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FUNDAMENTAL PROPERTIES OF SYMMETRIC SQUARE
L-FUNCTIONS. I

A. SANKARANARAYANAN

Dedicated with deep regards to Professor K. Ramachandra on his seventieth birthday

Abstract. We improve the existing upper bound for the mean-square
of the absolute value of the Rankin-Selberg zeta-function (attached to a

holomorphic cusp form) defined for the full modular group in the critical
strip.

1. Introduction

A remarkable result of Selberg (see [57]) says that a positive proportion of
zeros of the Riemann zeta-function are on the critical line. Similar results were
obtained by Hafner for L-functions attached to cusp forms which are Hecke
eigenforms (see [12]). Another important problem is studying the growth of
the L-functions under consideration. In this connection, in a celebrated pa-
per [28], Iwaniec and Sarnak proved growth estimates for eigenfunctions of
certain arithmetic surfaces which break the bound that can be obtained by
convexity arguments. This raises the question of proving non-trivial (in the
sense of breaking the usual convexity bounds) growth estimates for general
L-functions. Of course, this is closely related to the Lindelöf hypothesis. We
should also point out here the important work by Iwaniec, and by Duke, Fried-
lander and Iwaniec (see [27], [9], and [10]), who show how one can break the
convexity bounds in different aspects, namely Q and r, for certain automor-
phic L-functions. For an excellent exposition of these results and for further
comments we refer to [56]. The problem of studying the difference between
consecutive zeros on the critical line was considered by various authors; see,
for example, [1], [5], [30], [31], and [54]. In [60], Shimura proved that the com-
pleted symmetric square L-functions can be continued analytically to entire
functions on the whole complex plane by establishing a functional equation.
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In recent times, there has been much interest in establishing the analytic con-
tinuation and a functional equation for various symmetric power L-functions
(see [59]).

We always write s = σ + it, z = x + iy. Let f(z) =
∑∞
n=1 ane

2πinz be a
holomorphic cusp form of even integral weight k defined over the full modular
group SL(2,Z). We assume that an are eigenvalues of all Hecke operators
and a1 = 1. Let αp and βp be the complex numbers defined by the equation

(1.1) 1− app−s + pk−1−2s =
(
1− αpp−s

) (
1− βpp−s

)
.

The Hecke L-function attached to f is defined as

(1.2) L(s, f) =
∞∑
n=1

ann
−s.

It is absolutely convergent in a certain half-plane and is continuable analyt-
ically to an entire function on the whole plane. For an arbitrary primitive
Dirichlet character ψ, the symmetric square L-function attached to f is de-
fined as

D(s) := D(s, f, ψ)(1.3)

:=
∏
p

((
1− ψ(p)α2

pp
−s) (1− ψ(p)β2

pp
−s) (1− ψ(p)pk−1−s))−1

:=
∞∑
n=1

an2n−s.

(Here an2 is just a notation and does not mean the n2-th Fourier coefficient
of f .) Following the notation in [60], throughout this paper we assume that χ
is a Dirichlet character modulo M and the trivial character when M = 1, and
that ψ is an arbitrary primitive Dirichlet character with conductor r, and the
trivial character when r = 1.

Now, D(s) converges absolutely in <s > k. The critical strip for D(s) is
k − 1 ≤ σ ≤ k, and the critical line is σ = k − 1/2. We also note that from
Deligne’s work (see [7] and [8]) it follows that (see the “Note added in proof”
at the end of the paper)

(1.4) |an2 | ≤ (d(n))2nk−1.

The following are some fundamental questions about these L-functions:
1. Is D(k + it) different from zero for all t ∈ R?
2. If the answer to Question 1 is yes, can we establish a reasonable zero-

free region for D(s)?
3. Is it possible to establish mean-value theorems on certain lines?
4. If the answers to Questions 1 and 2 are yes, can we prove certain

“density theorems” for the zeros of D(s)?
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The answers to Questions 1 and 2 above are known (see Lemma 3.2 in [32]
and, for example, Exercise 3.2.11 of [49]). In fact, using the Fundamental
Identity (Lemma 3.1) of this paper combined with Lemma 3.2 of [32], it is
not difficult to establish a reasonable zero-free region. After Shimura’s work
(see [60]), the answers to the above fundamental questions form the basis
for any further progress. It should be mentioned here that mean values of
derivatives of modular L-series had been studied earlier by Ram Murty and
Kumar Murty in [50]. In this paper, we concentrate only on Question 3 above.
Results related to Question 4 above will form part II of this paper, which will
appear elsewhere.

