{S}(f,\delta/2)$ is compact in $L^{(q,r,k)}(\mu)$. Let $\{f_n\}_{n=1}^{\infty} \subset \overline{\mathbf{B}}_{(q,r,k)}^{S}(f,\delta/2)$. Then for all n, $\|f_n\|_{(q,r,h)} \leq R$. Hence by Proposition 3.5(4) the sequence is bounded in $L^q_{loc}(\mu)$. Applying Proposition 2.3 creates a subsequence $\{f_{n_m}\}$ that converges in $L^q_{loc}(\mu)$ to a function g. Moreover, g will be in S because S is closed in $L^q_{loc}(\mu)$. We have that for all m, $\|f_{n_m}\|_{(q,r,h)} \leq R$, and k dominates h. Applying Proposition 3.5(5) we conclude that $f_{n_m} \to g$ in $\|\cdot\|_{(q,r,k)}$ and $\|f - g\|_{(q,r,k)} \leq \delta/2$. Hence $g \in \overline{\mathbf{B}}_{(q,r,k)}^S(f,\delta/2)$.

In the proof that $G_{(q,h),(q,k)}$ is dense in S under the topology of $L^{(q,r,k)}(\mu)$ we will slightly mirror the proof of the Open Mapping Theorem by using the Baire Category Theorem. Suppose $G_{(q,h),(q,k)}$ is not dense in S under $L^{(q,r,k)}(\mu)$. Then there exists an $f \in S$ and $\delta > 0$ such that $\mathbf{B}_{(q,r,k)}^S(f,\delta) \cap$ $G_{(q,h),(q,k)} = \emptyset$. Now, S is closed in $L^q_{loc}(\mu)$ and hence in the Banach space

 $L^{(q,r,k)}(\mu)$. Because S is closed in $L^{(q,r,k)}(\mu)$ we have that $\overline{\mathbf{B}}_{(q,r,k)}^{S}(f,\delta/2)$ is closed in the Banach space $L^{(q,r,k)}(\mu)$ and hence complete under $\|\cdot\|_{(q,r,k)}$. Since $S \subset L^{(q,r,h)}(\mu)$, we have

(1)
$$\overline{\mathbf{B}}_{(q,r,k)}^{S}(f,\delta/2) = \bigcup_{R=1}^{\infty} \left(\overline{\mathbf{B}}_{(q,r,k)}^{S}(f,\delta/2) \cap \mathbf{B}_{(q,r,h)}^{S}(0,R) \right) .$$

Let $A_R = \operatorname{Cl}_{(q,r,k)}(\mathbf{B}_{(q,r,h)}^S(0,R))$. Then by Baire Category Theorem there exists an $R \in \mathbb{N}$ such that the set A_R has non-empty relative interior as a subset of $\overline{\mathbf{B}}_{(q,r,k)}^S(f,\delta/2)$ under $\|\cdot\|_{(q,r,k)}$. Hence there exists a function $g \in \overline{\mathbf{B}}_{(q,r,k)}^S(f,\delta/2)$ and an $\epsilon > 0$ such that

(2)
$$\operatorname{Cl}_{(q,r,k)}(\mathbf{B}^{S}_{(q,r,h)}(0,R)) \supset \mathbf{B}^{S}_{(q,r,k)}(g,\epsilon) \cap \overline{\mathbf{B}}^{S}_{(q,r,k)}(f,\delta/2)$$
.

Thus there exist $\eta > 0$ and $g' \in \mathbf{B}^{S}_{(q,r,k)}(f, \delta/2)$ such that

(3)
$$\operatorname{Cl}_{(q,r,k)}(\mathbf{B}_{(q,r,h)}^{S}(0,R)) \supset \mathbf{B}_{(q,r,k)}^{S}(g',\eta) .$$

Hence $g' \in \overline{G}_{(q,h),(q,k)} = G_{(q,h),(q,k)}$, contradicting that $g' \in \mathbf{B}_{(q,r,k)}^S(f, \delta/2)$ and $\mathbf{B}_{(q,r,k)}^S(f, \delta) \cap G_{(q,h),(q,k)} = \emptyset$.

