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INTEGRAL GROUP RING AUTOMORPHISMS WITHOUT
ZASSENHAUS FACTORIZATION

MARTIN HERTWECK

Abstract. An automorphism α of an integral group ring ZG, where
G is a finite group, is said to have a Zassenhaus factorization if it is

the composition of an automorphism of G (extended to a ring auto-
morphism) and a central automorphism. In 1988, Roggenkamp and
Scott constructed a group G (of order 2880) such that ZG has a nor-
malized (i.e., augmentation preserving) automorphism α which has no
Zassenhaus factorization. In this paper, short proofs of the following

two results are given. (1) For a group G of order 144, there is a nor-
malized automorphism α of ZG which has no Zassenhaus factorization.
Moreover, α can be chosen to have finite order. (2) There is a group

G of order 1200, with abelian Sylow subgroups and Sylow tower, such
that ZG has a normalized automorphism which has no Zassenhaus fac-

torization.

1. Introduction

Automorphisms of group rings OG, where O is the ring of integers in a
local or global field and G is a finite group, have been studied by various
authors, mostly in their own right, but also for other reasons (such as ap-
plications to the isomorphism problem; see [7] and [10]. Of course, group
ring automorphisms can also act on objects associated to the ring (see [2]).
For example, the group of normalized (i.e., augmentation preserving) auto-
morphisms of the integral group ring ZG acts on the character ring, and a
conjecture of H. Zassenhaus asserts that this action coincides with the action
of Aut(G). Following [10, p. 327], we shall say that an automorphism α of ZG
has a Zassenhaus factorization if it is the composition of a group automor-
phism of G (extended to a ring automorphism) and a central automorphism
(an automorphism fixing the center element-wise). Then, the actions coincide
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if and only if each normalized automorphism of ZG has a Zassenhaus factor-
ization. (It should be remarked that whether or not an automorphism has a
Zassenhaus factorization depends on the distinguished basis G.)

Roggenkamp and Scott [9] constructed a metabelian group G of order 2880
such that ZG has a normalized automorphism α which has no Zassenhaus
factorization. Their construction of α is explicit in the semilocal situation.
To show that their example is also a global counterexample to the Zassenhaus
conjecture, they developed a general theory, using Picard groups and Milnor’s
Mayer Vietoris sequence. An excellent outline of this work is given in [10].

Subsequently, Klingler [8] constructed explicitly a global automorphism.
Certain quotients of ZG naturally show up in the presence of two normal
subgroups of G of coprime order. Klingler made essential use of the fact that,
in some situations, certain units of such a quotient, which, roughly speak-
ing, correspond to elementary matrices, can be “lifted”. This observation is
formalized in Lemma 2.2 below.

Scott found a way to approach the construction of group ring automor-
phisms and isomorphisms in the semilocal case that avoids any explicit use
of the theory of orders (see [10]). Using this idea, Blanchard [1] constructed
further counterexamples in the semilocal case.

In [4, 2.2.1], a group G of order 144 was given which provides a semilocal
counterexample. In this paper, it is shown that this group is also a global
counterexample (Theorem A). The computations are done explicitly in order
to show that there is a normalized automorphism of finite order of ZG which
has no Zassenhaus factorization, thus answering a question of Klingler [8,
p. 2329]. It should be remarked that the group G is different from the three
groups of order 144 given by Blanchard [1, II.1.1], and that it is not yet known
whether his examples are global counterexamples.

Zassenhaus [11] believed that his conjecture is true at least for groups with
abelian Sylow subgroups and Sylow tower. Unfortunately, this is not the case,
as our second example (Theorem B) shows.

Both counterexamples have the same structure which we will explain first.

Structure of the counterexamples. For a group X, write X̂ for the
sum of its elements. The (two-sided) ideal generated by group ring elements
s, t, . . . will be denoted by (s, t, . . . ).

Both counterexamples have the same structure. The underlying group G
has normal subgroups M and N of coprime order. The quotient

Λ = ZG/(M̂, N̂)

is the projection on a factor of QG (to which all blocks having neither M nor
N in their kernel belong). The projection of ZG on the complementary factor
is the image Γ of ZG under the natural map ZG → ZG/M ⊕ ZG/N . Hence
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there are pull-back diagrams
Γ - ZG/M

ZG/N
?

