# INEQUALITIES AND ASYMPTOTICS FOR A TERMINATING ${ }_{4} F_{3}$ SERIES 

MOURAD E. H. ISMAIL AND PLAMEN SIMEONOV


#### Abstract

In this paper we give upper bounds for a certain terminating ${ }_{4} F_{3}$ series. Our estimates confirm special cases of a conjecture of Kresch and Tamvakis. We also give asymptotic estimates when the parameters in the ${ }_{4} F_{3}$ series are large, and they confirm the same conjecture.


## 1. Introduction

We first introduce the needed terminology. For a complex number $a$ and an integer $n$, the shifted factorial $(a)_{n}$ is defined by

$$
(a)_{n}:=\prod_{j=1}^{n}(a+j-1)=\Gamma(a+n) / \Gamma(a)
$$

We set $(a)_{0}:=1$ if $a \neq 0$. Next, for an integer $n$ and complex numbers $a, b$, $c, d, e, f$, and $z$, such that $\{d, e, f\} \cap\{-n+1,-n+2, \ldots,-1,0\}=\emptyset$, the terminating ${ }_{4} F_{3}$ hypergeometric series is defined by

$$
{ }_{4} F_{3}\left(\left.\begin{array}{c}
-n, a, b, c  \tag{1.1}\\
d, e, f
\end{array} \right\rvert\, z\right):=\sum_{k=0}^{n} \frac{(-n)_{k}(a)_{k}(b)_{k}(c)_{k}}{(d)_{k}(e)_{k}(f)_{k} k!} z^{k} .
$$

Let $Q>s, n \geq 1$ be integers. We define

$$
R(n, s, Q):={ }_{4} F_{3}\left(\begin{array}{c|c}
-n, n+1,-s, s+1 & 1  \tag{1.2}\\
1+Q, 1,1-Q & 1
\end{array}\right) .
$$

The series defining $R$ has at most $n+1$ terms. In this paper we study the following conjecture:

Conjecture 1.1. The terminating ${ }_{4} F_{3}$ series $R(n, s, Q)$ defined with (1.2) satisfies

$$
\begin{equation*}
|R(n, s, Q)| \leq 1 \tag{1.3}
\end{equation*}
$$

[^0]for all integer numbers $Q>s \geq n \geq 1$.
This inequality was conjectured by A. Kresch and H. Tamvakis in [7]. Extensive numerical evaluations provided overwhelming evidence supporting this conjecture. The expression $R(n, s, Q)$ is the special case $\alpha=\beta=\gamma=0$ of the Racah polynomials considered by Dunkl in [4].

The Racah polynomials [1], [2], [6], are defined by

$$
\begin{align*}
& R_{n}(\lambda(x) ; \alpha, \beta, \gamma, \delta)  \tag{1.4}\\
& \quad={ }_{4} F_{3}\left(\begin{array}{c|c}
-n, n+\alpha+\beta+1,-x, x+\gamma+\delta+1 & 1 \\
\alpha+1, \beta+\delta+1, \gamma+1 & 1
\end{array}\right)
\end{align*}
$$

for $n=0,1, \ldots, N$, where $\lambda(x)=x(x+\gamma+\delta+1)$ and $\alpha+1=-N$ or $\beta+\delta+1=-N$ or $\gamma+1=-N$. Selecting $\alpha=\beta=0, \gamma=-N-1$, and $\delta=N+1$ we obtain

$$
\begin{equation*}
R_{n}(x(x+1) ; 0,0,-N-1, N+1)=R(n, x, N+1) \tag{1.5}
\end{equation*}
$$

The conjecture of Kresch and Tamvakis states that the absolute value of a Racah polynomial is bounded by its value at $x=0$.

