
Illinois Journal of Mathematics
Volume 46, Number 1, Spring 2002, Pages 185–197
S 0019-2082

ON THE PSEUDO-RANDOM PROPERTIES OF nc

CHRISTIAN MAUDUIT, JOËL RIVAT, AND ANDRÁS SÁRKŐZY

Abstract. We estimate the well-distribution measure and correlation

of order 2 of the binary sequence EN = {e1, . . . , eN} defined by en = +1
if 0 6 {nc} < 1/2 and en = −1 if 1/2 6 {nc} < 1, where c is a real,
non-integral number greater than 1 and {x} denotes the fractional part

of x. We also prove an upper bound for the well-distribution measure
of an arbitrary binary sequence in terms of its generating function and

show that there exists no upper bound of this type for the correlation.
The proof is based on the Erdős-Turán inequality, which we establish
with an improved constant.

1. Introduction

In a series of papers, J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and
A. Sárkőzy studied finite pseudo-random binary sequences

EN = {e1, . . . , eN} ∈ {−1,+1}N .

In particular, in [5] Mauduit and Sárkőzy first introduced the following mea-
sures of pseudo-randomness: the well-distribution measure of EN , defined by

W (EN ) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t ∈ N such that 1 6 a 6 a+(t−1)b 6
N ; and the correlation measure of order k of EN , defined as

Ck(EN ) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2 · · · en+dk

∣∣∣∣∣ ,
Received March 8, 2001; received in final form December 5, 2001.
2000 Mathematics Subject Classification. Primary 11K45, 11K36. Secondary 11K06,

11K38, 11L07.
The research of the third author was partially supported by the Hungarian National

Foundation for Scientific Research, Grant No. T 029 759 and MKM fund FKFP-0139/1997.

c©2002 University of Illinois

185



186 CHRISTIAN MAUDUIT, JOËL RIVAT, AND ANDRÁS SÁRKŐZY

where the maximum is taken over all D = (d1, . . . , dk) and M such that
0 6 d1 < · · · < dk 6 N −M . The sequence is considered a “good” pseudo-
random sequence if the measures W (EN ) and Ck(EN ) are both “small” in
terms of N , at least for “small” k (e.g., if the measures are o(N) as N →∞).

In [5] it was shown that the Legendre symbol forms a “good” pseudo-
random sequence. In [6, 1, 2, 7, 8, 11, 14] other special sequences were tested
for pseudo-randomness. In [8] Mauduit and Sárkőzy posed the following prob-
lem of this type:

Denote the fractional part of α by {α}, and write

χ(x) =
{

+1 for 0 6 {x} < 1/2,
−1 for 1/2 6 {x} < 1.

Let c > 0, c 6∈ N, and investigate the pseudo-random properties of the se-
quence

EN = EN (nc) = {e1, . . . , eN}
defined by

en = χ(nc) (n = 1, 2, . . . , N).

Our main goal in this paper is to study this problem. Of course, the case
when 0 < c < 1 is trivial (since the correlation is trivially large); thus from
now on we will restrict ourselves to the case c > 1. We will prove:

Theorem 1. For c > 1, c 6∈ N, R = dce, 0 6 b 6 a 6 (x − b)1−c/R,
x→∞, we have

(1)

∣∣∣∣∣∣
∑

an+b6x

ean+b

∣∣∣∣∣∣� a−1+R/(2R−1)x1−(R−c)/(2R−1).

Corollary 1. For c > 1, c 6∈ N, R = dce, we have

(2) W (EN )� N1−(R−c)/(2R−1).

The proof of Theorem 1 will be based on the Erdős-Turán inequality, which
we will prove here with constant 1, improving the value 3 given by Mont-
gomery [9, Corollary 1.1]. This result may be of independent interest.

Our next result gives an estimate for the “short range” correlations of order
2 of EN :

Theorem 2. For c > 1, c 6∈ N, R = dce, 1 6 d 6 N1−2(R−c)/(2R−1),
N →∞, we have

(3)

∣∣∣∣∣∣
∑
n6N

enen+d

∣∣∣∣∣∣� cN1−(R−c)/(2R−1) log2N +
N2−c

d
.
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We expect that this result also applies to “long range” correlations, but we
have not been able to prove this.

The above results, as well as the results in several earlier papers, give
estimates for the well-distribution and correlation measures of certain special
sequences. This raises the question if there are general inequalities for these
measures, similar to the Erdős-Turán inequality, for the discrepancy measure.
For the well-distribution measure, Theorem 3 below gives such an inequality.