- ZG/MN
?

and

ZG - Γ

Λ
?

- Λ̄
?
.

Roggenkamp and Scott [9, Section 2] proved that the ring Λ̄ over which the
pull-back for ZG is taken has the form

(ZG/M)/(|M |, N̂)⊕ (ZG/N)/(|N |, M̂).

A group automorphism ϕ of G plays an important rôle. It fixes the normal
subgroups M and N , and so, in particular, induces automorphisms of Γ, Λ
and Λ̄. Though the automorphism induced on Γ is not a central automor-
phism, ϕ will induce central automorphisms on the quotients (ZG/M)/(N̂)
and (ZG/N)/(M̂), and even an inner automorphism on Λ̄. We will show that
there is an inner automorphism β of Γ which agrees with ϕ on Λ̄. Thus there
is an automorphism α of ZG which induces β on Γ and ϕ on Λ. Note that α is
normalized; this is because Γ inherits the structure of an augmented algebra,
and α induces on Γ an augmentation preserving automorphism. In order to
show that α has no Zassenhaus factorization, it remains to show that there is
no ρ ∈ Aut(G) which differs on Λ from ϕ by a central automorphism and in-
duces on Γ a central automorphism (this will be called the “group-theoretical
obstruction”).

It should be remarked that the counterexample given by Roggenkamp and
Scott has the property that there is a group ring automorphism which has no
Zassenhaus factorization on “the level of Γ”.

2. Preliminary results

Let H be a finite group, and N a normal subgroup of H. At the end of the
Introduction, the following question arose: Given a central ring automorphism
ϕ of ZH/(N̂), and a natural number m 6= 1 with (m, |N |) = 1, is there a
central ring automorphism β of ZH which agrees with ϕ on ZH/(N̂ ,m)?

We first present a negative example. This example emerged as the author
tried to obtain a global version of a semilocal counterexample to the conjecture
of Zassenhaus for a group of order 180. (The semilocal version was announced
in [6].)

Example 2.1. Let H = 〈n, a : n5 = a4 = nan = 1〉 ∼= C5 o C4 and
N = 〈n〉 ∼= C5. An automorphism ϕ of H is defined by nϕ = n and aϕ =
a3. This automorphism fixes all irreducible characters which do not have N
in their kernel, and therefore induces a central automorphism of ZH/(N̂).
However, we will show that for any natural number m, there is no central
automorphism β of ZH which agrees with ϕ on ZH/(N̂ ,m) (although the
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latter quotient could very well be semisimple, in which case ϕ induces an
inner automorphism on it).

There is a surjective ring homomorphism θ from QH onto the skew field
D = {[ r s

−s̄ r̄ ] : r, s ∈ Q(ζ)} (where ζ is a primitive 5-th root of unity), mapping
n to

[
ζ 0

0 ζ−1

]
and a to

[
0 1
−1 0

]
. Assume that some d ∈ (ZH)θ is a unit of order

4. Clearly d = [ r s
−s̄ r̄ ] for some r, s ∈ Z[ζ], and s 6= 0. Furthermore, det(d) is a

4-th root of unity, so det(d) = rr̄+ss̄ = 1. It follows that rr̄ = 1−ss̄ < 1, and
the same is true for all algebraic conjugates of r. By a well-known theorem
of Kronecker, it follows that r = 0 and s = ±ζn for some n ∈ Z. Hence the
units of D of order 4 which are contained in (ZH)θ are precisely the elements
hθ with h ∈ H of order 4. In particular, if such units are congruent modulo
m, they are equal.

Let e be the central idempotent 1
2 (1− a2)

(
1− 1

5N̂
)

of QH. The kernel of
θ is (1− e)QH, so ZH/(1 + a2, N̂), which is the projection of ZH on eQH, is
isomorphic to (ZH)θ.

Now assume that there is a central automorphism β of ZH which agrees
with ϕ on ZH/(N̂ ,m). Then aβ and a3 have the same image in ZH/(N̂ ,m),
and from the commutativity of the diagram

ZH - ZH/(1 + a2, N̂)

ZH/(N̂ ,m)
?