We now show that if k_2 is a growth function that dominates k, then $G_{(q,h),(q,k_2)} \subset G_{(q,h),(q,k)}$ and the topologies generated by $\|\cdot\|_{(q,r,k)}$ and $\|\cdot\|_{(q,r,k_2)}$ on $G_{(q,h),(q,k_2)}$ are identical. By Proposition 3.5(3) there exists a constant $C = C(k, k_2)$ such that for every f and $\delta > 0$,

$$\mathbf{B}^{S}_{(q,r,k_2)}(f,\delta) \supset \mathbf{B}^{S}_{(q,r,k)}(f,\delta/C) \ .$$

Hence we immediately see that $G_{(q,h),(q,k_2)} \subset G_{(q,h),(q,k)}$. Also, by Proposition 3.5(3), if $f_n \to f$ in $\|\cdot\|_{(q,r,k)}$, then $f_n \to f$ in $\|\cdot\|_{(q,r,k_2)}$. Conversely, if $f_n \to f$ in $\|\cdot\|_{(q,r,k_2)}$ with $f \in G_{(q,h),(q,k_2)}$, then $f_n \to f$ in $L^q_{loc}(\mu)$. We have that $f \in G_{(q,h),(q,k_2)}$. Hence there exist R > 0 and $\delta > 0$ such that

(4)
$$\mathbf{B}_{(q,r,h)}^{S}(0,R) \supset \mathbf{B}_{(q,r,k_{2})}^{S}(f,\delta) .$$

Since $f_n \to f$ in $\|\cdot\|_{(q,r,k_2)}$, by (4) we may assume that for all $n, f_n \in \mathbf{B}^S_{(q,r,k_2)}(f,\delta)$. Thus for all $n, \|f_n\|_{(q,r,h)} \leq R$. Since k dominates h and $f_n \to f$ in $L^q_{\text{loc}}(\mu)$, using Proposition 3.5(5) we conclude that $f_n \to f$ in $\|\cdot\|_{(q,r,k)}$.

The above theorem states that changing the growth condition k does not affect the topology strongly. A similar result is true when we change q. However, care must be taken when changing q. For each $\tau \in \mathbb{R}^+$ and each growth condition h, we set $h_{\tau}(t) = h(\tau t)$. Note that Proposition 2.1 gives the following result.

PROPOSITION 3.8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be \mathcal{A} -harmonic. Then for each growth condition h, each $1 \leq r < \infty$, each $1 \leq q \leq \infty$ and each $\tau > 1$ we have $\|f\|_{(\infty,r,h_{\tau})} \leq C(C_{\mathcal{A}},\tau,r)\|f\|_{(q,r,h)}$.

THEOREM 3.9. Let $S \subset L^{(q,r,h)}(\mu)$, with h a growth condition, $1 \leq q \leq \infty$ and $1 \leq r < \infty$, be a family of \mathcal{A} -harmonic functions that is closed in $L^q_{loc}(\mu)$. Then for every growth function k that dominates h_{τ} with $\tau > 1$ and every $1 \leq s \leq \infty$ there exists a set $G_{(q,h),(s,k)} \subset S$ which is locally compact in $L^{(q,r,k)}(\mu)$, open and dense in S under the topology of $L^{(s,r,k)}(\mu)$. Also, if $s \leq s_2 \leq \infty$, then $G_{(q,h),(s,k)} \subset G_{(q,h),(s_2,k)}$ and the topologies of $L^{(s,r,k)}(\mu)$ and $L^{(s_2,r,k)}(\mu)$ agree on $G_{(q,h),(s,k)}$.