The properties of Rankin-Selberg zeta-functions have been studied exten-
sively by many authors; see, for example, [24], [25] and [34]. After normalizing
the coefficients, the Rankin-Selberg zeta-function is defined by

(1.5) Z(s) = ζ(2s)
∞∑
n=1

a2
nn

1−k−s =
∞∑
n=1

c′nn
−s (say).

This Dirichlet series is absolutely convergent in the half plane σ > 1 and can
be continued as a meromorphic function to the whole complex plane with a
simple pole at s = 1. It satisfies a nice functional equation (see [24]). For
example, in [24], Ivic studied mean-value theorems for Z(s) for a certain range
of σ; from his work it follows that

(1.6)
∫ T

0

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T 2+ε

for every ε > 0. In [34], Matsumoto proved the following result (see Theorem
2 of [34]).

Theorem A.

(i) For 1/2 ≤ σ ≤ 3/4 we have

(1.7)
∫ T

0

|Z(σ + it)|2dt� T 4−4σ(log T )1+ε

for any ε > 0.
(ii) For 3/4 < σ ≤ 1 we have

(1.8)
∫ T

1

|Z(σ + it)|2dt = T
∞∑
n=1

c′n
2
n−2σ +O(T θ(σ)+ε),

where

θ(σ) =


5
2
− 2σ if

3
4
≤ σ ≤ 12 +

√
19

20
,

60(1− σ)
29− 20σ

if
12 +

√
19

20
≤ σ ≤ 1.
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In particular, Theorem A gives

(1.9)
∫ T

0

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T 2(log T )1+ε,

which is a slight improvement of (1.6).
The aim of this paper is twofold. Firstly, we study the analytic properties of

the symmetric square L-functions. Secondly, exploring these ideas, we obtain
a nice improvement of Theorem A. For example, from Theorem 4.2 below it
is immediate that (unconditionally)

(1.10)
∫ T

0

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T 11/6+ε

for every ε > 0. We also show (see Theorem 4.3) that, under the Lindelöf
hypothesis for the Riemann zeta-function,

(1.11)
∫ T

0

|Z (1/2 + it)|2 dt� T 3/2+ε

for every ε > 0.

Acknowledgement. The author has great pleasure in thanking Professor
Ram Murty for fruitful and stimulating discussions. The author is grate-
ful to the Department of Mathematics and Statistics at Queens University
for its kind invitation and warm hospitality which enabled him to complete
this project. The author is highly indebted to the anonymous referee for his
valuable comments.

2. Notation and preliminaries

The letters C and A (with or without suffixes) denote effective positive
constants unless otherwise specified. The constants need not be the same at
every occurrence. Throughout the paper we assume T ≥ T0, where T0 is a
large positive constant. We write f(x) � g(x), or f(x) = O(g(x)), to mean
that |f(x)| < C1g(x). All implied constants are effective.

We set s = σ+ it and w = u+ iv. In any fixed strip a ≤ σ ≤ b we have, as
t→∞,

(2.1) Γ(σ + it) = tσ+it−1/2e−π/2−it+(iπ/2)(σ−1/2)
√

2π
(

1 +O

(
1
t

))
.

Let

(2.2) R(s) = π−3s/2Γ
(s

2

)
Γ
(
s+ 1

2

)
Γ
(
s− k + 2

2

)
D(s).

Then D(s) satisfies the functional equation (see [60])

(2.3) R(s) = R(2k − 1− s).
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Also we note that if

(2.4) R1(s) = π−(s−k+1)/2Γ
(
s− k + 1

2

)
ζ(s− k + 1),

then ζ(s− k + 1) satisfies the functional equation

(2.5) R1(s) = R1(2k − 1− s).
Therefore if D1(s) = ζ(s − k + 1)D(s), then D1(s) satisfies the functional
equation

(2.6) R(s)R1(s) = R(2k − 1− s)R1(2k − 1− s),
and we see that R(s)R1(s) extends D1(s) to an analytic function in the whole
plane except for a simple pole at s = k. We define

(2.7) ξ(s) = −(s− k)(2k − 1− s− k)R(s)R1(s).