- ZH/(1 + a2, N̂ ,m)

mod m
?

and the above considerations it follows that aβ and a3 have the same image
in ZH/(1 + a2, N̂). The automorphism β induces on the commutative ring
1
5N̂ · ZH ∼= Z〈a〉 a central automorphism, i.e., the identity mapping. Alto-
gether, it follows that

(1− a2)(aβ) = 2e(aβ) + (1− a2) 1
5N̂(aβ)

= 2ea3 + (1− a2) 1
5N̂a

= (a3 − a) + 1
5N̂ · 2(a− a3).

Since the element on the right-hand side does not lie in ZH, we have reached
a contradiction.

In [8], Klingler repeatedly lifted certain units of a ring ZH/(N̂ ,m), which,
roughly speaking, corresponded to elementary matrices, to units of ZH. (Re-
call that a matrix is called elementary if it differs from the unit matrix in only
one off-diagonal entry.) This idea is formalized in the next lemma.

For a natural number m, let Zπ(m) denote the intersection of all localiza-
tions Z(p), with p a prime divisor of m. For a group G, write εG = Ĝ/|G| (the
trivial idempotent) and ηG = 1− εG.
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Lemma 2.2. Let H be a finite group, N a normal subgroup of H and m
a natural number with (m, |N |) = 1. Let ϕ be a central ring automorphism of
ZH/(N̂). Assume that for each irreducible character χ of H which does not
contain N in its kernel the following conditions hold:

(i) (m, |H|/χ(1)) = 1, that is, χ is of p-defect zero for every prime p
dividing m.

(ii) χ can be realized over the rationals, i.e., there is a representation
θ : H → GLd(Q) of H which affords the character χ.

(iii) There is a matrix A ∈ GLd(Q) such that (hϕ)θ = A−1(hθ)A for all
h ∈ H (this holds since ϕ is a central automorphism), and det(A) ∈
1 +mZπ(m).

Then there is an inner automorphism of ZH which agrees on ZH/(N̂ ,m) with
ϕ. Given a natural number l with (l,m) = 1, this automorphism can be chosen
to be the conjugation with a unit u ∈ V(ZH) which satisfies uεN = εN and
u ∈ 1 + l · ZH.

Proof. Note that ZH/(N̂) can be identified with the projection of ZH
on QHηN . In this way, ϕ induces an automorphism of QHηN , which, for
simplicity, will also be denoted by ϕ. Let χ and θ (viewed as a function
QH → Matd(Q)) be as above, and let e be the central idempotent which
corresponds to χ. Without loss of generality, we may assume that Hθ ⊆
GLd(Z) (see [5, V.12.2]).

For h ∈ H, let θij(h) be the (i, j)-th entry of the matrix hθ, and let

eij =
d

|H|
∑
h∈H

θij(h−1)h, 1 ≤ i, j ≤ d.

By Schur’s relations (cf. [5, V.5.7]), we have eij(1−e) = 0, and eijθ is obtained
from the zero matrix by replacing the (i, j)-th entry by 1. Thus if R = Zπ(m),

then it follows from (i) and (ii) that the restriction eRH
θ−→ Matd(R) is an

isomorphism which takes emRH to Matd(mR). Altogether, if we let bars
denote reduction mod m and note that R/mR ∼= Z/mZ, then we have the
following commutative diagram, where the horizontal maps are isomorphisms:

eRH
θ - Matd(R)

ē(Z/mZ)H

¯
? θ̄- Matd(Z/mZ)

¯
?

It is well-known that central automorphisms of Matd(R) are inner automor-
phisms (see [3, (55.40) and (55.16)]). Thus ϕ induces an inner automorphism
of Md(R), i.e., there is U ∈ GLd(R) with (ehϕ)θ = U−1(ehθ)U for all h ∈ H.
Note that rad(R) = πR, where π is the product of the primes dividing m, so
1 +mR ⊆ 1 + rad(R) ⊆ R× (the group of units of R). By (ii), there is a ∈ Q
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such that det(U)ad ∈ 1 + mR. It follows that a ∈ R×, and we may assume
that det(U) ∈ 1 +mR.