Proof. We only sketch the proof, as it closely mirrors the proof of Theorem 3.7. By Proposition 3.8 and Remark 2.2, we have that $S \subset L^{(\infty,r,h_{\tau})}(\mu)$ and S is closed in $L^{u}_{loc}(\mu)$ for all $1 \leq u \leq \infty$. We set

$$G_{(q,h),(s,k)} = \left\{ f \in S \mid \exists R > 0, \exists \delta > 0 \text{ s.t. } \mathbf{B}_{(q,r,h)}^S(0,R) \supseteq \mathbf{B}_{(s,r,k)}^S(f,\delta) \right\} \,.$$

Using the same argument as for Theorem 3.7 and the fact that S is closed, we obtain that $G_{(q,h),(s,k)}$ is relatively open and dense in S under $\|\cdot\|_{(s,r,k)}$. To see that $G_{(q,h),(s,k)}$ is locally compact in $\|\cdot\|_{(s,r,k)}$, let $f \in G_{(q,h),(s,k)}$ and let R > 0 and $\delta > 0$ be as in the definition of $G_{(q,h),(s,k)}$. We will show that $\mathbf{B}_{(s,r,k)}^{S}(f,\delta/2)$ is pre-compact. Indeed, let $\{f_n\}_{n=1}^{\infty}$ be any sequence in $\mathbf{B}_{(s,r,k)}^{S}(f,\delta/2)$. Then for all n we have, by Proposition 3.8,

(5)
$$||f_n||_{(s,r,h_\tau)} \le ||f_n||_{(\infty,r,h_\tau)} \le C||f_n||_{(q,r,h)} \le CR$$

Hence the sequence is bounded in $L^s_{loc}(\mu)$. As before, apply Proposition 2.3 to extract a subsequence that converges is $L^s_{loc}(\mu)$. By (5), this subsequence is bounded in $\|\cdot\|_{(s,r,h_{\tau})}$, and because k dominates h_{τ} , Proposition 3.5(5) implies that it converges in $\|\cdot\|_{(s,r,k)}$, as needed.

That $G_{(q,h),(s,k)} \subset G_{(q,h),(s_2,k)}$ follows directly from the inequality

(6)
$$\|\cdot\|_{(s,r,k)} \le \|\cdot\|_{(s_2,r,k)},$$

which follows from Hölder's inequality. To show that the topologies are equivalent, note that by (6) the topology generated by $\|\cdot\|_{(s,r,k)}$ is coarser than the topology generated by $\|\cdot\|_{(s_2,r,k)}$. For the other inclusion, let $f_n \to f$ under $\|\cdot\|_{(s,r,k)}$ with $f \in G_{(q,h),(s,k)}$. As before, we may assume that there exists R > 0 such that for all n, $\|f_n\|_{(q,r,h)} \leq R$. Applying (5), we have for all n that $\|f_n\|_{(s_2,r,h_\tau)} \leq CR$. Since $f_n \to f$ in $\|\cdot\|_{(s,r,k)}$, we also have that $f_n \to f$ in $L^s_{\text{loc}}(\mu)$, and applying Remark 2.2 yields that $f_n \to f$ in $L^{s_2}_{\text{loc}}(\mu)$. Using the assumption that k dominates h_{τ} and applying Proposition 3.5(5) gives that $f_n \to f$ in $\|\cdot\|_{(s_2,r,k)}$.

REMARK 3.10. Although we have presented our results in \mathbb{R}^n , the only really necessary tools for the proof are the inequalities of Proposition 2.1. The proofs presented in [HKM93] can be adapted to the manifold setting or beyond with great ease, as they do not use the specific properties of \mathbb{R}^n . Rather, these proofs require only that the measure satisfies a (1, p)-Poincaré inequality and that it is doubling.

4. *p*-harmonic functions in the plane

Here we extend the fact that the space of all harmonic functions on the plane with growth of order at most d is finite dimensional to the space of p-harmonic functions. Our key technique is a result of Iwaniec and Manfredi found in [IM89] stating that the complex derivative of p-harmonic function is a quasiregular mapping. We combine this result with one found in [HK95] and [Väi72] to show that if a sequence of p-harmonic functions, all with polynomial growth of order bounded by a fixed number d, converges locally uniformly, then the limit function also satisfies a bound on its growth. We now begin to describe the details, which involve the theory of quasiregular mappings. We refer the reader to the monograph by Rickman [Ric93].

