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LOG-RESOLUTIONS, DERIVATIONS, AND EVOLUTIONS

REINHOLD HÜBL

Abstract. Mazur’s question on the evolutionary stability of reduced
local algebras in characteristic zero and a problem of Huneke about
derivations are related to the vanishing of cohomology groups.

In this note we examine two questions which—at a first glance—seem to be
totally unrelated. The first question goes back to Huneke, and in its boldest
form it might be formulated as follows:

Let k be a (perfect) field of positive characteristic p > 0 and let (R,m)
be a regular local ring containing k and such that R/m is finite over k. Let
C(R/k) be the subring of derivationally constant elements of R/k, i.e.,

C(R/k) = {a ∈ R : δ(a) = 0 for all δ ∈ Derk(R)},

and let I ⊆ R be an m-primary ideal. If x ∈ R with δ(x) ∈ I for all δ ∈
Derk(R), then is it true that there exists c ∈ C(R/k) such that x− c is in I,
the integral closure of I?

In characteristic 0 this question has a positive answer (see [Hü1]), but in
the above situation only partial results are known (see [CH]). The question
(in a weaker form—see [CH] for a precise formulation) has its origins in the
theory of tight closure and was posed by Huneke to clarify the relations be-
tween rational singularities and singularities of F -rational type, a problem
that meanwhile has been settled by Mehta and Srinivas [MS] and by Hara
[Ha]. It later reappeared in the work of Huneke and Smith [HS] on the tight
closure approach to Kodaira vanishing, and it can be used to analyze the
depths of certain Rees-algebras (Huneke, private communications).

The second question has its origins in number theory and was posed by
Mazur [Ma] in connection with Galois deformations. It asks whether any
reduced local algebra (R,m) that is essentially of finite type over a field k of
characteristic 0 is evolutionarily stable.
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In this note we examine these questions from a birational point of view,
using techniques and ideas developed by Lipman and by Ein and Lazarsfeld
in connection with adjoint ideals and multiplier ideals; see [Li], [La], [Ei].

1. Log-resolution of ideals

Let (R,m) be a regular local ring, let I ⊆ R be an ideal and set Y =
Spec(R). A log-resolution of (R, I) is a projective birational map π : X → Y
with exceptional divisor E such that

(1) IOX = OX(−F ) for some effective divisor F on X,
(2) (E + F )red is a strictly normal crossing divisor.

If (R,m) is essentially of finite type over a field k of characteristic 0, then a
log-resolution of (R, I) always exists; see [Hi].

Now let (R,m) be essentially of finite type over a perfect field k of char-
acteristic char(k) = p > 0, and let I ⊆ R be an ideal. We say that (R, I)
arises by reduction mod p, if there exists a regular local algebra (S,M), es-
sentially of finite type over a field of characteristic 0, and an ideal J ⊆ S such
that (R,m) and I arise from (S,M) and J as described in [MS, §2] or [CH,
§3]. By Hironaka’s result, the pair (S, J) has a log-resolution, and by exclud-
ing a few primes if necessary, this log-resolution also reduces mod p. This
is the situation that is of principal interest for us. Therefore, when saying
that (R, I) arises by reduction mod p, we tacitly assume that it comes with
a log-resolution, and, in particular, that the whole situation lifts to W2(k),
the Witt-vectors of length 2 over k. Furthermore we always will assume that
d := dim(R) < p.

Recall that a Q-divisor on a regular scheme X is an element of Div(X)⊗Q,
i.e., a formal linear combination of reduced and irreducible subschemes of
codimension 1 with rational coefficients. For a Q-divisor D =

∑
aiDi with

pairwise distinct Di we set
dDe =

∑
daieDi, the round-up of D,

bDc =
∑
baicDi, the round-off of D,

where dae (resp. bac) denotes the smallest integer greater or equal to (resp.
the largest integer smaller or equal to) a.

Assume now that (R,m) is essentially of finite type over k, char(k) = p >
dim(R), and that π : X → Y is a log-resolution of (R, I). Furthermore let
E =

∑
eiEi be the exceptional divisor of π. We first extend a result of Hara

[Ha].

1.1 Proposition. Let D be a Q-divisor on X such that D− bDc is sup-
ported on E, and such that for some n > 0 the sheaf OX(−pnD) is generated
by global sections. Then

Hj
(
X,ΩiX(logE) (−E − dDe)

)
= 0
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for all i, j with i+ j > d = dim(X). In particular,

Hj(X,ωX (−dDe)) = 0 for all j > 0,

where ωX denotes the canonical sheaf on X.