For N ∈ N, k ∈ N, 1 6 k 6 N , FN = {f1, . . . , fN} ∈ {−1,+1}N , α ∈ R,
write

(4) φk(FN , α) =
k∑
j=1

fj e(jα),

where we use the standard notation e(β) = exp(2iπβ).

Theorem 3. For all N ∈ N, FN = {f1, . . . , fN} ∈ {−1,+1}N , we have

(5) WN (FN ) 6 2 max
16k6N

max
α
|φk(FN , α)|.

As an application we note, for example, that the upper bound (5.1) in
[6] for the well-distribution measure of the Rudin-Shapiro sequence follows
immediately from the estimate (4.10) in [6] and Theorem 3.

In contrast to the well-distribution measure, there is no similar inequality
for the correlation measure; more precisely, the following theorem shows that
there is no non-trivial upper bound for C2(FN ) in terms of the generating
functions φk:

Theorem 4. For N ∈ N, N > 4, there is a binary sequence

FN = {f1, . . . , fN} ∈ {−1,+1}N

such that for k = 1, 2, . . . , N we have

(6) max
α
|φk(FN , α)| < 2(2 +

√
2)k1/2 (6 2(2 +

√
2)N1/2),

but

(7) C2(FN ) >
N

4
.

We remark that in [6] we proved that the “truncated” Rudin-Shapiro
sequence itself satisfies an inequality that is just slightly weaker than (7).
Howewer, the analysis of the connection between the generating functions
and the pseudo-random measures given here is new. Moreover, to prove The-
orem 4 we will use a slightly different construction, which is related to the
Rudin-Shapiro sequence, but which better illustrates the underlying phenom-
enon.
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2. Classical results on exponential sums

Throughout this paper, when we encounter a property P which may or
may not be satisfied according to the value of some parameters, we will make
use of the following notation:

1P =
{

1 whenever P is satisfied,
0 otherwise.

Definition 1. Let x1, . . . ,xN be a finite sequence of points in Rs. The
discrepancy of x1, . . . ,xN is defined by

(8) DN (x1, . . . ,xN) = sup
I1,...,Is

∣∣∣∣∣ 1
N

N∑
i=1

1{xi}∈I1×···×Is −µ(I1) · · ·µ(Is)

∣∣∣∣∣ ,
where the supremum is taken over all intervals I1,. . . ,Is contained in [0, 1],
µ(I) stands for the length of the interval I, and {y} = ({y1}, . . . , {ys}), for
y = (y1, . . . , ys) ∈ Rs,

Lemma 1 (Erdős-Turán). For any integers N > 0, H > 0, and any real
numbers x1, . . . , xN we have

(9) DN (x1, . . . , xN ) 6
1

H + 1
+

H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
n=1

e(hxn)

∣∣∣∣∣ .
Remark 1. This is the well known Erdős-Turán inequality [3], except

that we give a sharp explicit constant (equal to 1). This improves Corollary
1.1 of Montgomery [9], who had a factor 3 in front of the sum on the right
hand side above. (This sharpening is not necessary in this paper; we present
it here since it seems to be of independent interest.)

Proof. Vaaler [15, (2.28) and (2.29)] defines for t ∈ [−1, 1]

Ĵ(t) = π|t|(1− |t|) cot(π|t|) + |t|, K̂(t) = (1− |t|),

and notes [15, Theorem 6, p. 192] that Ĵ is even, nonnegative, continuously
differentiable and strictly decreasing on [0, 1]. Following Vaaler, we set

ĴH+1(h) = Ĵ(h/(H + 1)), K̂H+1(h) = K̂(h/(H + 1)).

Vaaler’s inequality [15, (8.3)] implies1

(10)

DN (x1, . . . , xN ) 6
1

H + 1
+ 2

H∑
h=1

(
ĴH+1(h)
πh

+
K̂H+1(h)
H + 1

)∣∣∣∣∣ 1
N

N∑
n=1

e(hxn)

∣∣∣∣∣ .
1Vaaler uses normalized characteristic functions of intervals, but this condition can be

removed: his proof is based on inequality (7.24) of his paper, which by continuity holds for
any type of characteristic function of an interval.
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Therefore it is sufficient to prove that for all t ∈ [0, 1],

(11) π−1Ĵ(t) + t(1− t) 6 1
2
.

By the monotonicity properties of the functions t 7→ Ĵ(t) and t 7→ t(1− t)
we get

π−1Ĵ(t) + t(1− t) 6


π−1Ĵ(0) + 0.16 6 0.48 on [0, 0.2],

π−1Ĵ(0.2) + 0.21 6 0.4939 on [0.2, 0.3],
π−1Ĵ(0.3) + 0.25 6 0.4981 on [0.3, 1],

which completes the proof. �

Lemma 2 (Koksma-Szűsz). Let s > 0 be an integer. For h = (h1, . . . , hs) ∈
Z
s, write

ϕ(h) = max
j=1,...,s

|hj |, r(h) =
s∏
j=1

max(|hj |, 1).