We use the notation of [Ric93, Chapter 1]: For an open discrete continuous mapping $f : \mathbb{R}^n \to \mathbb{R}^n$, B_f refers to the branch set of f, #S refers to the cardinality of a set S. We define N(y, f, U) as the cardinality of $f^{-1}(y) \cap U$ and set $N(f, U) := \sup_{y \in U} N(y, f, U)$. We say a point $y \in \mathbb{R}^n$ is (U, f)-admissible if $y \notin f(\partial U)$, and in this case we denote the local degree by $\mu(y, f, U)$.

PROPOSITION 4.1. Let $\{f_j\}$ be a sequence that converges locally uniformly in \mathbb{R}^n to a function f with each f_j K-quasiregular and $N(f_j, \mathbb{R}^n) \leq m$. Then either f is a constant or $N(f, \mathbb{R}^n) \leq m$.

Proof. Since each f_n is K-quasiregular, f is also K-quasiregular. If f is a constant, then we are done. Otherwise f is a continuous, open, discrete mapping. Let $S = f(B_f) \cup \bigcup_{j=1}^{\infty} f_j(B_{f_j})$. Then S has Lebesgue measure zero. Thus $T = \mathbb{R}^n - S$ has full measure and hence is dense. We first show that for $y \in T$, $N(y, f, \mathbb{R}^n) \leq m$. Indeed, suppose there exists a y in T so that $N(y, f, \mathbb{R}^n) \geq m + 1$. Then there exist at least m + 1 distinct points in \mathbb{R}^n , $\{x_i\}_{i=1}^{m+1}$ such that $f(x_i) = y$. Now, f is discrete and open. Hence there exists an R > 0 and an $\epsilon > 0$ such that for all $i, |x_i| < R$ and

(7)
$$f^{-1}(y) \cap \mathbf{B}(0, R+\epsilon) \subset \mathbf{B}(0, R-\epsilon) .$$

Note that (7) implies that $dist(y, f(\partial B_R)) > 0$. Now, $f_j \to f$ locally uniformly in \mathbb{R}^n . Hence there exists a j such that

(8)
$$\sup_{\mathbf{B}(0,2R+2\epsilon)} |f - f_j| < \frac{1}{10} \operatorname{dist}(y, f(\partial B_R)),$$

which implies that y is $(f_j, \mathbf{B}(0, R))$ -admissible. Since $y \notin f_j(B_{f_j})$, applying [Ric93, I.4.10] we conclude that $N(y, f_j, \mathbf{B}(0, R)) = \mu(y, f_j, \mathbf{B}(0, R))$. Let $h_t(x) = tf(x) + (1-t)f_j(x)$. Then $h_1 = f$, $h_0 = f_j$ and h_t maps f homotopically to f_j . Also, by (7) and (8), $y \notin h_t(\partial \mathbf{B}(0, R))$ for each $0 \leq t \leq 1$. We thus have

$$m + 1 \le N(y, f, \mathbf{B}(0, R)) \le \mu(y, f, \mathbf{B}(0, R))$$

= $\mu(y, f_j, \mathbf{B}(0, R)) = N(y, f_j, \mathbf{B}(0, R)) \le m$.

a contradiction. Hence for $y \notin f(B_f) \cup \bigcup_{j=1}^{\infty} f_j(B_{f_j}), N(y, f, \mathbb{R}^n) \leq m$. For $y \notin T$, suppose that $\#f^{-1}(y) \geq m+1$. As before, let R > 0 be such that $\#f^{-1}(y) \cap \mathbf{B}(0, R) \geq m+1$ and $f^{-1}(y) \cap \partial \mathbf{B}(0, R) = \emptyset$. Since $\#f^{-1}(y) \geq m+1$, we can use [Ric93, I.4.10] to conclude that $m+1 \leq \mu(y, f, \mathbf{B}(0, R))$. Now, f is quasiregular. Hence $f(\partial \mathbf{B}(0, R))$ has Lebesgue *n*-measure zero. Let U be the component of $\mathbb{R}^n - f(\partial \mathbf{B}(0, R))$ containing y. As T and the complement of $f(\partial \mathbf{B}(0, R))$ have full measure, we know there exists an element $y' \in U \cap T$ that is not an element of $f(\partial \mathbf{B}(0, R))$. Hence y' is $(f, \mathbf{B}(0, R))$ admissible. The preceding argument showed that $\mu(y', f, \mathbf{B}(0, R)) \leq m$. Since y and y' are both in the same component of $\mathbb{R}^n - f(\partial \mathbf{B}(0, R))$, [Ric93, I.4.4] implies that