Proof. By [DI] we have an isomorphism in the derived category

ϕ :
d⊕
i=0

Ωi(logE)[−i] −→ F∗ (Ω•X(logE)) ,

where F denotes the Frobenius of X (note here that k is perfect). Using [Ha,
(3.4) and (3.5)] we conclude that ϕ induces an isomorphism

ψ :
d⊕
i=0

ΩiX(logE) (−E − dDe) [−i] −→ F∗ (Ω•X(logE)) (−E − dpDe)

in the derived category. Applying this several times and making use of the
Hodge-to-de Rham spectral sequence, we see that it suffices to prove that

Hj
(
X,ΩiX(logE) (−E − dpnDe)

)
= 0

for some n > 0 and all i, j with i+ j > d. Thus we may replace D by dpnDe
and assume that D is a divisor with integral coefficients, and that OX(−D)
is generated by global sections. Assume now that F is an ample divisor for
π, supported on the exceptional locus

F =
n∑
i=1

fiEi, fi < 0,

and choose n > 0 such that
⌊
− (1/pn)F

⌋
= 0. Then it suffices to show that

Hj

(
X,ΩiX(logE)

(
−E −

⌊
− 1
pn
F +D

⌋))
= 0

for all i+ j > d. As OX(−D) is generated by global sections, (1/pn)F −D is
an ample Q-divisor, and the claim follows from [Ha, (3.8)]. �

1.2 Corollary. Let (R,m) be a regular local algebra, essentially of finite
type over a field k of characteristic 0, let I ⊆ R be an ideal and let π : X → Y
be a log-resolution of (R, I). If D is a Q-divisor on X such that D − bDc is
supported on the exceptional divisor of π and all sufficiently high multiples of
−D are generated by global sections, then

Hj
(
X,ΩiX(logE) (−E − dDe)

)
= 0

for all i+ j > d.

Proof. This follows from 1.1 by reduction mod p. �

As a consequence of these vanishing results we obtain a positive answer to
Lipman’s vanishing conjecture [Li, (2.2)] in some cases:
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1.3 Corollary. In the situation of 1.1 or 1.2 let J ⊆ R be an ideal of R
such that JOX is an invertible ideal. Then

H l(X, JωX) = 0 for all l > 0.

1.4 Remark. (i) If char(k) = 0 then 1.3 was proved (by different methods,
but in even greater generality) by Cutkosky (see [Li, Appendix]).

(ii) The vanishing result 1.3 is very useful in the study of results of Briançon–
Skoda type; see [Li, (1.6), §2].

Log-resolutions play a crucial role in the study of multiplier ideals.

Definition. Given an ideal a ⊆ R in a regular ring R, a log-resolution
π : X → Y of (R, a) and a non-negative rational number c, the corresponding
multiplier ideal is defined to be

I(c · a) = π∗ωX/Y (−bc · F c) ,
where ωX/Y denotes the relative canonical sheaf of X/Y (which we may take
to be ωX if R is local).

1.5 Remark. In a somewhat different context (only for local rings, but
with no restrictions on the characteristic) multiplier ideals have already been
studied by Lipman [Li], who called them adjoint ideals and wrote ã for
I(1 · a). Recently they have been examined and used very successfully by
Ein, Lazarsfeld, and others (see [Ei], [La], [DEL], [ELS]). They have their
origin in the (analytic) work of Nadel, Demailly, Siu, and others.

2. Evolutions, condition (NN) and log-resolutions

Suppose now that k is a field of characteristic 0 and that (T,m)/k is a local
algebra, essentially of finite type, with [T/m : k] < ∞. An evolution of T/k
is another local algebra (S, n)/k, also essentially of finite type, together with
a surjective map ε : S → T of local k-algebras, which induces an isomorphism

ε∗ : Ω1
S/k ⊗ T → Ω1

T/k

on the level of differential forms. The algebra T/k is called evolutionarily
stable, if ε = idT is the only evolution of T/k. Mazur [Ma] asked, whether (in
the present situation) every reduced local algebra T/k is evolutionarily stable.
The corresponding question in positive characteristic has a negative answer
(see [EM]), but for characteristic 0 no counterexamples are known.