Note that

(2.8) ξ(s) = ξ(2k − 1− s).
We write

(2.9) D(s) = χ(s)D(2k − 1− s),
where

(2.10) χ(s) = π
−3(2k−1)

2 +3s

Γ
(

2k − 1− s
2

)
Γ
(

2k − s
2

)
Γ
(
k − s+ 1

2

)
Γ
(s

2

)
Γ
(
s+ 1

2

)
Γ
(
s− k + 2

2

) .

From (2.1) and (2.10) it follows that, for a ≤ σ ≤ b, we have as t→∞,

(2.11) χ(s) = C2(k, σ)t
1
2 (6k−6σ−3)

(
t

2πe

)−3it(
1 +O

(
1
t

))
,

where C2 is a certain constant depending only on k and σ. From the maximum-
modulus principle and the functional equation, we obtain

(2.12) D(σ + it)� |t| 32 (k−σ) log |t|
uniformly for k − 1/2 ≤ σ ≤ k, |t| ≥ 10.

3. Some lemmas

Lemma 3.1 (Fundamental Identity). We have

f(s) :=
∞∑
n=1

a2
nn
−s =

ζ2(s− k + 1)
ζ(2s− 2k + 2)

Ψ(s),

where
Ψ(s) =

∏
p

(
1 + 2pk−1−s − a2

pp
−s + p2k−2−2s

)−1
.



28 A. SANKARANARAYANAN

Proof. We note that an is multiplicative and satisfy the equations

(3.1) apλ = apapλ−1 − pk−1apλ−2

and

(3.2) pk−1apλ−3 = −apλ−1 + apapλ−2 .

From this we deduce first

(3.3) f(s) =
∏
p

1 + a2
pp
−s + a2

p2p−2s +
∞∑
j=3

a2
pj

pjs

 .

Next, computing the expression (3.1)2 − pk−1(3.2)2 gives the relation

(3.4) a2
pλ −

(
a2
p − pk−1

)
a2
pλ−1 + pk−1

(
a2
p − pk−1

)
a2
pλ−2 − p3(k−1)a2

pλ−3 = 0.

Here

∞∑
j=3

a2
pj

pjs
=
∞∑
j=3

(a2
p − pk−1)a2

pj−1 − pk−1(a2
p − pk−1)a2

pj−2 + p3(k−1)a2
pj−3

pjs

(3.5)

= (a2
p − pk−1)p−s

 ∞∑
j=2

a2
pj

pjs

− pk−1(a2
p − pk−1)p−2s

 ∞∑
j=1

a2
pj

pjs



+ p3(k−1)−3s

 ∞∑
j=0

a2
pj

pjs



=
(

(a2
p − pk−1)p−s − pk−1−2s(a2

p − pk−1) + p3(k−1)−3s
) ∞∑

j=0

a2
pj

pjs


− (a2

p − pk−1)p−s − a2
p(a

2
p − pk−1)p−2s + (a2

p − pk−1)pk−1−2s.

We also find that

1 + a2
pp
−s + a2

p2p−2s − (a2
p − pk−1)p−s

− a2
p(a

2
p − pk−1)p−2s + (a2

p − pk−1)pk−1−2s

= 1 + pk−1−s.

Let

X = 1 + a2
pp
−s + a2

p2p−2s +
∞∑
j=3

a2
pj

pjs
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and
Y = (a2

p − pk−1)p−s − pk−1−2s(a2
p − pk−1) + p3(k−1)−3s.

From (3.4), (3.5), and the above arguments, we observe that

(3.6) X = XY + 1 + pk−1−s.

Therefore we obtain

f(s) =
∏
p

(
1 + pk−1−s

1− (a2
p − pk−1)p−s + pk−1−2s(a2

p − pk−1)− p3(k−1)−3s

)
(3.7)

=
∏
p

(
1− pk−1−s

1 + pk−1−s (1 + 2pk−1−s − a2
pp
−s + p2(k−1)−2s)

)−1

=
ζ2(s− k + 1)
ζ(2s− 2k + 2)

Ψ(s),

where

(3.8) Ψ(s) =
∏
p

(
1 + 2pk−1−s − a2

pp
−s + p2(k−1)−2s

)−1

.