Following the ideas of [5] one can establish the generating function (see [6])

$$
\begin{align*}
& \sum_{n=0}^{N} \frac{(N+2)_{n}(-N)_{n}}{n!^{2}} R(n, x, N+1) t^{n}  \tag{1.6}\\
& \quad={ }_{2} F_{1}\left(\begin{array}{c|c}
-x,-x & t \\
1
\end{array}\right){ }_{2} F_{1}\left(\begin{array}{c|c}
x-N, x+N+2 & t \\
1
\end{array}\right)
\end{align*}
$$

We will use the Whipple transform [6]: If $n \in \mathbf{N}$ and $a+b+c+1=$ $d+e+f+n$, then

$$
\left.\left.\begin{array}{rl}
{ }_{4} F_{3}\left(\begin{array}{c}
-n, a, b, c \\
d, e, f
\end{array}\right. & 1
\end{array}\right)=\frac{(e-a)_{n}(f-a)_{n}}{(e)_{n}(f)_{n}}, \begin{array}{c}
-n, a, d-b, d-c  \tag{1.7}\\
d, a-e-n+1, a-f-n+1
\end{array}\right),
$$

the Pfaff-Saalschutz formula [6]:

$$
{ }_{3} F_{2}\left(\begin{array}{c|c}
-n, a, b  \tag{1.8}\\
c, 1+a+b-c-n & 1
\end{array}\right)=\frac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}},
$$

and the Pfaff-Kummer transform [6]:

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
a, b & z  \tag{1.9}\\
c & z
\end{array}\right)=(1-z)^{-a}{ }_{2} F_{1}\left(\begin{array}{cc|c}
a, c-b & z \\
c & z-1
\end{array}\right) .
$$

In Section 2 we verify the conjecture in several special cases. In Section 3 we use an integral representation based on the generating function (1.6), and the methods of Darboux and Laplace to obtain asymptotic estimates of
$R(n, x, N+1)$ when $x$ is fixed, and $R(n, \lambda n, \gamma n+1)$ with fixed $\lambda>0$ and $\gamma>1$. These asymptotic estimates also confirm the conjecture.

## 2. Some special cases

We set

$$
R_{2 n}(x):=R(n, x, N+1)={ }_{4} F_{3}\left(\begin{array}{c|c}
-n, n+1,-x, x+1 & 1  \tag{2.1}\\
1, N+2,-N & 1
\end{array}\right)
$$

$n, x=0,1, \ldots, N$. Note that $R_{2 n}(x)$ is the Racah polynomial in (1.5). These Racah polynomials are discrete orthogonal polynomials and their orthogonality relation is

$$
\begin{equation*}
\sum_{x=0}^{N}(2 x+1) R_{2 n}(x)^{2}=\frac{(N+1)^{2}}{2 n+1} \tag{2.2}
\end{equation*}
$$

(see [1], [6]). From (2.2) it follows that

$$
\begin{equation*}
\left|R_{2 n}(x)\right| \leq \frac{N+1}{\sqrt{(2 n+1)(2 x+1)}} \tag{2.3}
\end{equation*}
$$

Hence, $\left|R_{2 n}(x)\right| \leq 1$ when $2 N+1 \geq 2 x+1 \geq(N+1)^{2} /(2 n+1)$. This leads to the following lemma.

LEMmA 2.1. The inequality $\left|R_{2 n}(x)\right| \leq 1$ holds for every $n$ and $x$ such that $n \geq N^{2} /(4 N+2)$ and $x \geq\left((N+1)^{2} /(2 n+1)-1\right) / 2$. Furthermore, if $N / n \rightarrow \gamma \geq 1$ and $x / n \rightarrow \lambda>0$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|R_{2 n}(x)\right| \leq \frac{\gamma}{2 \sqrt{\lambda}} \tag{2.4}
\end{equation*}
$$

Next, we consider the special cases $x=0,1,2$, and $x=N$.
Lemma 2.2. The inequality $\left|R_{2 n}(x)\right| \leq 1$ holds for $x=0,1,2$, and $x=N$.
Proof. The cases $x=0$ and $x=1$ are trivial since $R_{2 n}(0)=1$ and

$$
R_{2 n}(1)=1-\frac{2 n(n+1)}{N(N+2)}
$$

Now let $x=2$. From (2.1) we have

$$
\begin{aligned}
R_{2 n}(2) & =1-\frac{6 n(n+1)}{N(N+2)}+\frac{6(n-1) n(n+1)(n+2)}{(N-1) N(N+2)(N+3)} \\
& =1-\frac{6 n(n+1)(N(N+2)-1-n(n+1))}{N(N+2)(N(N+2)-3)}
\end{aligned}
$$