The relation to birational geometry is given by the following theorem which
summarizes some of the main results of [Hü2] and [HR] (see, in particular,
[Hü2, §1 and §3] and [HR, Thm. 2 and Cor. 14]).

2.1 Theorem. Let k be a field with char(k) = 0, and let (R,m)/k be a
smooth local algebra with [R/m : k] < ∞. Furthermore let I ⊆ R be an ideal
and let T = R/I. Then the following conditions are equivalent:
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(1) If f ∈ I with fn ∈ In+1 for some n ∈ N , then f ∈ mI.
(2) If v is a (normalized, discrete, rank one) valuation of K = Q(R),

nonnegative on R and positive on I (but not necessarily on m), and
if f ∈ I with v(f) ≥ v(I) + 1, then f ∈ mI.

(3) If v is a Rees-valuation of I, and if f ∈ I with v(f) ≥ v(I) + 1, then
f ∈ mI.

If I is a radical ideal, then (1)–(3) are also equivalent to the following condi-
tions:

(4) If π : X → Y is a log–resolution of (R, I) with

IOX = OX

(
n∑
i=1

−aiEi

)
for some ai > 0, and if in addition mOX is invertible and

mOX = OX

(
n∑

i=δ+1

−biEi

)
for some bi > 0, then

H0

(
X,OX

(
δ∑
i=1

−(ai + 1)Ei +
n∑

i=δ+1

−(ai + bi)Ei

))
⊆ mI.

(5) The algebra T/k is evolutionarily stable.

We say that the pair (R, I) satisfies (NN) if condition (1) holds. Not all
pairs (R, I) satisfy (NN), even if R is regular; whether (R,

√
I) satisfies (NN) is

an open problem; see [Hü2, Conj. 1.3]. No counterexamples to this conjecture
are known, even if we generalize it to arbitrary regular local rings. Here we
concentrate on condition (4) of the above theorem. Clearly (3) implies (4),
so this condition is (presumably) weaker than (NN), and it is also weaker
than the condition that mI be integrally closed. To obtain a positive answer
to Mazur’s question, one might try to identify large classes of pairs (R, I)
satisfying 2.1 (4) and hope that these classes contain all radical ideals. In this
direction we have the following result.

2.2 Corollary. If I ⊆ R is an m-primary ideal, then (R, I) satisfies
2.1 (4) if and only if mI is integrally closed.

Proof. In this situation we have δ = 0 in (4) of 2.1. Furthermore the group
H0 (X,OX (

∑n
i=1−(ai + bi)Ei)) is exactly the integral closure of mI. �

2.3 Corollary. Suppose I is integrally closed with I ⊆ m2 and
dim(R/I) = 1. If, for a general element x ∈ m \ m2 that is not a zero divi-
sor of R/I, the pair (R/(x), (I, x)/(x)) satisfies 2.1 (4), then (R, I) satisfies
2.1 (4).
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Proof. By 2.2 the ideal m/(x) · (I, x)/(x) is integrally closed in R/(x), and
thus (mI, x) ⊆ R is integrally closed (as can be seen easily by completing R
and using x as a power series variable). But then mI is integrally closed, by
[HuR, (6.2)]. Hence (R, I) satisfies 2.1 (4). �

Let π : X → Y = Spec(R) be a log resolution of (R, I) such that mOX is
invertible as well. Write

IOX = OX(−F ), mOX = OX(−G)

with

F =
n∑
i=1

aiEi, G =
n∑

j=δ+1

bjEj

(with all ai, bj > 0), and set

H =
δ∑
i=1

Ei.

2.4 Remark.

(i) (R, I) satisfies 2.1 (4) if and only if H0 (X,OX(−F −G−H)) ⊆ mI.
(ii) mI is integrally closed if and only if H0 (X,OX(−F −G)) ⊆ mI.

Let KX be a canonical divisor of X. As R is local, we may assume that
KX =

∑
ciEi is supported on the exceptional fibre of π with ci > 0 for all i.

We note that the integers ci are uniquely determined by this.

2.5 Proposition. Let ht(I) = g and dim(R) = d, and assume that I is
equidimensional without embedded components. If

(1) (g − 1)F + (d− 1)G−H ≤ KX ,

then (R, I) satisfies 2.1 (4), and if

(2) (g − 1)F + (d− 1)G ≤ KX ,

then mI is integrally closed.