This proves the lemma.

Remark. This lemma is essentially due to Ramanujan. For a proof of
the above lemma in the case of Dirichlet series attached to Ramanujan’s τ
function see, for example, [52] and [53].

Lemma 3.2 (Montgomery-Vaughan). If hn is an infinite sequence of
complex numbers such that

∑∞
n=1 n|hn|2 is convergent, then∫ T+H

T

∣∣∣∣∣
∞∑
n=1

hnn
−it

∣∣∣∣∣
2

dt =
∞∑
n=1

|hn|2(H +O(n)).

Proof. See, for example, Lemma 3.3 of [39], or [46].

4. Mean-square upper bounds on certain lines

K. Chandrasekharan and R. Narasimhan [4] showed that, whenever a Di-
richlet series has a functional equation, an approximate functional equation
holds, which has a nice form provided the coefficients of the Dirichlet series
are positive. This result can be used to study mean value theorems. Even if
the coefficients are not positive, such an application is still possible in some
special cases.

K. Ramachandra observed that using only the functional equation one can
prove reasonable upper bounds for mean-values on certain lines, and he has
used this idea in many of his papers (see, for example, [43] and [44]). In this
section we use the same idea to prove the following result.
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Theorem 4.1. For T ≤ t ≤ 2T , T ≥ T0, we have∫ 2T

T

|D(s1)|2dt� T 3/2(log T )17,(i) ∫ 2T

T

|D(s2)|2dt = T

∞∑
n=1

|an2 |2

n2k−1/2
+O

(
T 3/4(log T )17

)
,(ii)

∫ 2T

T

|D(s3)|2dt = T
∞∑
n=1

|an2 |2

n2k+ 2
log T

+O
(
(log T )15

)
,(iii)

where s1 = k − 1/2 + it, s2 = k − 1/4 + it, s3 = k + (1/ log T ) + it, and the
implied constants depend on the weight k.

Proof of (i). Let Y and Y1 be two parameters satisfying 10T ≤ Y, Y1 ≤ TA,
to be chosen appropriately later. Let ε1 = (log T )−1. By Mellin’s transforma-
tion, we have

S :=
∞∑
n=1

an2

ns1
e−n/Y(4.1)

=
1

2πi

∫
<w=1/2+ε

|v|≤(log T )2

D(s1 + w)Y wΓ(w)dw +O
(
Y

1
2 +εe−C(log T )2

)

= D(s1) +
1

2πi

∫
<w=−1+2ε1
|v|≤(log T )2

D(s1 + w)Y wΓ(w)dw

+O
(
Y

1
2 +εe−C(log T )2

)
+O

(
Y

1
2 +εTCe−C(log T )2

)
= D(s1) + I +O

(
Y

1
2 +εe−C(log T )2

)
+O

(
Y

1
2 +εTCe−C(log T )2

)
,

say, upon moving the line of integration to <w = −1 + 2ε1. Now,

I =
1

2πi

∫
<w=−1+2ε1
|v|≤(log T )2

D(s1 + w)Y wΓ(w)dw(4.2)

=
1

2πi

∫
<w=−1+2ε1
|v|≤(log T )2

χ(s1 + w) (Q1 +Q2)Y wΓ(w)dw

= I1 + I2,

where
Q1 =

∑
n≤Y1

an2ns1+w−2k+1, Q2 =
∑
n>Y1

an2ns1+w−2k+1.
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We note that in I2, <(s1 + w) = k − (3/2) + 2ε1. We have∑
n>Y1

an2ns1+w−2k+1 =
∑

Y1<n≤Y 10
1

an2ns1+w−2k+1(4.3)

+O

 ∑
n>Y 10

1

(d(n))2nk−1+k− 3
2 +2ε1−2k+1


=

∑
Y1<n≤Y 10

1

an2ns1+w−2k+1 +O
(
Y −5+20ε1

1

)
,

where we have used inequality (1.4). Using Hölder’s inequality and a theorem
of Montgomery and Vaughan (see [39]), we get

∫ 2T

T

|I2|2dt�
∫ 2T

T

∣∣∣∣∣
∫

<w=−1+2ε1
|v|≤(log T )2

χ(s1 + w)

