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ON THE NUMBER OF REAL HYPERSURFACES
HYPERTANGENT TO A GIVEN REAL SPACE CURVE

J. HUISMAN

Abstract. Let C be a smooth geometrically integral real algebraic
curve in projective n-space Pn. Let c be its degree and let g be its

genus. Let d, s and m be nonzero natural integers. Let ν be the num-
ber of real hypersurfaces of degree d that are tangent to at least s real
branches of C with order of tangency at least m. We show that ν is finite
if s = g, gm = cd and the restriction map H0(Pn,O(d))→ H0(C,O(d))
is an isomorphism. Moreover, we determine explicitly the value of ν in

that case.

1. Introduction

In real enumerative geometry, one often considers the number of real solu-
tions of a complex enumerative problem defined over the reals [9, 7, 10]. In
this paper, we study a purely real enumerative problem, i.e., the enumera-
tive problem has no meaning over the complex numbers, or, when it is given
a meaning over the complex numbers, it will have infinitely many complex
solutions.

The enumerative problem we study is as follows. Let C be a smooth geo-
metrically integral real algebraic curve in projective n-space Pn, where n ≥ 2.
Let d, s and m be nonzero natural integers. Let ν be the number of real
hypersurfaces of degree d that are tangent to at least s real branches of C
with order of tangency at least m. We want to find conditions on d, s and m
that imply that ν is finite, and possibly nonzero. Let c be the degree of C
and let g be the genus of C. We show that ν is finite, and possibly nonzero,
if s = g, gm = cd and the restriction map

H0(Pn,O(d)) −→ H0(C,O(d))

is an isomorphism (Theorem 3.1). Moreover, we determine explicitly the
value of ν in that case. As an example, let C ⊆ P2 be a smooth geometrically
integral real quartic curve. Let ν be the number of real cubics tangent to at
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least 3 real branches of C with order of tangency at least 4. Then ν is finite,
and ν = 64 if C has exactly 3 real branches, and ν = 256 if C has exactly 4
real branches (Example 4.4).

2. Divisors on real algebraic curves

We need to recall some facts about real algebraic curves.
Let C be a smooth proper geometrically integral real algebraic curve. A

connected component of the set of real points C(R) of C is called a real branch
of C. Since C is smooth and proper, a real branch of C is necessarily homeo-
morphic to the unit circle. Let B be the set of real branches of C. Since C is
proper, the set B is finite. By Harnack’s Inequality [4], the cardinality of B is
at most g + 1, where g is the genus of C. Moreover, Harnack’s Inequality is
sharp, i.e., for any g ∈ N there are smooth proper geometrically integral real
algebraic curves C of genus g having g + 1 real branches.

Let D be a divisor on C. For a real branch B of C, let degB(D) denote
the degree of D on B. Define an element

δ(D) ∈ Hom(B,Z/2Z)

by letting δ(D)(B) ≡ degB(D) (mod 2) for all B ∈ B. If E is a divisor on C
which is linearly equivalent to D, then δ(E) = δ(D). This follows from the
elementary fact that the divisor of a nonzero rational function on C has even
degree on any real branch. Denote again by δ the induced morphism

δ : Pic(C) −→ Hom(B,Z/2Z)

from the Picard group Pic(C) into the group Hom(B,Z/2Z).
The group Pic(C) comes along with a natural topology. For d ∈ Z, the sub-

set Picd(C) of all divisor classes on C of degree d is open and closed in Pic(C).
Two divisor classes d and e of degree d belong to the same connected com-
ponent of Picd(C) if and only if δ(d) = δ(e) [1, §4.1]. For δ ∈ Hom(B,Z/2Z),
define

Picd,δ(C) = {d ∈ Pic(C) | deg(d) = d and δ(d) = δ}.
Then Picd,δ(C) is nonempty if and only if d ≡

∑
δ(B) (mod 2), and in that

case Picd,δ(C) is a connected component of Picd(C). The neutral compo-
nent of Pic(C) is Pic0,0(C). It is a connected compact commutative real Lie
group of dimension g. Each connected component of Pic(C) is a principal
homogeneous space under the action of Pic0,0(C).