$$m + 1 \le \mu(y, f, \mathbf{B}(0, R)) = \mu(y', f, \mathbf{B}(0, R)) \le m_{\mathcal{H}}$$

a contradiction. Hence, for all $y, N(y, f, \mathbb{R}^n) \leq m$.

$$\Box$$

We now quote and paraphrase a portion of Theorem 1.5 of [HK95]. Actually, Koskela and Heinonen show quite more than the following, but this is all that we need here. Additionally, the first implication of the following theorem was first shown by Väisälä; see [Väi72].

THEOREM 4.2. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a non-constant K-quasiregular mapping. If there exist constants C > 0 and d > 0 such that $|f(x)| \leq C(1 + |x|^d)$, then $N(f, \mathbb{R}^n) \leq m = m(n, K, d)$. Also, if $N(f, \mathbb{R}^n) < \infty$, then there exist constants C > 0 and $d = d(n, K, N(f, \mathbb{R}^n))$ such that $|f(x)| \leq C(1 + |x|^d)$.

Combining Theorem 4.2 and Proposition 4.1 gives the following result.

COROLLARY 4.3. Let $\{f_n\}$ be a sequence of K-quasiregular mappings of \mathbb{R}^n with polynomial growth of order at most d that converges locally uniformly to a function f. Then f is a K-quasiregular mapping with polynomial growth of order at most D = D(d, K, n).

We also need the following result, which was also first proved by Reshetnyak; we cite [HKM93, pp. 269–273] for the proof.

THEOREM 4.4. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be K-quasiregular. Then each of the coordinate functions of f is \mathcal{A}_f -harmonic for some n-acceptable family \mathcal{A}_f

under the Lebesgue n-measure, with $C_{\mathcal{A}_f}$ depending only on K and n. In particular, if $\{f_j\}$ is a sequence of K-quasiregular mappings that converge to a mapping f in $L^q_{\text{loc}}(\mathbb{R}^n;\mathbb{R}^n)$ for some $1 \leq q \leq \infty$, then it also converges to f in $L^s_{\text{loc}}(\mathbb{R}^n;\mathbb{R}^n)$ for each $1 \leq s \leq \infty$.

One can easily adapt the norms and proofs of Theorems 3.7 and 3.9 to obtain the following result.

COROLLARY 4.5. Let Q(K, n, m) be the set of all K-quasiregular mappings $f : \mathbb{R}^n \to \mathbb{R}^n$ with f constant or $N(f, \mathbb{R}^n) \leq m$. Then for each $1 \leq q \leq \infty$ there exists a family of Banach spaces, each a subset of $L^q_{loc}(\mathbb{R}^n; \mathbb{R}^n)$, for which Q(K, n, m) is a closed subset, such that under each of these Banach spaces there exists a relatively dense open subset of Q(K, n, m) which is locally compact. Moreover, the topology generated by each of these Banach spaces is stronger than the topology generated by $L^q_{loc}(\mathbb{R}^n; \mathbb{R}^n)$.

The following Caccioppoli estimate shows that a sequence of *p*-harmonic functions converges in $L^p_{\text{loc}}(\mathbb{R}^n)$ if and only if it converges in $W^{1,p}_{\text{loc}}(\mathbb{R}^n)$.