It is clear that $R_{2 n}(2) \leq 1$. Furthermore, since $t(N(N+2)-1-t) \leq(N(N+$ 2) -1$)^{2} / 4$ when $t$ is between 0 and $N(N+1)$, we get

$$
R_{2 n}(2) \geq 1-\frac{3(N(N+2)-1)^{2}}{2 N(N+2)(N(N+2)-3)}>-1
$$

To verify the last inequality we set $A=N(N+2)-1$. We have to show that $3 A^{2}<4(A+1)(A-2)$, which is equivalent to $(A-2)^{2}-12>0$. This is true since $A \geq 7$ when $N \geq 2$.

At $x=N$, from (2.1) and (1.8) we obtain

$$
\begin{aligned}
R_{2 n}(N) & ={ }_{3} F_{2}\left(\left.\begin{array}{c}
-n, n+1, N+1 \\
1, N+2
\end{array} \right\rvert\, 1\right)=\frac{(-n)_{n}(-N)_{n}}{(1)_{n}(-n-N-1)_{n}} \\
& =(-1)^{n} \frac{N!(N+1)!}{(N-n)!(N+n+1)!}=(-1)^{n} \prod_{j=1}^{n} \frac{N-n+j}{N+1+j}
\end{aligned}
$$

where we applied (1.8). Thus, $\left|R_{2 n}(N)\right| \leq 1$.
Lemma 2.3. The inequality $\left|R_{2 n}(N-1)\right| \leq 1$ holds for every $N \geq 6$.
Proof. Applying (1.7) to $R_{2 n}(x)$ with $a=n+1$ and $d=-N$ we obtain

$$
R_{2 n}(x)=(-1)^{n} \frac{(N-n+1)_{n}}{(N+2)_{n}}{ }_{4} F_{3}\left(\begin{array}{c|c}
-n, n+1,-N+x,-N-x-1 & 1 \\
-N, 1,-N
\end{array}\right)
$$

In particular,

$$
\left|R_{2 n}(N-1)\right|=\frac{(N-n+1)_{n}}{(N+2)_{n}} \frac{|2 n(n+1)-N|}{N} .
$$

Clearly, $\left|R_{2 n}(N-1)\right| \leq 1$ when $n(n+1) \leq N$. So assume that $n(n+1)>N$. We have

$$
\begin{aligned}
\frac{(N-n+1)_{n}}{(N+2)_{n}} & =\prod_{j=0}^{n-1} \frac{N-n+1+j}{N+2+j}=\exp \left(\sum_{j=0}^{n-1} \log \left(1-\frac{n+1}{N+2+j}\right)\right) \\
& \leq \exp \left(-\sum_{j=0}^{n-1} \frac{n+1}{N+2+j}\right) \leq \exp \left(-(n+1) \int_{N+2}^{N+n+2} \frac{1}{u} d u\right) \\
& =\exp \left(-(n+1) \log \frac{N+n+2}{N+2}\right)=\left(1-\frac{n}{N+n+2}\right)^{n+1} \\
& \leq e^{-n(n+1) /(N+n+2)}
\end{aligned}
$$

where we used the inequalities $\log (1-t) \leq-t$ and $1-t \leq e^{-t}$ for $t \in[0,1)$. Thus, it is enough to show that

$$
e^{-n(n+1) /(N+n+2)}(2 n(n+1)-N) / N \leq 1
$$

or equivalently,

$$
\begin{equation*}
-\frac{n(n+1)}{N+n+2}+\log \left(\frac{2 n(n+1)}{N}-1\right) \leq 0 . \tag{2.5}
\end{equation*}
$$

In view of Lemma 2.1 we may assume that $n \leq N / 3-1$. Then, $N+n+2 \leq$ $3 N / 2$ and it is sufficient to verify the inequality

$$
\begin{equation*}
-\frac{2 n(n+1)}{3 N}+\log \left(\frac{2 n(n+1)}{N}-1\right) \leq 0 \tag{2.6}
\end{equation*}
$$

Set $h(t)=-t / 3+\log (t-1)$ with $t=2 n(n+1) / N \geq 2$. We have $h^{\prime}(t)=$ $(4-t) /(3(t-1))$, hence $h(t) \leq h(4)=\log 3-4 / 3<0$ for $t \geq 2$, and (2.6) follows from here.