Proof. Suppose (1) is satisfied. Then

OX(−F −G−H) = ωX(−KX − F −G−H) ⊆ ωX(−gF − dG)

and therefore

H0 (X,OX(−F −G−H)) ⊆ H0 (X,ωX(−gF − dG))

= I(Igmd)

⊆ I(Ig) · I(md)
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by the subadditivity of multiplier ideals ([DEL]; see also [La, (5.2)]). By [Li,
(1.3.2)(c)] we have

I(md) = m,

and therefore it remains to show that I(Ig) ⊆ I. As I has no embedded
components, it suffices to show that

I(Ig)Rp ⊆ IRp

for all p that are minimal over I. This follows easily from [Li, (1.3.1) and
(1.6)] (see also [ELS]). �

2.6 Remark. The requirements of 2.5 are very strong, and in fact they
will not be satisfied in general (see 2.7 below). They are used to prove the
inclusion

H0 (X,OX(−F −G−H)) ⊆ H0 (X,ωX(−gF )) ·H0 (X,ωX(−dG)) .

If I = p is a prime ideal (so that 2.1 (4) is, in fact, equivalent to (NN)), it
would be sufficient to have the weaker subadditivity property

(3) H0 (X,OX(−F −G−H)) ⊆ H0 (X,OX(−H)) ·H0 (X,ωX(−dG)) .

In fact, by [Li, (1.3.2)],

H0 (X,ωX(−dG)) = m,

and furthermore

H0 (X,OX(−H)) ⊆ H0 (X,OX(−H))Rp ∩R
⊆ pRp ∩R
= p.

Note that (3) is actually equivalent to (R, p) satisfying (NN). Indeed, we have

pOX ⊆ OX(−H),

and therefore we get

p = p = H0(X, pOX) ⊆ H0 (X,OX(−H)) .

Hence, by 2.4 (i), (3) is equivalent to (R, p) satisfying (NN). (If I is a radical
ideal, we may argue similarly.)

If I = p is a prime ideal, certain parts of the condition in 2.5 will always
be satisfied:

2.7 Proposition. Write

F =
n∑
i=1

aiEi, G =
n∑

i=δ+1

biEi, KX =
∑

ciEi,

with positive integers ai, bi, ci. Assume that I = p is a prime ideal. Then we
have:
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(i) ci ≥ (d− 1)bi for i ∈ {δ + 1, . . . , n}.
(ii) Let E1, . . . , Eρ be those exceptional components of π with

π(Ei) = V(p),

the set of primes containing p. Then

ci ≥ (g − 1)ai for i ∈ {1, . . . , ρ}.

Proof. (i) By the universal property of blowing-up, the map π : X → Y
factors as

X
f //

π
  @@@@@@@ Z

g
��~~~~~~~

Y

where g : Z → Y denotes the blow-up of m. If T is the reduced exceptional
divisor of g, then KZ

∼= (d− 1)T , i.e., ω−1
Z = md−1OZ , and furthermore

KX
∼= f∗KZ +

∑
diEi

with nonnegative di as Z is regular. Since (f∗ωZ)−1 = md−1OX , the claim
follows by comparing coefficients of the appropriate exceptional components.

(ii) If Yp = Spec(Rp), Xp = X ×Y Yp , then the induced morphism
πp : Xp → Yp is a log-resolution of the pair (Rp , pRp), and we may argue
as in (i). �

2.8 Remark. If, in the situation of 2.7, ht(p) = d − 1, then 2.7 implies,
in particular, that 2.5 (1) is satisfied if and only if 2.5 (2) is satisfied. Thus
the example [Hü2, (4.4)] shows that there are regular local rings R and prime
ideals p ⊆ R such that 2.5 (1) is not satisfied for any log-resolution π : X → Y
of (R, p) of the type considered in this section.

2.9 Question. Find all pairs (R, I) which satisfy 2.5 (1) (or 2.5 (2)).

2.10 Question. Is it possible to prove the inclusion

H0 (X,OX(−F −G−H)) ⊆ H0 (X,OX(−H)) ·H0 (X,ωX(−dG))

by using the techniques developed by Ein and Lazarsfeld (and others) to study
multiplier ideals and to prove their subadditivity?