PROPOSITION 4.6. Let f and g be p-harmonic functions defined on an open set Ω . Then for each $\psi \in C_c^{\infty}(\Omega)$ we have for $p \geq 2$,

$$\begin{split} \int_{\Omega} |\psi|^{p} |\nabla f - \nabla g|^{p} dx &\leq C(p) \left(\int_{\Omega} |\nabla \psi|^{p} |f - g|^{p} dx \right)^{1/p} \\ & \times \left(\int_{\Omega} |\psi|^{p} |\nabla f|^{p} dx + \int_{\Omega} |\psi|^{p} |\nabla g|^{p} dx \right)^{\frac{p-1}{p}} \,, \end{split}$$

and for 1 ,

$$\begin{split} \int_{\Omega} |\psi|^p |\nabla f - \nabla g|^p dx &\leq C(p) \left(\int_{\Omega} |\nabla \psi|^p |f - g|^p dx \right)^{1/2} \\ & \times \left(\int_{\Omega} |\psi|^p |\nabla f|^p dx + \int_{\Omega} |\psi|^p |\nabla g|^p dx \right)^{1/2} \,. \end{split}$$

Proof. Note that for $\mathcal{A}_p(x, \mathbf{v}) := |\mathbf{v}|^{p-2}\mathbf{v}$ we have

(9)
$$\langle \mathcal{A}(x,\mathbf{v}) - \mathcal{A}(x,\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle \ge \frac{1}{C(p)} (|\mathbf{v}| + |\mathbf{w}|)^{p-2} |\mathbf{v} - \mathbf{w}|^2.$$

Let $h = |\psi|^p (f - g)$. Then $h \in W_0^{1,p}(\Omega)$. Hence,

$$0 = \int_{\Omega} \left\langle \mathcal{A}(x, \nabla f), \nabla h \right\rangle dx = \int_{\Omega} \left\langle \mathcal{A}(x, \nabla g), \nabla h \right\rangle dx$$

and by calculation,

$$\nabla h = p\psi|\psi|^{p-2}(f-g)\nabla\psi + |\psi|^p(\nabla f - \nabla g),$$

Hence,

$$\begin{split} \int_{\Omega} \left\langle \mathcal{A}(x,\nabla f) - \mathcal{A}(x,\nabla g), |\psi|^{p} (\nabla f - \nabla g) \right\rangle dx \\ &= -\int_{\Omega} \left\langle \mathcal{A}(x,\nabla f) - \mathcal{A}(x,\nabla g), p\psi(f-g) |\psi|^{p-2} \nabla \psi \right\rangle dx. \end{split}$$

Taking absolute values, and applying Hölder's inequality yields

$$\begin{split} \int_{\Omega} \Bigl\langle \mathcal{A}(x,\nabla f) - \mathcal{A}(x,\nabla g), |\psi|^{p} (\nabla f - \nabla g) \Bigr\rangle dx \\ &\leq C(p) \int_{\Omega} |\psi|^{p-1} |f - g| \left| \nabla \psi \right| \left| \mathcal{A}(x,\nabla f) - \mathcal{A}(x,\nabla g) \right| dx \\ &\leq C(p) \int_{\Omega} |\psi|^{p-1} |f - g| \left| \nabla \psi \right| (|\nabla f|^{p-1} + |\nabla g|^{p-1}) dx \\ &\leq C(p) \left(\int_{\Omega} |\nabla \psi|^{p} |f - g|^{p} dx \right)^{1/p} \\ &\qquad \times \left(\int_{\Omega} |\psi|^{p} |\nabla f|^{p} dx + \int_{\Omega} |\psi|^{p} |\nabla g|^{p} dx \right)^{\frac{p-1}{p}}. \end{split}$$