Let m ∈ Z, m 6= 0. Denote also by m the multiplication-by-m map
on Pic(C). The kernel of the restriction of m to Pic0,0(C) is obviously iso-
morphic to the group (Z/mZ)g. Moreover,

m · Picd,δ(C) = Picmd,mδ(C).

Recall from [5] the following statement:
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Theorem 2.1. Let C be a smooth proper geometrically integral real alge-
braic curve. Let g be its genus. Let D be a divisor on C. Let d be the degree
of D and let k be the number of real branches B of C such that degB(D) is
odd. If d+ k > 2g − 2 then D is nonspecial. �

Corollary 2.2. Let C be a smooth proper geometrically integral real al-
gebraic curve. Let g be its genus. Suppose that C has at least g real branches.
Let

X =
⋃
B′⊂B

#B′=g

∏
B∈B′

B,

where the product is taken in some chosen order. Let

ϕ : X −→ Picg(C)

be the map defined by letting ϕ(P1, . . . , Pg) be the divisor class of P1 + · · ·+Pg.
Then ϕ is injective. Moreover, the image of ϕ is consists of all e ∈ Picg(C)
such that degB(e) 6≡ 0 (mod 2) for exactly g real branches B of C.

Proof. Suppose that ϕ(P1, . . . , Pg) = ϕ(Q1, . . . , Qg). Let D be the di-
visor P1 + · · · + Pg and let E be the divisor Q1 + · · · + Qg. By hypoth-
esis, E is linearly equivalent to D, i.e., E ∈ |D|. By Theorem 2.1, D is
nonspecial. In particular, the dimension of the linear system |D| is equal
to deg(D) − g = 0. But D and E belong to |D|. Hence D = E. It follows
that (P1, . . . , Pg) = (Q1, . . . , Qg). This shows that ϕ is injective.

Let P ∈ X. It is clear that degB(ϕ(P )) 6≡ 0 (mod 2) for exactly g real
branches B of C. Conversely, suppose that e ∈ Picg(C) is such that degB(e) 6≡
0 (mod 2) for exactly g real branches B of C. Since deg(e) = g, there is an
effective divisor E on C such that its class is equal to e, by Riemann-Roch.
Then deg(E) = g and degB(E) 6= 0 for at least g real branches B of C.
Since E is effective, there are real points P1, . . . , Pg of C, each on a different
real branch of C, such that E ≥ P1 + · · ·+ Pg. But then E = P1 + · · ·+ Pg.
Let P = (P1, . . . , Pg). Then P ∈ X and ϕ(P ) = e. �

3. Real space curves

Let n ≥ 2 and let C ⊆ Pn be a smooth geometrically integral real alge-
braic curve. We say that C is nondegenerate if C is not contained in a real
hyperplane of Pn. We assume, in what follows, that C is nondegenerate.

Let X be a real branch of C. Let [X] be the homology class of X in the
first homology group H1(Pn(R),Z/2Z). One says that X is a pseudo-line of C
if [X] 6= 0. Otherwise, X is an oval of C. Equivalently, X is a pseudo-line
of C if and only if each hyperplane H in Pn(R) intersects X in an odd number
of points, when counted with multiplicities.

The main result of the paper is the following statement.
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Theorem 3.1. Let n ≥ 2 be an integer. Let C be a nondegenerate smooth
geometrically integral real algebraic curve in Pn. Let c be its degree and let g
be its genus. Suppose that C has at least g real branches. Let d be a nonzero
natural integer such that the restriction map

H0(Pn,O(d)) −→ H0(C,O(d))

is an isomorphism. Suppose that there is a nonzero natural integer m such
that gm = cd. Let ν be the number of real hypersurfaces D in Pn of degree d
such that D is tangent to at least g real branches of C with order of contact
at least m. Then ν is finite. Moreover, ν 6= 0 if and only if

(1) m and d are odd, and C has exactly g pseudo-lines, or
(2) m is even and either d is even or all real branches of C are ovals.

Furthermore, in case (1), ν = mg, and, in case (2),

ν =

{
(g + 1) ·mg if C has g + 1 real branches,
mg if C has g real branches.