(4.4)

×

( ∑
Y 10

1 ≥n>Y1

an2ns1+w−2k+1

)
Y wΓ(w)dw

∣∣∣∣∣
2

dt

+ T 7+20ε1Y −2Y −10+40ε1
1

� (log T )2T
6+20ε1

Y 2

∫ 2T+(log T )2

T−(log T )2

∑
U

∣∣∣∣∣ ∑
U≤n≤2U

an2ns1+<w−2k+1

∣∣∣∣∣
2

dt

+ T 7+20ε1Y −2Y −10+40ε1
1

� (log T )2T
6+20ε1

Y 2

∑
U

∑
U≤n≤2U

|an2 |2

n2(2k−1−(k− 3
2 +2ε1))

n

+ T 7+20ε1Y −2Y −10+40ε1
1

� (log T )2T
6+20ε1

Y 2

∑
U

∑
U≤n≤2U

(d(n))4n2k−2n

n2(2k−1−(k− 3
2 +2ε1))

+ T 7+20ε1Y −2Y −10+40ε1
1

� (log T )2T
6+20ε1

Y 2

C log Y1∑
j=0

(log Y1)15(2jY1)−1+4ε1

+ T 7+20ε1Y −2Y −10+40ε1
1

� (log T )2T 6+20ε1Y −2Y −1+4ε1
1 (log Y1)15 + T 7+20ε1Y −2Y −10+40ε1

1 .
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Also we have

I1 =
1

2πi

∫
<w=−1+2ε1
|v|≤(log T )2

χ(s1 + w)

∑
n≤Y1

an2ns1+w−2k+1

Y wΓ(w)dw(4.5)

=
1

2πi

∫
<w=− 1

2
|v|≤(log T )2

χ(s1 + w)

∑
n≤Y1

an2ns1+w−2k+1

Y wΓ(w)dw

+O(TCe−C log T )2
),

upon moving the line of integration to <w = − 1
2 . Using again the Montgo-

mery-Vaughan theorem and inequality (1.4), we obtain

∫ 2T

T

|I1|2dt� (log T )2T
3

Y

∫ 2T+(log T )2

T−(log T )2

∣∣∣∣∣∣
∑
n≤Y1

an2ns1+<w−2k+1

∣∣∣∣∣∣
2

dt(4.6)

� (log T )2T
3

Y

∑
n≤Y1

|an2 |2n
n2(2k−1−(k−1))

� (log T )2T
3

Y

∑
n≤Y1

(d(n))4n2k−1

n2(2k−1−(k−1))

� (log T )2T
3

Y
(log Y1)15.

Now,

S =
∞∑
n=1

an2

ns1
e−n/Y ,

and so ∫ 2T

T

|S|2dt =
∞∑
n=1

|an2 |2

n2(k−1/2)
e−2n/Y (T +O(n))(4.7)

= T

 ∑
n≤Y/2

|an2 |2

n2k−1

(
1 +O

( n
Y

))

+O

 ∑
n≥Y/2

|an2 |2

n2k−1

(
Y

n

)2α+1
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+O

 ∑
n≤Y/2

|an2 |2

n2k−1
n+

∑
n≥Y/2

|an2 |2

n2k−1
n

(
Y

n

)2α+2


� T (log Y )15 + Y (log Y )15

with α = k. Using inequality (1.4), we find that

∑
n≤Y/2

(d(n))4

n2k−1
n2k−2 � (log Y )15,(4.8)

1
Y

∑
n≤Y/2

(d(n))4

n2k−1
n2k−2n� (log Y )15.(4.9)

Choosing α = k − 1, we have

Y 2k−1
∑
n≥Y/2

(d(n))4

n2k−1
n2k−2 1

n2k−1
(4.10)

� Y 2k−1
∞∑
j=0

∑
U≤n<2U,U=2jY/2

(d(n))4

n2k

� Y 2k−1
∞∑
j=0

∑
U=2jY/2

1
U2k

U(logU)15

� (log Y )15,

(4.11)
∑
n≤Y/2

(d(n))4

n2k−1
n2k−2n� Y (log Y )15.

Similarly to (4.10), we obtain, by choosing a suitable α (say, α = k)

(4.12)
∑
n≥Y/2

(d(n))4

n2k−1
n2k−1

(
Y

n

)2α+2

� Y (log Y )15.