Then there are elementary matrices Ej ∈ GLd(R) such that Ū = Ē1 · Ē2 ·
. . . · Ēk in GLd(Z/mZ). Choose aj ∈ RH with ajθ = Ej . There is r ∈ Z with
(r,m) = 1 and raj ∈ ZH for all j. Let l be a natural number with (l,m) = 1.
There are s, t ∈ Z with sm+ trl(|H|/d) = 1. Put

b+j = 1 + (1− sm)(aj − 1) and b−j = 1− (1− sm)(aj − 1).

Note that b+j , b
−
j ∈ 1+ l(|H|/d)ZH, b+j θ = Ēj , and that eb−j b

+
j = e. (Consider

the image under θ, and recall that (E− 1)2 = 0 for an elementary matrix E.)
Put

u∗ = b+1 b
+
2 . . . b

+
k and v∗ = b−k b

−
k−1 . . . b

−
1 .

Then ev∗u∗ = e and u∗θ = Ū , which implies that v∗θ = Ū−1. Thus

(ev∗xu∗)θ = Ū−1(exθ)Ū = (ex)ϕθ for all x ∈ ZH.
Since the horizontal maps in the commutative diagram above are isomor-
phisms, it follows that

ev∗xu∗ − (ex)ϕ ∈ m · eRH for all x ∈ ZH.
Expanding the product u∗, we see that u∗ ∈ 1+l(|H|/d)ZH, so eu∗−e ∈ l·ZH
since e ∈ (d/|H|) · ZH.

Now let e1, . . . , en be the primitive central idempotents of CH such that
ηN = e1 + . . .+en. We have shown that there are ui, vi ∈ ZH with eiui−ei ∈
l · ZH and eiviui = ei such that, for some yi ∈ RH ,

eivixui − (eix)ϕ = m · eiyi for all x ∈ ZH.
Let u = εN +

∑n
i=1 eiui and v = εN +

∑n
i=1 eivi. Then u ∈ 1 + l · ZH and

vu = 1. Let β be the conjugation with u, and x ∈ ZH. Then

xβ = vxu = εNx+
n∑
i=1

(eix)ϕ+m
n∑
i=1

eiyi.

Multiplying with ηN , we obtain

ηNxβ = ηNxϕ+mηN

n∑
i=1

eiyi.

Put z = ηNxβ−ηNxϕ ∈ ηNZH. By (i) and (ii), there is c ∈ Z with (m, c) = 1
such that c

∑n
i=1 eiyi ∈ ZH. Take s, t ∈ Z with sm+ tc = 1. Then

z = smz + tcmηN

n∑
i=1

eiyi ∈ mηNZH.

It follows that β agrees with ϕ on ηNZH/mηNZH = ZH/(N̂ ,m), and the
lemma is proved. �
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The lemma will be applied in the following form. Note that if ϕ is an
automorphism of a group H, we can form the semidirect product H o 〈ϕ〉,
where the action of ϕ on H is defined by [h, φ] = h−1(hϕ) for all h ∈ H.

Corollary 2.3. Let H be a finite group, N a normal subgroup of H and
m a natural number with (m, |N |) = 1. Let ϕ be an automorphism of H.
Assume that every irreducible complex representation of H which does not
contain N in its kernel is the restriction of a rational representation Θ of
H o 〈ϕ〉 with det(ϕΘ) = 1, and that (m, |H|/d) = 1, where d is the degree
of Θ. Then there is an inner automorphism of ZH which agrees with ϕ on
ZH/(N̂ ,m). Given a natural number l with (l,m) = 1, this automorphism
can be chosen to be the conjugation with a unit u ∈ V(ZH) which satisfies
uεN = εN and u ∈ 1 + l · ZH. �

Though the following observation will not be needed, it seems appropri-
ate to state it here, since it shows how the “group-theoretical obstruction”
mentioned in the Introduction can be established.

For an element g ∈ G, denote its class sum, i.e., the sum of the conjugates
of g in G, by Kg.

Lemma 2.4. Let G be a finite group with normal subgroups M,N 6= 1 of
coprime order. Let x, y ∈ MN be two elements of the same order which are
not conjugate within G. Then the class sums Kx and Ky have different images
in ZG/(M̂, N̂).

Proof. Let x = m1n1 and y = m2n2 with mi ∈ M and ni ∈ N . Choose
1 6= m ∈M and 1 6= n ∈ N such that m = m1, and also n = n1, if possible.