Proof. We have to determine the number ν of real hypersurfaces D in Pn

of degree d such that the intersection divisor D · C satisfies D · C ≥ m(P1 +
· · ·+Pg), for some real points P1, . . . , Pg of C, each on a different real branch
of C. Since D ·C is of degree dc = mg, the condition D ·C ≥ m(P1 + · · ·+Pg)
is equivalent to the condition D · C = m(P1 + · · · + Pg). Therefore we have
to determine the number ν of real hypersurfaces D in Pn of degree d such
that D · C = m(P1 + · · ·+ Pg), for some real points P1, . . . , Pg of C, each on
a different real branch of C. By the hypothesis on d, the number ν is equal
to the number of divisors E on C of the form P1 + · · · + Pg (where, again,
each Pi is a real point on a different real branch of C) such that m ·E belongs
to the linear system |dH| on C. Let h be the divisor class of the hyperplane
section H on C. By Corollary 2.2, the number ν is also equal to the number
of e ∈ Picg(C) such that m · e = d · h and degB(e) 6≡ 0 (mod 2) for exactly g
real branches B of C. In particular, since m 6= 0, one has that ν is finite.

Now, suppose that ν 6= 0. Then there is an e ∈ Picg(C) such that m · e =
d · h and such that degB(e) 6= 0 for exactly g real branches B of C.

Suppose that m is odd. Then m · e = d · h implies that d degB(h) 6≡ 0
(mod 2) for exactly g real branches B of C. In particular, d is odd and C has
exactly g pseudo-lines, i.e., we are in case (1). Since m is odd, the connected
component of Pic(C) containing e is the only connected component of Pic(C)
whose image by the multiplication-by-m map is equal to the connected com-
ponent of Pic(C) that contains d · h. Hence ν is equal to mg.

Suppose that m is even. Then m · e = d · h implies that d degB(h) ≡ 0
(mod 2) for all real branches B of C. In particular, either d is even, or all
real branches of C are ovals, i.e., we are in case (2). If C has exactly g real
branches then the connected component Picg,δ(C) of Pic(C) containing e is
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the only connected component of Pic(C) whose image by the multiplication-
by-m map is equal to the connected component of Pic(C) that contains d ·h,
and such that δ(B) 6= 0 for exactly g real branches B of C. Hence ν = mg if C
has exactly g real branches. If C has exactly g + 1 real branches then there
are exactly g + 1 connected components Picg,δ(C) of Pic(C) whose image by
the multiplication-by-m map is equal to the connected component of Pic(C)
that contains d ·h, and such that δ(B) 6= 0 for exactly g real branches B of C.
Hence ν = (g + 1) ·mg if C has exactly g + 1 real branches.

We have shown, in particular, that m, d and C satisfy condition (1) or (2)
if ν 6= 0. It is clear that, conversely, if m, d and C satisfy condition (1) or (2)
then ν 6= 0. �

Remark 3.2. As we have seen in the proof above, if D is a real hyper-
surface in Pn of degree d that is tangent to at least g real branches of C
with order of contact at least m then D is tangent to exactly g real branches
of C with order of contact exactly equal to m. Moreover, D intersects each
of these g real branches in exactly one point. Furthermore, all intersection
points of D and C are real.

Remark 3.3. If m = 1 in Theorem 3.1, then, according to the preceding
remark, all real hypersurfaces of degree d that intersect at least g real branches
of C, intersect each of these real branches transversely. Hence, if there is one
such hypersurface, then there should be infinitely many. Therefore there are
no real hypersurfaces D of degree d that intersect at least g real branches
of C, i.e., ν = 0.

Remark 3.4. Observe that the curve C of the statement of Theorem 3.1
is necessarily nonrational. A nonrational nondegenerate smooth curve in Pn

has degree strictly greater than n. Hence c > n in Theorem 3.1.

Remark 3.5. Let n ≥ 2 and let C ⊆ P
n be a nondegenerate smooth

geometrically integral real algebraic curve. Let c be its degree and let g be its
genus. According to [6, Corollary 5.2], C has at least n+ 1 ovals if g > c− n.
Therefore case (1) of Theorem 3.1 only occurs when g ≤ c− n.

According to Remark 3.3, the most interesting applications of Theorem 3.1
are to be expected when m ≥ 2. Here is a reformulation of Theorem 3.1 in
that case.