Part (i) of the theorem now follows if we choose Y = Y1 = T 3/2.

Proof of (ii). Let Y and Y1 be two parameters satisfying 10T ≤ Y, Y1 ≤
TA, which will be chosen appropriately later. Let ε1 = (log T )−1. Since
the proof of (ii) is similar to that of (i), we only give a sketch. By Mellin’s
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transformation, we have

S :=
∞∑
n=1

an2

ns2
e−n/Y

(4.13)

=
1

2πi

∫
<w=1/2+ε

|v|≤(log T )2

D(s2 + w)Y wΓ(w)dw +O
(
Y

1
2 +εe−C(log T )2

)

= D(s2) +
1

2πi

∫
<w=−1+2ε1
|v|≤(log T )2

D(s2 + w)Y wΓ(w)dw +O
(
Y

1
2 +εe−C(log T )2

)

+O
(
Y

1
2 +εTCe−C(log T )2

)
= D(s2) + I +O

(
Y

1
2 +εe−C(log T )2

)
+O

(
Y

1
2 +εTCe−C(log T )2

)
,

say, upon moving the line of integration to <w = −1 + 2ε1. Now,

I =
1

2πi

∫
<w=−1+2ε1
|v|≤(log T )2

χ(s2 + w) (Q3 +Q4)Y wΓ(w)dw(4.14)

= I1 + I2,

where

Q3 =
∑
n≤Y1

an2ns2+w−2k+1, Q4 =
∑
n>Y1

an2ns2+w−2k+1.

We note that in I2, <(s2 + w) = k − (5/4) + 2ε1. We have

(4.15)
∑
n>Y1

an2ns2+w−2k+1 =
∑

Y1<n≤Y 10
1

an2ns2+w−2k+1 +O
(
Y −2.5+20ε1

1

)
,

where we have used inequality (1.4). Using Hölder’s inequality and a theorem
of Montgomery and Vaughan (see [39]), we get as in the proof of (i)∫ 2T

T

|I2|2dt� (log T )2T 4.5+20ε1Y −2Y
− 1

2 +4ε1
1 (log Y1)15(4.16)

+ T 5.5+20ε1Y −2Y −5+40ε1
1 .
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Also, we have

I1 =
1

2πi

∫
<w=− 3

4
|v|≤(log T )2

χ(s2 + w)

∑
n≤Y1

an2ns2+w−2k+1

Y wΓ(w)dw

(4.17)

+O
(
TCe−C log T )2

)
,

upon moving the line of integration to <w = −3/4. Using again the Montgo-
mery-Vaughan theorem and inequality (1.4), we obtain

∫ 2T

T

|I1|2dt� (log T )2 T 3

Y 3/2

∫ 2T+(log T )2

T−(log T )2

∣∣∣∣∣∣
∑
n≤Y1

an2ns2+<w−2k+1

∣∣∣∣∣∣
2

dt(4.18)

� (log T )2 T 3

Y 3/2
(log Y1)15.

Now,

S =
∞∑
n=1

an2

ns2
e−n/Y ,

and, as in the proof of (i), we obtain∫ 2T

T

|S|2dt = T
∞∑
n=1

|an2 |2

n2(k−1/4)
(4.19)

+O
(
TY −1/2(log Y )15 + Y 1/2(log Y )15

)
.

Part (ii) of the theorem now follows by choosing Y = Y1 = T 3/2.

Proof of (iii). Part (iii) of the theorem follows from Lemma 3.2.

We are now in a position to prove the following result.

Theorem 4.2. Suppose that the inequality

ζ

(
1
2

+ it

)
� tκ(log t)

holds for some κ > 0 and all t ≥ 10. Then:

(i) For 1/2 ≤ σ ≤ 3/4 we have∫ 2T

T

|Z(σ + it)|2dt� T
1
2 +(4κ+2)(1−σ)(log T )17(3−4σ)+2.
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(ii) Let

ν =
5

2(6− 4κ)
and

ϑ =
29− 10ν +

√
100ν2 + 420ν − 159

40
.