Some results that seem to be related to the questions raised in this section
have been obtained by Ein, Lazarsfeld and Smith [ELS]. They showed that,
if I = p is prime and if π(E1) = V(p), the set of primes containing p, then

π∗(−l(c1 + 1)E1) ⊆ pl for all l ∈ N .
By analyzing the techniques of [DEL] and [La], we obtain the following: Sup-
pose we are in the above situation. Let qi : X ×X → X and pi : Y × Y → Y
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(i = 1, 2) be the projections. Furthermore let π(2) : X ×X → Y × Y be the
morphism induced by π and denote by I∆ ⊆ OX×X the ideal of the diagonal.
Then condition (NN) can be related to the vanishing of certain cohomology
groups. We state here a result along these lines, although so far we have not
found any non-trivial examples where it applies:

2.11 Proposition. Assume that I ⊆ R is a prime ideal (or a radical
ideal that is equidimensional of height g < d = dim(R)). Suppose that there
exist divisors A,B on X with

(1) H =
∑δ
i=1Ei ≤ A ≤ F +H,

(2) H∗ =
∑n
i=δ+1Ei ≤ B ≤ G,

such that
R1π(2)∗ (I∆OX×X(−q∗1A− q∗2B)) = 0.

Then (R, I) satisfies (NN).

Proof. The vanishing of the cohomology group implies that the canonical
map

π(2)∗OX×X(q∗1A− q∗2B) −→ π∗OX(−A−B)
is surjective, and by the Künneth formula we have

π(2)∗OX×X(−q∗1A− q∗2B) = p∗1 (π∗OX(−A))⊗ p∗2 (π∗OX(−B)) ,

implying that

π∗OX(−A−B) ⊆ π∗OX(−A) · π∗OX(−B)

⊆ π∗OX(−H) · π∗OX(−H∗)
= I · m.

On the other hand, the assumptions clearly imply

π∗OX(−F −G−H) ⊆ π∗OX(−A−B),

and so the claim follows. �

2.12 Remark. Some of the results of [ELS] have been obtained (and
strengthened) by Hochster and Huneke [HH], using tight closure techniques.
It is not clear to the author whether tight closure and Frobenius may also be
used in the study of evolutions.

3. Derivations and log-resolution

Throughout this section we assume that (S, n) is a regular local ring, essen-
tially of finite type over a field K of characteristic 0 with [S/n : K] <∞. We
also assume that J ⊆ S is an n-primary ideal and that Π: X → Y = Spec(S)
is a log-resolution of (S, J) with the following properties:

(1) Π: Π−1(Y \ {n}) −→ Y \ {n} is an isomorphism.
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(2) The reduced exceptional locus

E = Π−1({n})red =
n∑
i=1

Ei

is a strictly normal crossing divisor.
(3) JOX = OX(−F ) and mOX = OX(−G), where

F =
n∑
i=1

aiEi and G =
n∑
i=1

biEi

with positive coefficients ai, bi.

Furthermore, let k be a perfect field of characteristic p > 0, let (R,m)/k be
a regular local algebra, essentially of finite type, and let I ⊆ R be an m-
primary ideal. Assume that (R, I) arises from (S, J) by reduction mod p and
that (R, I) has a log-resolution

π : X −→ Y = Spec(R)

arising from Π by reduction mod p and satisfying (1)–(3) accordingly. In
particular, we have IOX = OX(−F ).

In this section we are interested in the following question.

Question. Suppose r ∈ R is an element with δ(r) ∈ I for all δ ∈ Derk(R).
Does there exist an a ∈ C(R/k) such that r− a is in I, the integral closure of
I?

Note that, in the present situation, C(R/k) = Rp, so the question amounts
to asking whether the condition δ(r) ∈ I for all δ ∈ Derk(R) forces r to be in
the integral closure of I up to a pth power in R.

Since, by [LS], an+d−1 ⊆ an for each ideal a ⊆ R, a positive answer to this
question would provide a positive answer to Huneke’s original problem (see
the introduction of [CH]).

3.1 Proposition. If H1 (X,OX (−d(1/p)F e)) = 0, then the above ques-
tion has a positive answer for R and I.

Proof. (See also [CH, §3].) Let f ∈ R with δ(f) ∈ I for all δ ∈ Derk(R). As
R/k is smooth, this is equivalent to dR/k(f) ∈ IΩ1

R/k. Furthermore, let x ∈ X
with π(x) = m. Then clearly dOX,x/k(f) ∈ IΩ1

OX,x/k by the functoriality of
differential forms, and thus δ(f) ∈ IOX,x for all δ ∈ Derk(OX,x). As IOX,x
defines a normal crossing divisor, we may apply [CH, (2.11)], and we conclude
that for each x ∈ X there exists a cx ∈ OX,x with

f − cpx ∈ IOX,x.