Let x1, . . . ,xN be a finite sequence of points of Rs. For any integer H > 0 we
have

(12) DN (x1, . . . ,xN)�s
1
H

+
1
N

∑
0<ϕ(h)6H

1
r(h)

∣∣∣∣∣
N∑
n=1

e(h · xn)

∣∣∣∣∣ .
Lemma 3 (van der Corput). Let R be an integer > 2. Suppose that f has

R continuous derivatives on an interval I ⊆ [N + 1, 2N ]. Assume also that
there is some constant F such that

FN−r � |f (r)(x)| � FN−r

for x ∈ I and r = 1, . . . , R. Then

(13)
∑
n∈I

e(f(n))� (FN−R)1/(2R−2)N + F−1N.

Proof. See Theorem 2.9 of [4]. �

3. Well-distribution

Set N = b(x− b)/ac. We have∑
n6N

ean+b =
∑
n6N

(
1{(an+b)c}<1/2−

1
2

)
−
∑
n6N

(
1{(an+b)c}>1/2−

1
2

)
.

Hence, writing xn = (an+ b)c, we obtain∣∣∣∣∣∣
∑
n6N

ean+b

∣∣∣∣∣∣ 6 2N DN (x1, . . . , xN ).

In order to apply Lemma 1 we need the following exponential sum estimate:
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Lemma 4. For N > 1, h > 1, 0 6 b 6 a, c > 1, R = dce, we have

N∑
n=1

e(h(an+ b)c)�c (hac)1/(2R−2)N1+(c−R)/(2R−2).

Proof. We split the summation over n into L = dlogN/ log 2e intervals of
the form (N/2`, N/2`−1]. We apply van der Corput’s estimate (Lemma 3) to
each such interval with

f(x) = hac
(
x+

b

a

)c
, F = hac(N2−`)c,

so that

hac(N2−`)c−r � f (r)(x)� hac(N2−`)c−r

for r = 1, . . . , R. We obtain

N∑
n=1

e(h(an+ b)c)

�
∑

16`6L

N2−`
(

(hac)1/(2R−2)(N2−`)(c−R)/(2R−2) + h−1a−cN−c2c`
)
.

Since 0 6 R− c < 1 and R > 2, we have (R− c)/(2R − 2) 6 1/2. Thus∑
16`6L

2−`2−`(c−R)/(2R−2) �
∑
`>1

2−`/2 � 1.

We also have ∑
16`6L

2(c−1)` � 2(c−1)L � N c−1.

Hence
N∑
n=1

e(h(an+ b)c)� N
(

(hac)1/(2R−2)N (c−R)/(2R−2) + h−1a−cN−cN c−1
)
,

N∑
n=1

e(h(an+ b)c)� (hac)1/(2R−2)N1+(c−R)/(2R−2) + h−1a−c.

We observe that hac > 1 and 1 + (c−R)/(2R− 2) > 1/2, so the first term on
the right hand side above dominates the second, and the result follows. �

Lemma 5. For N > 1, c > 1, R = dce, 0 6 b 6 a 6 N (R/c)−1, we have

DN (x1, . . . , xn)� (acN c−R)1/(2R−1).
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Proof. By Lemma 1 it suffices to show the existence of an integer H > 0
such that

1
H

+
1
N

H∑
h=1

1
h

∣∣∣∣∣
N∑
n=1

e(h(an+ b)c)

∣∣∣∣∣� (acN c−R)1/(2R−1).

For any integer H > 0, the left hand side above can be estimated using Lemma
4 by

H−1 + (Hac)1/(2R−2)N (c−R)/(2R−2),

and the choice
H =

⌊
(acN c−R)−1/(2R−1)

⌋
> 1

gives the result. �

We have thus obtained the estimate∣∣∣∣∣∣
∑
n6N

ean+b

∣∣∣∣∣∣� N(acN c−R)1/(2R−1),

and replacing N by x/a this completes the proof of Theorem 1.
In order to obtain Corollary 1, let x = N . It suffices to consider the case

not covered by Theorem 1, i.e., the case when a � x1−c/R. In this case we
just use the trivial upper bound x/a, which leads to∣∣∣∣∣∣

∑
n6N

ean+b

∣∣∣∣∣∣� xc/R.

Then for R > 2 we have R 6 2R − 1, so that R
2R−1

(1 − c
R ) 6 1 − c

R . Hence
c/R 6 1− (R− c)/(2R − 1), and Corollary 1 follows.