For 3/4 < σ ≤ 1 we have∫ 2T

T

|Z(σ + it)|2dt = T

∞∑
n=1

c′n
2
n−2σ +O(T θ(σ)+ε),

where

θ(σ) =


5
2
− 2σ if

3
4
< σ ≤ ϑ,

30(1− σ)
17− 5ν − 10σ

if ϑ ≤ σ ≤ 1.

Proof of (i). From Lemma 3.1, we have the relation

Z(s− k + 1) = ζ(s− k + 1)D(s).

After normalizing the coefficients we find that

(4.20) Z(s) = ζ(s)D(s+ k − 1).

Let

(4.21) J(σ, λ) =

(∫ 2T

T

|f(σ + it)|1/λ
)λ

, λ > 0.

Then Gabriel’s convexity theorem (see p. 203 of [61]) asserts that for α ≤
σ ≤ β

(4.22) J(σ, pλ+ qµ) ≤ Jp(α, λ)Jq(β, µ),

where

(4.23) p =
β − σ
β − α

, q =
σ − α
β − α

.

We choose the parameters as follows:

f(s) = D(s+ k − 1), α =
1
2
, β =

3
4
, λ =

1
2
, µ =

1
2
.

Then p + q = 1 and pλ + qµ = 1/2. From (i) and (ii) of Theorem 4.1, using
(4.22), we obtain, for 1/2 ≤ σ ≤ 3/4,(∫ 2T

T

|D (σ + k − 1 + it)|2 dt

)1/2

≤ Q5,



FUNDAMENTAL PROPERTIES OF SYMMETRIC SQUARE L-FUNCTIONS. I 37

where

Q5 =

(∫ 2T

T

∣∣∣∣D(k − 1
2

+ it

)∣∣∣∣2 dt
)1

2 (3−4σ)(∫ 2T

T

∣∣∣∣D(k − 1
4

+ it

)∣∣∣∣2 dt
)1

2 (4σ−2)

.

This implies that∫ 2T

T

|D(σ + k − 1 + it)|2dt�
(
T 3/2(log T )17

)3−4σ

T 4σ−2(4.24)

� T (5−4σ)/2(log T )17(3−4σ).

From the assumption of the theorem it follows that for 1/2 ≤ σ ≤ 1

(4.25) ζ(σ + it)� t2κ(1−σ) log t.

Also, notice that

(4.26)
∫ 2T

T

|Z(σ + it)|2dt

�
(

max
T≤t≤2T

|ζ(σ + it)|2
)(∫ 2T

T

|D(σ + k − 1 + it)|2dt

)
.

From (4.24), (4.25), and (4.26), part (i) of the theorem follows.

Proof of (ii). We only sketch the proof, since the details can be found in
[34]. The function Z(s) satisfies the functional equation

(4.27) Z(s) = ∆1(s)Z(1− s),
where

(4.28) |∆1(s)| =
∣∣∣∣(2π)4s−2 Γ(1− s)Γ(k − s)

Γ(s)Γ(s+ k − 1)

∣∣∣∣ ∼ ( t

2π

)2−4σ (
1 +O

(
1
t

))
for t ≥ t0. From the definition of ν, we have 5/12 < ν < 1/2. Therefore, from
(4.28) and part (i) of Theorem 4.2, we find that∫ 2T

T

|Z(ν + it)|2dt ∼
∫ 2T

T

t4−8ν |Z(1− ν + it)|2dt(4.29)

� T 4−8ν+( 1
2 +(4κ+2)ν)+ε

� T 2+ε.

If we write ∑
n≤x

c′n = Cx+ ∆(x)

then, combining (4.29) with the method of Lemma 13.1 of [23], we obtain

(4.30)
∫ X

1

|∆(y)|2dy � X1+2ν+ε.
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Following the arguments of [34] and using (4.30), (ii) follows.

Remark. Using the classical value κ = 1/6, Theorem 4.2 gives

∫ 2T

T

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T 11/6(log T )17,

which is far better than (1.9). The best known value for κ is κ = 89
570 + ε (see

[21]). We also mention that part (i) of Theorem 4.2 improves upon part (i)
of Theorem A only in the range 1/2 ≤ σ ≤ (3− 8κ)/(4− 8κ), since

1
2

+ (4κ+ 2)(1− σ) < 4− 4σ

holds only when σ ≤ (3− 8κ)/(4− 8κ) < 3/4.