LOG-RESOLUTIONS, DERIVATIONS, AND EVOLUTIONS 279

(Note that for x /∈ π−1({m}) this is trivial.) Thus we can find a finite open
cover U1 = Spec(S1), . . . , Ut = Spec(St) of X and ci ∈ Si with

hi := f − cpi ∈ ISi.
From this we conclude

cpi − c
p
j ∈ Γ (Ui ∩ Uj ,OX(−F )) ,

which implies

ci − cj ∈ Γ
(
Ui ∩ Uj ,OX

(
−
⌈

1
p
F

⌉))
.

Thus by our assumption there exist λi ∈ Γ (Ui,OX (−d(1/p)F e)) with

λi − λj = ci − cj on Ui ∩ Uj ,
so that ci−λi = cj −λj on Ui ∩Uj . Hence there exists an a ∈ R = Γ(X,OX)
with

a | Ui = ci − λi for i ∈ {1, . . . , t},
implying

f − ap | Ui = hi − λpi ∈ Γ (Ui,OX(−F )) for all i ∈ {1, . . . , t}.
From this we conclude that

f − ap ∈ Γ (X,OX(−F )) = I.

�

3.2 Corollary. In the above situation suppose that all high powers of
ω−1
X are generated by global sections. Then the question has a positive answer.

Proof. In the present situation we have

H1

(
X,OX

(
−
⌈

1
p
F

⌉))
= H1

(
X,ωX

(
−KX −

⌈
1
p
F

⌉))
.

To see that this object vanishes we argue as in the proof of 1.1. Thus it suffices
to prove that

Hi(X,ΩjX
(
log(E)

(
−E − pnKX − pn−1F

))
= 0

for all i, j with i+j > d = dim(R) and for some n > 0. This, however, follows
from the proof of 1.1. �

3.3 Remark. X is obtained from Y = Spec(R) by a sequence of blow-ups
of regular centers. If X arises from Y by blowing up only once, then ω−1

X will
be very ample, and the assumption of 3.2 is satisfied. However, in general
ω−1
X will not be ample, not even in the case when dim(Y ) = 2.

The next result states that the question has a positive answer “up to some
discrepancy”, which, however, depends on p.
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3.4 Theorem. In the situation of 3.1 there exists a power J = I l of the
ideal I (with l depending on the log-resolution of (R, I) and on the character-
istic p = char(k)) with the following property:

For f ∈ R and n ∈ N with δ(f) ∈ Jn+1 for all δ ∈ Derk(R) there exists an
element a ∈ R with

f − ap ∈ Jn.

3.5 Remark. (i) If we can make l independent of p, then this would
answer Huneke’s original question in the affirmative.

(ii) A similar result was already obtained in [CH, §2]. The result of 3.4,
however, also provides an additional linear bound in p and thus a “weak”
answer to Huneke’s original question; see 3.7 below.

Proof. Let π : X → Y be the log-resolution of (R, I) with IOX = OX(−F )
for some effective

F =
m∑
i=1

aiEi

and write

KX =
m∑
i=1

biEi.

Note that ai, bi > 0 for all i since π(Ei) = {m} for all i. Thus we may assume,
after replacing I by a sufficiently high power J = I l, that p · bi ≤ ai.

Let f ∈ R with δ(f) ∈ Jn+1 for some n ∈ N and all δ ∈ Derk(R). Arguing
as in the proof of 3.1, we obtain an open affine cover {Ui = Spec(Si)} of X
and ci ∈ Si such that

hi = f − cpi ∈ J
n+1Si,

i.e., such that

ci − cj ∈ Γ
(
Ui ∩ Uj ,OX

(
−
⌈
n+ 1
p

F

⌉))
⊆ Γ

(
Ui ∩ Uj , ωX

(
−
⌈
n+ 1
p

F

⌉))
,

as KX is effective. Since OX(−F ) and all its powers are generated by global
sections, we conclude from 1.1 that

H1

(
X,ωX

(
−
⌈
n+ 1
p

F

⌉))
= 0.