4. Correlation

We have∑
n6N

enen+d =
∑
n6N

(
1{nc}<1/2 1{(n+d)c}<1/2−

1
4

)

−
∑
n6N

(
1{nc}>1/2 1{(n+d)c}<1/2−

1
4

)

−
∑
n6N

(
1{nc}<1/2 1{(n+d)c}>1/2−

1
4

)

+
∑
n6N

(
1{nc}>1/2 1{(n+d)c}>1/2−

1
4

)
.
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Hence, writing xn = (nc, (n+ d)c), we obtain∣∣∣∣∣∣
∑
n6N

enen+d

∣∣∣∣∣∣ 6 4N DN (x1, . . . ,xN).

For c > 1, c 6∈ Z, H > 2, |h|, |k| 6 H, 2cN/H 6 n 6 N , 1 6 d 6 N/H2,
we consider

f(n) = hnc + k(n+ d)c.

We set R = dce and compute for 1 6 r 6 R,

f (r)(n) = c(c− 1) · · · (c− r + 1)nc−r
(
(h+ k) + k

(
(1 + d/n)c−r − 1

))
.

Since |(c− r) kd/n| 6 1/2, we have

f (r)(n) �

{
c (c− 1) · · · (c− r + 1)(h+ k)nc−r when h+ k 6= 0,
c (c− 1) · · · (c− r)kdnc−r−1 when h+ k = 0.

By Lemma 2, ∣∣∣∣∣∣
∑
n6N

enen+d

∣∣∣∣∣∣� N

H
+ S1 + S2 + S3 + S4,

where

S1 =
∑

16|h|,|k|6H
h+k 6=0

1
|hk|

∣∣∣∣∣
N∑
n=1

e(hnc + k(n+ d)c)

∣∣∣∣∣ (i.e., hk 6= 0, h+ k 6= 0),

S2 =
∑

16|h|6H

1
h2

∣∣∣∣∣
N∑
n=1

e(hnc − h(n+ d)c)

∣∣∣∣∣ (i.e., hk 6= 0, h+ k = 0),

S3 =
∑

16|h|6H

1
|h|

∣∣∣∣∣
N∑
n=1

e(hnc)

∣∣∣∣∣ (i.e., k = 0),

S4 =
∑

16|k|6H

1
|k|

∣∣∣∣∣
N∑
n=1

e(k(n+ d)c)

∣∣∣∣∣ (i.e., h = 0).

Estimation of S1: We have

S1 6
∑

16|h|,|k|6H
h+k 6=0

1
|hk|

∣∣∣∣∣∣
∑

2cN/H6n6N

e(hnc + k(n+ d)c)

∣∣∣∣∣∣+O

(
c
N

H
log2H

)
.

We split the summation over n into L = blog(H/2c)/ log 2c intervals of the
form (N/2`, N/2`−1] and apply van der Corput’s estimate (Lemma 3) to each



ON THE PSEUDO-RANDOM PROPERTIES OF nc 193

of these intervals. We obtain

S1 �
∑

16`6L

∑
16|h|,|k|6H
h+k 6=0

1
|hk|

(
|h+ k|1/(2

R−2)(N2−`)1+(c−R)/(2R−2)

+
(N2−`)1−c

|h+ k|

)
+ c

N

H
log2H.

Hence

S1 �
∑

16|h|,|k|6H
h+k 6=0

1
|hk|

(
(|h|1/(2

R−2) + |k|1/(2
R−2))N1+(c−R)/(2R−2)

+
N1−cHc−1

|h+ k|

)
+ c

N

H
log2H,

so that

S1 � H1/(2R−2)N1+(c−R)/(2R−2) logH +N1−cHc−1 log2H + c
N

H
log2H

� H1/(2R−2)N1+(c−R)/(2R−2) logH + c
N

H
log2H.

Estimation of S2: By similar arguments we obtain

S2 �
∑

16h6H

1
h2

(
(hdN c−R−1)1/(2R−2)N +

N2−c

hd

)
,

so that

S2 � N1+(c−R)/(2R−2) +
N2−c

d
.

Estimation of S3 and S4: Similarly we have

S3 � H1/(2R−2)N1+(c−R)/(2R−2),

S4 � H1/(2R−2)N1+(c−R)/(2R−2)

Estimation of the correlation: We have∣∣∣∣∣∣
∑
n6N

enen+d

∣∣∣∣∣∣� H1/(2R−2)N1+(c−R)/(2R−2) logH + c
N

H
log2H +

N2−c

d
,
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and the choice H =
⌊
N (R−c)/(2R−1)

⌋
> 1 gives∣∣∣∣∣∣

∑
n6N

enen+d

∣∣∣∣∣∣� cN1+(c−R)/(2R−1) log2N +
N2−c

d
.