Note that M ∩N = 1 since M and N are of coprime order, so [M,N ] = 1.
Further, x and y have the same order, so m1 = 1 if and only if m2 = 1 and
n1 = 1 if and only if n2 = 1.

We show that there do not exist elements g ∈ G and ε1, ε2 ∈ {0, 1} such
that x = ygmε1nε2 . By way of contradiction, assume the contrary. Then
m1n1 = x = ygmε1nε2 = (mg

2m
ε1)(ng2n

ε2), that is, m1 = mg
2m

ε1 and n1 =
ng2n

ε2 . Assume that m1 = 1. Then n1 6= 1, and m2 = 1. If ε2 = 0, then
x = n1 = ng2 = yg, which is a contradiction. But if ε2 = 1, then n = n1 = ng2n,
so n2 = 1 and y = 1, which again is a contradiction. Hence we may assume
that m1 6= 1. If ε1 = 1, then m = m1 = mg

2m, so m2 = 1, which is a
contradiction. Thus, ε1 = 0, that is, m1 = mg

2. By the assumption on x and
y, it follows that ε2 = 1, and n1 6= 1, n2 6= 1. But then n = n1 = ng2n, which
leads to the final contradiction 1 = n2 6= 1.

Now assume that there is an element g ∈ G and numbers ε1, ε2 ∈ {0, 1}
such that x = xgmε1nε2 , that is, m1 = mg

1m
ε1 and n1 = ng1n

ε2 . If m1 = 1,
then ε1 = 0, while if m1 6= 1, then m = m1 = mg

1m
ε1 , which again implies

that ε1 = 0. Thus ε1 = 0, and ε2 = 0 by symmetry, so x = xg.
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Altogether, it follows that in (Kx − Ky)(1 − m)(1 − n), viewed as a Z-
linear combination of elements of G, the coefficient of x is 1. In particular,
(1 −m)(1 − n) does not annihilate Kx − Ky, so Kx − Ky is not contained in
(M̂, N̂), and the lemma is proved. �

3. The examples

Theorem A. There is a group G of order 144 (= 24 · 32) such that ZG
has a normalized automorphism α which has no Zassenhaus factorization.
Moreover, α can be chosen to have finite order.

The group G is a semidirect product (L × N) o 〈a〉, where L = 〈y, z〉 ∼=
C2 × C2 and N = 〈v, w〉 ∼= C3 × C3 are elementary abelian groups of order
4 and 9, respectively, and the element a is of order 4, acting non-trivially on
L and fixed-point free on N . More precisely, if L and N are considered as
vector spaces over the prime fields F2 and F3, respectively, then a acts on
L by multiplication with [ 1 1

0 1 ] ∈ GL2(F2), and on N by multiplication with
[ 0 1
2 0 ] ∈ GL2(F3) (that is, ya = zy, za = z, va = w and wa = v2). Note that

[a2, L] = 1.
The center of G is given by M = 〈z〉. Note that L, M and N are character-

istic subgroups of G. The Sylow 2-subgroup S = 〈y, z, a〉 of G is a complement
to N in G, and we shall identify G/N with S. The quotient G/M will be iden-
tified with the direct product of the Frobenius group F = 〈v, w, a〉 and the
group 〈ȳ〉 of order 2.

Let Λ = ZG/(M̂, N̂), and let Γ be the image of ZG under the natural map
ZG→ ZG/M ⊕ZG/N . Then ZG can be described by pull-back diagrams, as
described in the Introduction.

The group-theoretical obstruction. Recall that a acts on N via the
matrix [ 0 1

2 0 ], which is inverted by [ 1 0
0 2 ]. Hence there is ϕ ∈ Aut(G), of order

2, which maps a to a3 and acts on L via the matrix [ 1 1
0 1 ] (like a does) and on

N via the matrix [ 1 0
0 2 ] (that is, yϕ = zy, zϕ = z, vϕ = v and wϕ = w2). We

will show:

There is no ρ ∈ Aut(G) which differs on Λ from ϕ by a central automor-
phism, and induces on Γ a central automorphism.