Theorem 4.3. If the Lindelöf hypothesis holds, i.e., if for every positive
constant ε,

ζ

(
1
2

+ it

)
� tε,

then the inequality ∫ 2T

T

|Z(σ + it)|2dt� T
1
2 +2(1−σ)+ε

holds for every positive constant ε in the range 1/2 ≤ σ ≤ 3/4− ε.

Proof. This follows from part (i) of Theorem 4.2 upon taking κ = ε.

Theorem 4.4. Assume that∫ 2T

T

∣∣∣∣ζ (1
2

+ it

)∣∣∣∣2j dt� T 1+ε

holds for some fixed integer j ≥ 1 and every positive constant ε. Then we
have ∫ 2T

T

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T (3/2)+(1/j)+ε.

for every ε > 0.
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Proof. From (4.20), on using Hölder’s inequality, we obtain

∫ 2T

T

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt
(4.31)

=
∫ 2T

T

∣∣∣∣ζ (1
2

+ it

)
D

(
k − 1

2
+ it

)∣∣∣∣2 dt
≤

(∫ 2T

T

∣∣∣∣ζ (1
2

+ it

)∣∣∣∣2j dt
)1/j (∫ 2T

T

∣∣∣∣D(k − 1
2

+ it

)∣∣∣∣2j/(j−1)

dt

)(j−1)/j

�

(
max

T≤t≤2T

∣∣∣∣D(k − 1
2

+ it

)∣∣∣∣2/j
)(∫ 2T

T

∣∣∣∣ζ (1
2

+ it

)∣∣∣∣2j dt
)1/j

×

(∫ 2T

T

∣∣∣∣D(k − 1
2

+ it

)∣∣∣∣2 dt
)(j−1)/j

.

By (2.12), we have

(4.32) D(k − 1
2

+ it)� t3/4(log t).

The asserted estimate now follows from the assumption of the theorem, part
(i) of Theorem 4.1, (4.31), and (4.32).

Remark. From Theorems 4.2, 4.3 and 4.4, we see that the mean-square
upper bound for Z(1/2 + it) depends on

(1) the growth estimate of the Riemann zeta-function on the line σ = 1
2 ,

(2) the higher moments of the Riemann zeta-function on the critical line
σ = 1

2 ,
(3) the growth estimate of the symmetric square L-function D(s) on the

line σ = k − 1
2 , and

(4) the higher moments of the symmetric square L-function D(s) on the
line σ = k − 1

2 .

In this connection we would like to point out the important work of Heath-
Brown (see [15]) and of Ivic and Motohashi (see [26]). On the one hand,
a general theorem of Ramachandra (see [47]) implies the mean-square lower
bound

(4.33)
∫ 2T

T

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T
log T

log log T
.
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On the other hand, it is not hard to see that, under the assumption of the
Lindelöf hypothesis for D(s) on the line σ = k − 1

2 , i.e., the estimate

(4.34) D

(
k − 1

2
+ it

)
� tε

for any small positive constant ε, we have

(4.35)
∫ 2T

T

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T 1+10ε.

This suggests the following conjecture.

Conjecture. We have

(4.36)
∫ 2T

T

∣∣∣∣Z (1
2

+ it

)∣∣∣∣2 dt� T (log T )A

with some positive constant A.

Note added in proof. In fact, we have

D(s) := ζ(2s− 2k + 2)

( ∞∑
n=1

a∗n2n−s

)
,

where

|a∗n2 | ≤ d(n2)nk−1.

From our definition (1.3), it follows that

bn := an2 =
∑
l2m=n

l2k−2a∗m2

and that bn is a multiplicative function. It is not difficult to see that

∣∣bpj ∣∣ ≤ pj(k−1)

j∑
a=0

(2a+ 1)
∑

2b+a=j

1 ≤ pj(k−1)(j + 1)2 = pj(k−1)
(
d
(
pj
))2

since for every fixed j there is at most one solution to the equation 2b+a = j
for every fixed a. (For j ≤ 4 the inequality follows by an easy computation,
and for j ≥ 5 it can be proved by considering separately the cases when j
is even and odd.) This implies (in our notation) the final inequalty of (1.4),
namely

|an2 | � (d(n))2
nk−1.
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