Corollary 3.6. Let n ≥ 2 be an integer. Let C be a nondegenerate
smooth geometrically integral real algebraic curve in Pn. Let c be its degree
and let g be its genus. Suppose that C has at least g real branches. Let d
and m be nonzero natural integers, m ≥ 2, such that(

n+ d

d

)
= cd− g + 1 and gm = cd.
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Suppose that
(1) C is not contained in a real hypersurface of degree d, or
(2) the restriction map H0(Pn,O(d))→ H0(C,O(d)) is surjective.

Let ν be the number of real hypersurfaces D in Pn of degree d such that D is
tangent to at least g real branches of C with order of contact at least m. Then
ν is finite. Moreover, ν 6= 0 if and only if

(1) m and d are odd, and C has exactly g pseudo-lines, or
(2) m is even and either d is even or all real branches of C are ovals.

Furthermore, in case (1), ν = mg, and, in case (2),

ν =

{
(g + 1) ·mg if C has g + 1 real branches,
mg if C has g real branches.

Proof. By hypothesis, the restriction map

H0(Pn,O(d)) −→ H0(C,O(d))

is either injective or surjective. One has

dimH0(Pn,O(d)) =
(
n+ d

d

)
.

Moreover, since cd = gm ≥ 2g > 2g − 2, the invertible sheaf O(d) on C is
nonspecial. In particular,

dimH0(C,O(d)) = cd− g + 1,

by Riemann-Roch. It follows from the hypothesis that dimH0(Pn,O(d)) =
dimH0(C,O(d)). Hence the above restriction map is an isomorphism. There-
fore all conditions of Theorem 3.1 are satisfied. �

Example 3.7. Let g be a nonzero natural integer. Let C be a smooth
proper geometrically integral real algebraic curve of genus g having at least g
real branches. Let c be a nonzero multiple of g, c > g, such that there is a
nonspecial very ample divisor D on C of degree c. Let n be the dimension of
the linear system |D|. Identify C with the image of the induced embedding
of C into Pn. Since D is nonspecial, n = c − g. Put d = 1 and m = c/g.
Then the conditions of Corollary 3.6 are satisfied. Let ν be the number of
real hyperplanes in Pn that are tangent to at least g real branches of C with
order of contact at least m. Then ν is finite. Moreover, ν 6= 0 if and only if

(1) m is odd, and C has exactly g pseudo-lines, or
(2) m is even and all real branches of C are ovals.

Furthermore, in case (1), ν = mg, and, in case (2),

ν =

{
(g + 1) ·mg if C has g + 1 real branches,
mg if C has g real branches.
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Example 3.8. Let C ⊆ P
3 be a nondegenerate smooth geometrically

integral real algebraic curve of degree c = 5 and of genus g = 1. Since C is
of odd degree, C(R) 6= ∅. Hence C has at least one real branch. Put d = 2
and m = 10. Since C is nonrational and d ≥ c−3, the curve C is not contained
in a real quadric surface [2]. Therefore we can apply Corollary 3.6 in order
to conclude that, if C has exactly one real branch, there are exactly 10 real
quadrics in P3 that are tangent to C with order of contact at least 10. If C
has exactly 2 real branches then there are 20 such real quadrics.

4. Real plane curves

If one specializes Corollary 3.6 to the case of real plane curves, one gets
the following statement.

Corollary 4.1. Let C be a nondegenerate smooth geometrically integral
real algebraic curve in P2. Let c be its degree. The genus g of C is equal
to 1

2 (c− 1)(c− 2). Suppose that C has at least g real branches. Let d and m
be nonzero natural integers, d < c, such that

1
2 (d+ 2)(d+ 1) = cd− g + 1 and mg = cd.

Let ν be the number of real curves D in P2 of degree d such that D is tangent
to at least g real branches of C with order of contact at least m. Then ν is
finite. Moreover, ν 6= 0 if and only if

(1) C is a real cubic, i.e., c = 3, g = 1, d = 1 and m = 3, or
(2) m is even and, either d or c is even.

Furthermore, in case (1), ν = 3, and, in case (2),

ν =

{
(g + 1) ·mg if C has g + 1 real branches,
mg if C has g real branches.