Thus there exist λi ∈ Γ
(
Ui, ωX

(
−
⌈
n+1
p F

⌉))
such that

λi − λj = ci − cj ,
and as in the proof of 3.1 we obtain an element a ∈ R with

a | Ui = ci − λi.
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This implies that

f − ap | Ui = h− λpi | Ui ∈ Γ(Ui,OX(pKX − (n+ 1)F )

⊆ Γ (Ui,OX(−nF )) ,

from which we conclude

f − ap ∈ Γ (X,OX(−nF )) = Jn. �

Question. In the above situation is it true that

H1

(
X,ωX

(
−KX −

⌈
n+ 1
p

F

⌉))
= 0

for all positive integers n ∈ N , or at least for all sufficiently large integers n?

3.6 Remark. For the use in connection with tight closure techniques it
often would be sufficient to answer the above question for all sufficiently large
n. In fact, it would be sufficient to know that there exists an N0 (which may
depend on R and I) with the following property: If n > N0 and if r ∈ R with
δ(r) ∈ In for all δ ∈ Derk(R), then r − a ∈ In for a suitable a ∈ C(R/k).

3.7 Corollary. Let (S,M) be a regular local ring of dimension d, es-
sentially of finite type over a field k of characteristic 0, and such that S/M
is finite over k, and let J ⊆ S be an M-primary ideal. Then there exists a
nonnegative integer c with the following property:

For almost all primes p > 0, if (R, I) arises from (S, J) by reduction mod
p and if f ∈ R and n ∈ N , n ≥ cp + d, with δ(f) ∈ In for all δ ∈ DerFp(R),
then there exists an element a ∈ R with

f − ap ∈ In−cp ⊆ In−cp−d+1.

Proof. Using a log-resolution arising from characteristic 0 and with the
notations introduced in the proof of 3.4 we can choose an integer c such that
bi ≤ (c/2) ·ai for all i. Then the proof of 3.4 goes through if in each reduction
we take for J the (c · p)th power of I. From this and the Briançon–Skoda
theorem [LS] the claim follows. �

By 3.4 and 3.7 the above question reduces to a question on the vanishing
of cohomology groups. We can ask even more generally:

Question. Let π : X → Y = Spec(R) be a log-resolution of I ⊆ R,
and let E =

∑m
i=1Ei be the reduced exceptional divisor. Does there exist a

number c ∈ N (depending on Y , X and char(k)) such that

H1

(
X,ωX

(
−

m∑
i=1

aiEi

))
= 0
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for all ai ≥ c, i = 1, . . . ,m, or equivalently

H1

(
X,OX

(
−

m∑
i=1

aiEi

))
= 0

for all ai ≥ c, i = 1, . . . ,m?

3.8 Remark. In [HR] it was shown that Mazur’s question may also be re-
lated to the vanishing of certain cohomology groups. This raises the following
question:

Question. Is it possible to determine all integers ai for which

H1

(
X,ωX

(
−

m∑
i=1

aiEi

))
= 0,

or at least large classes of integers ai for which this is true?

3.9 Remark. Suppose that π(E) = {m} and let U = Y \ {m}. As

π : π−1(U) −→ U

is an isomorphism, Hi(X,M) is an Artinian module for each i > 0 and each
coherent OX -module M. Thus [EV, §11] can be modified to prove that for
all positive integers n ∈ N

(∗)
⊕
a+b=l

lgRH
a
(
X,ΩbX(log(E))⊗OX(−F )

)
≤
⊕
a+b=l

lgRH
a
(
X,ΩbX (log(E))⊗OX(−pnF )

)
.

Thus the above question has a positive answer for all those

F =
m∑
i=1

aiEi

such that −F is ample, in which case the right-hand side of (∗) vanishes for
n � 0. In general, however, we cannot hope for the vanishing of the right-
hand side of (∗) , even in the case d = 3, as the following example shows:

There exist pairs (R, I) with m-primary ideals I such that for each log-
resolution π : X → Y and for any c ∈ N there exists a divisor

F =
m∑
i=1

αiEi

with αi ≥ c for all i ∈ {1, . . . ,m} and there exist a, b with a + b = l ≥ d + 1
such that

Ha
(
X,ΩbX(logE)⊗OX(−F )

)
6= 0.
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In fact, by [Hu] there exist regular local rings (R,m) (of dimension d ≥ 3 and
containing the rationals) and m-primary ideals I ⊆ R such that I is integrally
closed, but mI is not integrally closed. We restrict ourselves to the case d = 3
and leave the general situation to the reader.