Let σ ∈ Aut(G), and assume that σ maps LNa to LNa3, i.e., that σ
induces a non-trivial automorphism on G/LN ∼= 〈a〉. We claim that there is
a conjugacy class of G contained in LN which is not fixed by σ. Note that σ
acts on L via the matrices [ 1 1

0 1 ] or [ 1 0
0 1 ] (the only invertible matrices which

centralize the action of a on L). Hence we may assume, after modifying σ
by conjugation with a if necessary, that σ fixes all elements of L. Assume
that σ fixes the conjugacy classes of all elements in LN . Let n ∈ N . Then
there is g ∈ G such that y(nσ) = (yn)σ = ygng, that is, g ∈ CG(y) =
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LN〈a2〉. Consequently nσ = n or nσ = n2, and since n ∈ N was chosen
arbitrary, it follows that σ acts on N by multiplication with a scalar. But
then (nσ)a = (na)σ = nσaσ for all n ∈ N , and we obtain the contradiction
(aσ)a−1 ∈ LNa2 ∩ CG(N) = ∅.

Now assume that there is ρ ∈ Aut(G) which differs on Λ from ϕ by a central
automorphism and induces on Γ a central automorphism. As Γ naturally
projects onto the commutative ring ZG/LN , the automorphism ρ induces
the identity mapping on G/LN . Note that ϕ fixes the conjugacy classes of
all elements in L and in N . Hence it follows from the description of ZG as
a pull-back that ϕρ−1 (as automorphism of ZG) fixes the class sums of all
elements in LN . But then ϕρ−1 induces the identity mapping on G/LN ,
as we have just seen, and we arrive at the contradiction that ϕ induces the
identity mapping on G/LN .

The Sylow 2-subgroup S of G. We shall construct a unit γ1 ∈ ZS of
order 2 such that the conjugation with γ1 agrees with ϕ on ZS/(9, 1 + z). An
isomorphism

Θ : QS → QS/M ⊕Mat2(Q)⊕Mat2(Q)

is given by zΘ =
(
z̄,
[−1 0

0 −1

]
,
[−1 0

0 −1

])
, yΘ =

(
ȳ,
[

1 0
0 −1

]
,
[

1 0
0 −1

])
and aΘ =(

ā, [ 0 1
1 0 ] ,

[
0 −1
1 0

])
. As a consequence of Schur’s relations (cf. [5, V.5.7]), (ZS)Θ

contains Mat2(8Z) ⊕ Mat2(8Z), and Θ provides an isomorphism between
ZS/(9, 1 + z) and Mat2(Z/9Z) ⊕ Mat2(Z/9Z), i.e., an element x of ZS is
contained in the ideal (9, 1 + z) if and only if the integral entries of the ma-
trices Xi, defined by xΘ = (x̄,X1, X2), are divisible by 9.

The automorphism ϕ fixes the blocks which do not contain M in their
kernel, and is, via the given isomorphism, the conjugation with [ 0 1

1 0 ] on each
of these blocks. This matrix has determinant −1, but we can temporarily
modify ϕ by conjugation with y to obtain conjugation with

[
0 −1
1 0

]
on both

blocks. As a product of elementary matrices,
[

0 −1
1 0

]
= [ 1 0

1 1 ]
[

1 −1
0 1

]
[ 1 0
1 1 ],

which is modulo 9 the same as
[

1 0
−8 1

]
[ 1 8
0 1 ]

[
1 0
−8 1

]
=
[−63 8

496 −63

]
. Thus, if we

put u1 =
(
ȳ,
[−63 −8

496 63

]
,
[−63 −8

496 63

])
, then u1Θ−1 is a unit in ZS, and conjugation

with u1Θ−1 agrees with ϕ on ZS/(9, 1 + z). Note that u1 has order 2. For
technical reasons, we choose γ1 = a2(u1Θ−1). (Note that a2 is a central
element of S of order 2.) We mention that, as a linear combination of group
elements,

γ1 = a2[y + (1− z)(−32y + 124a− 124ya− 2a3 − 2ya3)].

The Frobenius group F . We will construct a unit γ2 ∈ ZF of order 2
such that conjugation with γ2 agrees with ϕ on ZF/(2, N̂). An isomorphism
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Ω : ZF → QF/N ⊕Mat4(Q)⊕Mat4(Q) is given by

aΩ =

ā,


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 ,


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


 ,

vΩ =

v̄,


1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 1 0

 ,

−1 −1 0 0

1 0 0 0
0 0 0 1
0 0 −1 −1


 ,

wΩ =

w̄,


0 1 0 0
−1 −1 0 0

0 0 1 0
0 0 0 1

 ,

−1 −1 0 0

1 0 0 0
0 0 −1 −1
0 0 1 0


 .