For $p \ge 2$ we have by using (9)

$$\begin{split} \int_{\Omega} |\psi|^{p} |\nabla f - \nabla g|^{p} dx \\ &\leq C(p) \int_{\Omega} |\psi|^{p} \left\langle \mathcal{A}(x, \nabla f) - \mathcal{A}(x, \nabla g), \nabla f - \nabla g \right\rangle dx \\ &\leq C(p) \left(\int_{\Omega} |\nabla \psi|^{p} |f - g|^{p} dx \right)^{1/p} \\ &\qquad \times \left(\int_{\Omega} |\psi|^{p} |\nabla f|^{p} dx + \int_{\Omega} |\psi|^{p} |\nabla g|^{p} dx \right)^{\frac{p-1}{p}} \end{split}$$

and for 1 , letting <math>q = 2/p > 1, we have, again by using (9),

$$\begin{split} \int_{\Omega} |\psi|^{p} |\nabla f - \nabla g|^{p} dx \\ &= \int_{\Omega} |\psi|^{p} |\nabla f - \nabla g|^{p} (|\nabla f| + |\nabla g|)^{\frac{p-2}{q}} (|\nabla f| + |\nabla g|)^{\frac{2-p}{q}} dx \\ &\leq \left(\int_{\Omega} |\psi|^{p} |\nabla f - \nabla g|^{2} (|\nabla f| + |\nabla g|)^{p-2} dx \right)^{p/2} \\ &\times \left(\int_{\Omega} |\psi|^{p} (|\nabla f| + |\nabla g|)^{p} dx \right)^{\frac{2-p}{2}} \end{split}$$

$$\begin{split} &\leq C(p) \left(\int_{\Omega} \left\langle \mathcal{A}(x,\nabla f) - \mathcal{A}(x,\nabla g), |\psi|^{p} (\nabla f - \nabla g) \right\rangle dx \right)^{p/2} \\ &\quad \times \left(\int_{\Omega} |\psi|^{p} (|\nabla f| + |\nabla g|)^{p} dx \right)^{\frac{2-p}{2}} \\ &\leq C(p) \left(\int_{\Omega} |\nabla \psi|^{p} |f - g|^{p} dx \right)^{1/2} \\ &\quad \times \left(\int_{\Omega} |\psi|^{p} |\nabla f|^{p} dx + \int_{\Omega} |\psi|^{p} |\nabla g|^{p} dx \right)^{\frac{p-1}{2}} \\ &\quad \times \left(\int_{\Omega} |\psi|^{p} (|\nabla f| + |\nabla g|)^{p} dx \right)^{\frac{2-p}{2}} \\ &\leq C(p) \left(\int_{\Omega} |\nabla \psi|^{p} |f - g|^{p} dx \right)^{1/2} \\ &\quad \times \left(\int_{\Omega} |\psi|^{p} |\nabla f|^{p} dx + \int_{\Omega} |\psi|^{p} |\nabla g|^{p} dx \right)^{1/2} . \end{split}$$

We now quote a remarkable result stated in [IM89, p. 4].

THEOREM 4.7. Let $u : \mathbb{R}^2 \to \mathbb{R}$ be a *p*-harmonic function. Then $f = \frac{\partial u}{\partial z} : \mathbb{R}^2 \to \mathbb{R}^2$ is *K*-quasiregular with $K \leq \max(p-1, 1/(p-1))$. Here,

$$\frac{\partial u}{\partial z} := \left(\frac{1}{2}\frac{\partial u}{\partial x}, -\frac{1}{2}\frac{\partial u}{\partial y}\right) \; .$$

We are now ready to prove that for each d > 0 the set of all *p*-harmonic functions on \mathbb{R}^2 with growth of order at most *d* is essentially small. We let $T_d(p)$ be the set of all *p*-harmonic functions defined on the plane with growth of order at most *d*. We also define $S_d(p)$ as the closure of $T_d(p)$ in $L^p_{\text{loc}}(\mathbb{R}^2)$.

PROPOSITION 4.8. For each d > 0 there exists m = m(d, p) such that $S_d(p) \subset T_m(p)$.