Proof. It is clear that the conditions of Corollary 3.6 are satisfied with n =
2. Therefore Corollary 3.6 applies. Note that a smooth real algebraic curve
in P2 has at most 1 pseudo-line. This shows that case (1) of Theorem 3.1 only
occurs when C is a real cubic, and then c = 3, g = 1, d = 1 and m = 3. By
the same argument, case (2) of Theorem 3.1 only occurs when C is of even
degree. �

Remark 4.2. The integer m in Corollary 4.1 necessarily satisfies m ≥ 3.
Indeed, suppose that m ≤ 2. Since

cd = gm = 1
2m · (c− 1)(c− 2),

c divides (c − 1)(c − 2). Hence c divides c − 2 and therefore c = 2. This
contradicts Remark 3.4, i.e., m ≥ 3.
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Example 4.3. Let C be a smooth real cubic in P2. Then c = 3 and g = 1.
The only values for (d,m) that satisfy the conditions of Corollary 4.1 are (1, 3)
and (2, 6). If (d,m) = (1, 3) then Corollary 4.1 is the well known fact that
a real cubic has exactly 3 real inflection points [8]. If (d,m) = (2, 6) then
Corollary 4.1 states that there are either 6 or 12 real quadrics tangent to a
given real cubic with order of tangency equal to 6. This can also be shown
directly.

Example 4.4. Let C be a smooth real quartic in P2. Assume that C has
at least 3 real branches. Such real plane curves abound. Indeed, let C be
a nonhyperelliptic smooth proper geometrically integral real algebraic curve
of genus 3 having at least 3 real branches. Then the image of the canonical
embedding, again denoted by C, is a real quartic having the above properties.

Put c = 4 and g = 3. The only values of d and m that satisfy the conditions
of Corollary 4.1 are d = 3 and m = 4. Then, by Corollary 4.1, the number
of real cubics tangent to at least 3 real branches of C with order of contact
at least 4, is equal to 64 if C has 3 real branches, and 256 if C has 4 real
branches.

Example 4.5. Let C be a smooth real sextic in P2. Assume that C has
at least 10 real branches. Such curves abound [3]. Put c = 6 and g = 10. The
only values of d and m that satisfy the conditions of Corollary 4.1 are d = 5
and m = 3. Then, by Corollary 4.1, no real quintic in P2 is tangent to at
least 10 real branches of C with order of contact at least 3. This can also be
shown directly.

Proposition 4.6. The following values for (c, d,m) are the only ones
satisfying the conditions of Corollary 4.1:

(3, 1, 3), (3, 2, 6), (4, 3, 4), (6, 5, 3).

Proof. We have already seen in the preceding examples that these values
of (c, d,m) satisfy the conditions of Corollary 4.1.

Conversely, suppose that (c, d,m) satisfies the conditions of Corollary 4.1.
We distinguish the cases c even and c odd.

Suppose that c is even. Then cd = m(c−1) · 1
2 (c−2). Since c−1 and c are

coprime, c−1 divides d. Since d < c, d = c−1 and c(c−1) = 1
2m(c−1)(c−2).

Since c 6= 1, one gets c = 1
2m(c− 2), i.e., 2c = m(c− 2). In particular, c− 2

divides 2c. Since c − 2 also divides 2c − 4, one has that c − 2 divides 4, i.e.,
c−2 = 1, 2, or 4. Then c = 3, 4, or 6. We have already above in the preceding
examples that then the value of (c, d,m) is necessarily one of the list above.

Suppose that c is odd. Then cd = m · 1
2 (c − 1) · (c − 2). Since c − 2

and c are coprime, c − 2 divides d. Since d < c, d = c − 2, or d = c − 1
and c = 3. Since we have already treated the case c = 3 above, we may
assume that d = c − 2. Then c(c − 2) = 1

2m(c − 1)(c − 2). Since c 6= 2
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(Remark 3.4), one gets c = 1
2m(c− 1), i.e., 2c = m(c− 1). In particular, c− 1

divides 2c. Since c − 1 also divides 2c − 2, one has that c − 1 divides 2, i.e.,
c− 1 = 1, or 2. Then c = 2, or 3. Since c 6= 2, c = 3, which case has already
been dealt with above. �
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