As in the previous paragraph, it follows that Mat4(9Z)⊕Mat4(9Z) ⊂ (ZF )Ω,
and that an element x ∈ ZF is contained in the ideal (2, N̂) if and only if the
integral entries of the matrices Xi, defined by xΩ = (x̄,X1, X2), are divisible
by 2. The automorphism ϕ fixes the blocks of (4× 4)-matrices over Q, and is
given by conjugation with the matrices

A1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and A2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


on the first and second block, respectively. The unit γ2 is obtained by modi-
fying the element va2 of order 2,

va2Ω =

v̄ā2,


0 1 0 0
1 0 0 0
0 0 −1 −1
0 0 0 1

 ,

−1 −1 0 0

0 1 0 0
0 0 1 0
0 0 −1 −1


 ,

by an element of Mat4(9Z) ⊕Mat4(9Z). The second entry is easily modified
(see the unit u2 below). To modify the third entry (va2Ω)3 one could observe
that there is C ∈ SL4(Z) such that C−1(va2Ω)3C is equivalent to A2 modulo
2; for example, one could take

C =


1 0 0 0
1 0 0 1
0 1 1 0
0 0 1 0

 ∈ SL4(Z).

Then one could write C as a product of elementary matrices, and “lift” these
matrices, as in the previous paragraph, to get the modified entry. However,
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this may lead to matrices with large entries. We checked that

u2 =

v̄ā2,


0 1 0 0
1 0 0 0
0 0 −1 8
0 0 0 1

 ,

−10 −10 0 −9

18 10 9 18
18 9 10 18
−9 0 −10 −10




is a unit of order 2, and that u2Ω−1 ∈ ZF , since u2 is obtained from va2Ω by
adding an element of Mat4(9Z)⊕Mat4(9Z). Moreover, the second and third
entries are congruent to A1 and A2 modulo 2, respectively, so we may choose
γ2 = u2Ω−1. We mention that, as a linear combination of group elements,

γ2 = va2 + (v − 1)
[
(−3v + 3vw + 3vw2) + 3(1 + v)a2

+ (−2− 3v + 3vw + w + w2)a+ (−2− 3v + 3vw2 + w + w2)a3
]
.

We are now ready to complete the proof of Theorem A.
Note that y maps to a central element of order 2 in G/M . Thus yγ2 is

a unit in ZG whose image in ZG/M has order 2, and conjugation with yγ2

agrees with ϕ on (ZG/M)/(2, N̂). Both γ1 and yγ2 map to the image of a2y
in ZG/NM . Hence the pair (γ1, yγ2) gives rise to a unit γ ∈ Γ of order 2 such
that conjugation with γ agrees with ϕ on

(ZG/M)/(2, N̂)⊕ (ZG/N)/(9, M̂).

It follows that there is an automorphism α of ZG of order 2 which is the
conjugation with γ on Γ (and therefore preserves the augmentation), and
agrees with ϕ on Λ. Since we have already shown that α has no Zassenhaus
factorization, Theorem A is proved.

Theorem B. There is a group G of order 1200 (= 24 ·3 ·52), with abelian
Sylow subgroups and Sylow tower, such that ZG has a normalized automor-
phism which has no Zassenhaus factorization.

The group G is a semidirect product G = (M × N) o (〈a〉 × 〈b〉), where
M = 〈s, t〉 ∼= C5×C5 and N = 〈v, w〉 ∼= C2×C2 are elementary abelian groups
of order 25 and 4, respectively, and the elements a and b are of order 3 and 4,
respectively. The element a acts on M via the matrix A1 = [ 1 4

3 3 ] ∈ GL2(F5)
(i.e., sa = st4, and so on), and on N via the matrix A2 = [ 0 1

1 1 ] ∈ GL2(F2).
The element b acts on M via the matrix B = [ 2 0

0 2 ] ∈ GL2(F5), and trivially
on N (so that G has abelian Sylow subgroups). Note that M and N are
characteristic subgroups of G, and that G has a Sylow tower.