5. Proof of Theorem 3

For all b ∈ N, a ∈ Z, k ∈ N, k 6 N , we have∣∣∣∣∣∣∣
∑

n≡a mod b
n6k

fn

∣∣∣∣∣∣∣ =

∣∣∣∣∣
k∑

n=1

fn
1
b

b∑
h=1

e
(

(n− a)
h

b

)∣∣∣∣∣
=

1
b

∣∣∣∣∣
b∑

h=1

e
(
−ah
b

) k∑
n=1

fn e
(
n
h

b

)∣∣∣∣∣
=

1
b

∣∣∣∣∣
b∑

h=1

e
(
−ah
b

)
φk

(
FN ,

h

b

)∣∣∣∣∣
6

1
b

b∑
h=1

∣∣∣∣φk (FN , hb
)∣∣∣∣ 6 max

α
|φk(FN , α)|.

It follows that

W (EN ) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

fa+jb

∣∣∣∣∣∣ = max
a,b,t

∣∣∣∣∣∣∣∣
∑

n≡a mod b
n6a+(t−1)b

fn −
∑

n≡a mod b
n6a−1

fn

∣∣∣∣∣∣∣∣
6 max

a,b,t


∣∣∣∣∣∣∣∣

∑
n≡a mod b
n6a+(t−1)b

fn

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑

n≡a mod b
n6a−1

fn

∣∣∣∣∣∣∣
 6 2 max

α
|φk(FN , α)|.

Since this holds for all k 6 N , this proves (5).

6. Proof of Theorem 4

The construction is based on the Rudin-Shapiro sequence {r0, r1, . . .} ∈
{−1,+1}∞ (see [12, 13]). This sequence can be defined by the recursion

r0 = 1,
r2n = rn (for n = 1, 2, . . .),

r2n+1 = (−1)nrn (for n = 0, 1, 2, . . .);
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see [10, p. 73]. Its most important feature is that the trigonometric polyno-
mials Pn(α) defined by

Pn(α) =
n−1∑
j=0

rj e(jα) for all n ∈ N,

satisfy

(14) max
α
|Pn(α)| 6 (2 +

√
2) n1/2;

see [10, p. 166]. Since by Parseval’s formula∫ 1

0

|Pn(α)|2dα = n,

(14) says that the maximum of the function |Pn(α)| exceeds its mean square
by at most a constant factor.

Write M = N − bN/2c, and define the sequence FN = {f1, . . . , fN} by

fj = rj−1 for j = 1, 2, . . . ,M,(15)
fM+j = rj−1 = fj for j = 1, 2, . . . , N −M.(16)

Then the polynomial in (4) is

φk(FN , α) =
k∑
j=1

fj e(jα) =
k∑
j=1

rj−1 e(jα)(17)

=
k−1∑
l=0

rl e((l + 1)α) = e(α)Pk(α) for k 6M

and

φk(FN , α) =
M∑
j=1

fj e(jα) +
N∑

j=M+1

fj e(jα)(18)

=
M∑
j=1

rj−1 e(jα) +
N∑

j=M+1

rj−M−1 e(jα)

=
M−1∑
l=0

rl e((l + 1)α) +
N−M−1∑
l=0

rl e((l +M + 1)α)

= e(α)PM (α) + e((M + 1)α)Pn−M (α) for M < k 6 N.

If M < k 6 N , then it follows from (14) and (18) that

|φk(FN , α)| 6 |PN (α)|+ |PN−M (α)|
6 (2 +

√
2)(M1/2 + (N −M)1/2) 6 2(2 +

√
2)M1/2

6 2(2 +
√

2)k1/2 for M < k 6 N,
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i.e., (6) holds. Similarly, for k 6M , (6) follows from (14) and (17).
Moreover, by (15) and (16) we have

C2(FN ) >

∣∣∣∣∣
M−1∑
n=1

fnfn+M

∣∣∣∣∣ =

∣∣∣∣∣
M−1∑
n=1

f2
n

∣∣∣∣∣ = M − 1 = N − bN/2c − 1

> N − N

2
− N

4
=
N

4
.

This proves (7) and completes the proof of Theorem 4.
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[14] A. Sárkőzy, A finite pseudorandom binary sequence, Studia Sci. Math. Hungar. 38

(2001), 377–384.
[15] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12

(1985), 83–216.



ON THE PSEUDO-RANDOM PROPERTIES OF nc 197
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