Proof. Let $\{u_j\}$ be a sequence in $T_d(p)$ that converges in $L^p_{\text{loc}}(\mathbb{R}^2)$ to a function u. Then, by Remark 2.2, Proposition 2.3, and Proposition 4.6, u is also p-harmonic and $u_j \to u$ in $W^{1,p}_{\text{loc}}(\mathbb{R}^2)$. Let $f_j = \frac{\partial u_j}{\partial z}$ and $f = \frac{\partial u}{\partial z}$. Then $f_j \to f$ in $L^p_{\text{loc}}(\mathbb{R}^2; \mathbb{R}^2)$. Moreover, by Theorem 4.7, for each j, f_j is K-quasiregular with $K \leq \max(p-1, 1/(p-1))$. Hence, by Theorem 4.4, $f_j \to f$ locally uniformly and f is also K-quasiregular. Now, for each j and r > 0 we have

$$r^p \int_{\mathbf{B}(0,r)} |\nabla u_j|^p dx \le C \int_{\mathbf{B}(0,2r)} |u_j|^p dx \; .$$

Hence, for each j and r > 0 we have

$$\int_{\mathbf{B}(0,r)} |f_j|^p dx \le Cr^{-p} \int_{\mathbf{B}(0,2r)} |u_j|^p dx \le C(1+r^{(d-1)p+2})$$

with $C = C(p, u_j)$. Now each f_j is K-quasiregular. Thus, by Theorem 4.4, for each j, the coordinate functions of f_j are \mathcal{A}_j -harmonic for some 2-acceptable family \mathcal{A}_j with $C_{\mathcal{A}_j} = C(K)$. Applying Proposition 2.1(4) yields for each jand r > 0,

$$\sup_{\mathbf{B}(0,r)} |f_j| \le C \left(\oint_{\mathbf{B}(0,2r)} |f_j|^p \right)^{1/p} \le C(1+r^{d-1})$$

with $C = C(f_j, p)$. Hence, by Theorem 4.3, there exists N = N(d, p) such that f has polynomial growth of order at most N. Now, $|\nabla u(x)| = 2|f(x)|$. Hence $|\nabla u(x)|$ also has polynomial growth of order at most N. Integration gives that $|u(x)| \leq C(1 + |x|^m)$, where m = m(d, p). Hence $u \in T_m(p)$, as needed.

Proposition 4.8 and Theorem 3.7 give our main result.

THEOREM 4.9. Let $S_d(p)$ be the closure in $L^p_{loc}(\mathbb{R}^2)$ of all p-harmonic functions defined on the plane with polynomial growth of order at most d. Then there exists a family of Banach spaces, each a subset of $L^p_{loc}(\mathbb{R}^2)$, for which $S_d(p)$ is a closed subset, such that under each of these Banach spaces there exists a relatively dense open set of S which is locally compact.

References

- [CMI98] T. H. Colding and W. P. Minicozzi II, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math. 51 (1998), 113–138. MR 98m:53053
 [FHK99] B. Franchi, P. Hajłasz, and P. Koskela, Definitions of Sobolev classes on metric
- spaces, Ann. Inst. Fourier (Grenoble) **49** (1999), 1903–1924. MR **2001a**:46033
- [Hei01] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 2002c:30028
- [HK95] J. Heinonen and P. Koskela, Weighted Sobolev and Poincareé inequalities and quasiregular mappings of polynomial type, Math. Scand. 77 (1995), 251–271. MR 97e:30039
- [HK98] _____, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61. MR 99j:30025
- [HK00] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), x+101. MR 2000j:46063
- [HKM93] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. MR 94e:31003
- [IM89] T. Iwaniec and J. Manfredi, Regularity of p-harmonic functions on the plane, Rev. Mat. Iberoamericana 5 (1989), 1–19. MR 91i:35071
- [Ric93] S. Rickman, Quasiregular mappings, Erg. Math. Grenzgeb., vol. 26, Springer-Verlag, Berlin, 1993. MR 95g:30026

[Väi72] J. Väisälä, Modulus and capacity inequalities for quasiregular mappings, Ann. Acad. Sci. Fen. Ser. A I (1972), 14. MR 46#9342

UNIVERSITY OF JYVÄSKYLÄ, DEPARTMENT OF MATHEMATICAL INFORMATION TECHNOL-OGY, P.O. BOX 35(AGORA), FIN-40014 JYVÄSKYLÄ, FINLAND *E-mail address:* kerogovi@it.jyu.fi