The matrix C1 = [ 1 0
3 4 ] ∈ GL2(F5) inverts A1, and C2 = [ 1 0

1 1 ] ∈ GL2(F2)
inverts A2. Both matrices have order 2, so there is ϕ ∈ Aut(G), of order 2,
which maps a to a−1, fixes b, acts on M via C1 and on N via C2.

Again, let Λ = ZG/(M̂, N̂), and let Γ be the image of ZG under the natural
map ZG → ZG/M ⊕ ZG/N . Let K = 〈a, b〉. The quotients G/M and G/N
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will be identified with NK and MK, respectively. We first prove the following
group-theoretical obstruction.

There is no ρ ∈ Aut(G) which differs on Λ from ϕ by a central automor-
phism, and induces on Γ a central automorphism.

By way of contradiction, assume that there is ρ ∈ Aut(G) with these prop-
erties, and let σ = ϕρ−1. As Γ projects onto the commutative ring ZG/MN ,
the automorphism ρ induces the identity mapping on G/MN . Consequently,
σ maps MNa to MNa−1. Since Aut(N) is the symmetric group of order 6,
it follows that σ2|N = id|N , and there is 1 6= n ∈ N with nσ = n. Since σ
induces a central automorphism of Λ, it follows from Lemma 2.4 that σ fixes
the conjugacy classes of all elements in MN . Let m ∈ M . Then there is
k ∈ K such that (mn)σ = (mn)k, that is, mσ = mk and n = nσ = nk. Since
CK(n) = 〈b〉, it follows that k ∈ 〈b〉, and mσ = mi for some i ∈ N. Since
m ∈ M can be chosen arbitrarily, it follows that σ acts on M by multiplica-
tion with a scalar, and there is c ∈ 〈b〉 with mσ = mc for all m ∈ M . Thus
mac = (ma)σ = mσaσ = mca−1

= ma−1c, that is, ma2
= m, again for all

m ∈M . But a2 acts on M by inversion, so we have reached a contradiction.

There is u1 ∈ V(ZN〈a〉) with u1εN = εN , and conjugation with u1 agrees
with ϕ on Z(NK)/(25, N̂).

Note that N〈a〉 is the alternating group of order 12, and that the semidirect
product H = N〈a〉 o 〈φ〉 is the symmetric group of order 24. The faithful
irreducible representation of the alternating group N〈a〉 is the restriction of
a 3-dimensional rational representation Θ of H with det(Θ(ϕ)) = 1. Since b
is central in NK and bϕ = b, the assertion follows from Corollary 2.3.

There is u2 ∈ V(ZMK) with u2εM = εM , and conjugation with u2 agrees
with ϕ on Z(MK)/(4, M̂).

Let H = MK o 〈f〉 with f2 = 1 and xf = xϕ for all x ∈ MK. Let
U = 〈M, b, f〉 ≤ H. There are normal subgroups L1 = 〈st, f〉 and L2 =
〈s, b2f〉 of U with U/Li ∼= C5 o C4, a Frobenius group which has exactly one
faithful irreducible character which comes from a 4-dimensional representation
over the rationals. Let λi be the irreducible character of U with kernel Li
and put ζi = λHi |MK . Then ζi is a faithful character of degree 12 of the
Frobenius group MK, and therefore irreducible (see [5, V.16.13]). Moreover,
by Mackey’s Theorem, λHi |M〈b〉 =

⊕
x∈〈a〉

xλi|M〈b〉, and since the kernels of
λ1|M and λ2|M , which are 〈st〉 and 〈s〉, respectively, are not conjugate by
an element of 〈a〉, it follows that ζ1 6= ζ2, and that ζ1 and ζ2 are irreducible
characters of MK which do not have M in their kernel. Since det(λi(f)) = 1,
and λi(1) is even, it follows that det(λHi (f)) = 1. The assertion now follows
from Corollary 2.3.
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Altogether, it follows that there is a unit γ of Γ which maps to u1 in ZNK
and to u2 in ZMK, and an augmentation preserving automorphism α of ZG
which is the conjugation with γ on Γ and which agrees with ϕ on Λ (as shown
above). Since we have already shown that α has no Zassenhaus factorization,
Theorem B is proved.
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