Let π : X → Y be a log-resolution of m and I and write

mOX = OX
(
−
∑

biEi

)
, IOX = OX

(
−
∑

aiEi

)
,

with positive integers ai, bi. A minor adaption of [HR, Cor. 17] to the present
situation shows that either

(1) H1
(
X,OX

(∑
−(ai − bi)Ei

))
6= 0

or

(2) H2
(
X,OX

(∑
−(ai − 2bi)Ei

))
6= 0.

Write KX =
∑
ciEi. In case (1) we conclude from (∗) that for all n ≥ 0 either

H1
(
X,ωX

(∑
−pn(ci + ai − bi)Ei

))
6= 0

or
H2
(
X,Ω2

X(log(E))⊗OX
(∑

−pn(ci + ai − bi)Ei
))
6= 0.

Arguing as in 2.7 (i) we conclude that ci ≥ 2bi. Thus the coefficients grow
arbitrarily large. In case (2) we proceed similarly. This, however, does not
imply that the question raised above has a negative answer.

In 3.1 we require the vanishing of H1 (X,OX (−d(1/p)F e)), where IOX =
OX(−F ). The following result shows that the first cohomology group of the
inverse of this line bundle vanishes, provided d ≥ 3.

3.10 Proposition. In the situation of 3.1 let r ∈ Q+ be a positive ratio-
nal number. Then

Hj (X,OX (drF e)) = 0 for j ∈ {1, . . . , d− 2}.

Proof. Let Z = π−1({m}) and let U = π−1(Y \{m}). Then we have a long
exact sequence

. . .→Hj
Z (X,OX (drF e))→Hj (X,OX (drF e))→Hj (U,OX (drF e) | U)→ . . .

As OX (drF e) | U = OU and U ∼= Y \ {m}, we have

Hj(U,OX (drF e) | U) = Hj(U,OU ) = Hj+1
m (R) = 0

for 0 < j ≤ d− 2 since R is Cohen–Macaulay. Denoting by M̂ the completion
of an R-module M we have, by formal duality,

Homk(Hj
Z (X,OX (drF e)) , k) ∼= Hd−j (X,ωX (−drF e))̂ = 0

for j < d (by 1.1), and the claim follows. �
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3.11 Remark. If r ≥ 0, then in general we do not have

Hd−j (X,ωX (drF e))̂ = 0

for all j < d, and thus we cannot apply the above argument to −d(1/p)F e.
However, setting, for r ≥ 0,

Ir := H0 (X,OX (−drF e))
(the “integral closure of Ir”) and assuming that d ≥ 2, the following conditions
are equivalent:

(1) H1 (X,OX (−drF e)) = 0,
(2) H1

Z (X,OX (−drF e)) = R/Ir.

Proof. We have a long exact sequence

· · · → H0 (X,OX (−drF e))→ H0(U,OU )→ H1
Z (X,OX (−drF e))

→ H1 (X,OX (−drF e))→ H1(U,OU )→ · · · ,

where we have used the fact that OX (−drF e) | U = OU .
If d ≥ 3, then H1(U,OU ) = H2

m(R) = 0 and H0(U,OU ) = R, implying the
claim in this case.

If d = 2, we still have H0(U,OU ) = R. Furthermore we have the commu-
tative diagram

H1(U,OX (−drF e) | U)

β

��

α // H2
Z (X,OX (−drF e))

γ

��
H1(U,OU ) = H2

m(R) δ // H2
Z(OX)

where all maps are the canonical ones. Since (R,m) is regular, it is pseudo-
rational by [LT, §4], and therefore δ is injective. As β is an isomorphism, we
conclude that α is injective. This shows that (1) and (2) are equivalent in the
two-dimensional case as well. �

3.12 Remark. (i) The integral closure of generalized powers of ideals
has also been considered by McAdam, Ratliff and Sally [MRS]. In the above
situation, however, little seems to be known about local cohomology with
supports in the exceptional fibre Z and its relations to the integral closure of
these powers in general.

(ii) If r ∈ Q+ is such that all coefficients of rF are less than or equal than
1, then

H1 (X,OX (−drF e)) = 0
by [CH, 3.4], and therefore we have

H1
Z (X,OX (−drF e)) = R/Ir

in this case as well.
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