## 3. Asymptotic estimates

Since $R(n, x, N+1)=R(x, n, N+1)$ we may assume that $x \leq n$. Integrating the generating function (1.6) we obtain

$$
\begin{align*}
R(n, x, N+1)= & \frac{n!^{2}}{(N+2)_{n}(-N)_{n}} \frac{1}{2 \pi i} \int_{\Gamma}{ }_{2} F_{1}\left(\begin{array}{c|c}
-x,-x & t \\
1 & t
\end{array}\right)  \tag{3.1}\\
& \left.\times{ }_{2} F_{1}\binom{-(N-x), N+x+2}{1} t\right) t^{-n-1} d t,
\end{align*}
$$

where $\Gamma$ is a simple closed contour containing 0 in its interior. The ${ }_{2} F_{1}$ functions can be expressed in terms of the Jacobi polynomials

$$
p_{n}^{(\alpha, \beta)}(t)=\frac{(\alpha+1)_{n}}{n!}{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
-n, & n+\alpha+\beta+1  \tag{3.2}\\
\alpha+1
\end{array} \right\rvert\, \frac{1-t}{2}\right) .
$$

From (1.9) we have

$$
\begin{align*}
{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
-x,-x \\
1
\end{array} \right\rvert\, t\right)=(1-t)^{x}{ }_{2} F_{1} & \left(\begin{array}{cc}
-x, x+1 & \frac{t}{t-1}
\end{array}\right)  \tag{3.3}\\
& =(1-t)^{x} P_{x}\left(\frac{1+t}{1-t}\right),
\end{align*}
$$

where $P_{x}=p_{x}^{(0,0)}$ denotes the Legendre polynomial of degree $x$. The second ${ }_{2} F_{1}$ becomes

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
-(N-x), N+x+2 & t  \tag{3.4}\\
1
\end{array}\right)=p_{N-x}^{(0,2 x+1)}(1-2 t) .
$$

1. Asymptotic estimate for fixed $x$. Let $x$ be fixed and $N / n=\gamma_{n} \rightarrow$ $\gamma \geq 1$, as $n \rightarrow \infty$. Taking a limit in (2.1) as $n \rightarrow \infty$ we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} R(n, x, N+1)=\lim _{n \rightarrow \infty} \sum_{k=0}^{x} \frac{(-x)_{k}(x+1)_{k}}{k!^{2}} \frac{(-n)_{k}(n+1)_{k}}{(-N)_{k}(N+2)_{k}} \\
& =\sum_{k=0}^{x} \frac{(-x)_{k}(x+1)_{k}}{k!^{2}} \gamma^{-2 k}={ }_{2} F_{1}\left(\left.\begin{array}{c}
-x, x+1 \\
1
\end{array} \right\rvert\, \gamma^{-2}\right)=P_{x}\left(1-2 \gamma^{-2}\right)
\end{aligned}
$$

The above limit belongs to the interval $[-1,1]$ since the Legendre polynomials $P_{x}$ satisfy $\left|P_{x}(t)\right| \leq 1$ for $-1 \leq t \leq 1$, (see [12, Section 7.21]).
2. Asymptotic estimate for large $x$. Let $x / n=\lambda \in(0,1]$ and $N / n=$ $\gamma>1$ be fixed rational numbers. From [12, Theorem 8.21.7] and [12, Theorem 8.21.9], we have the asymptotic formula

$$
\begin{equation*}
P_{x}(w)=(2 \pi x)^{-1 / 2}\left\{\frac{\left(w+\left(w^{2}-1\right)^{1 / 2}\right)^{1 / 2}}{\left(w^{2}-1\right)^{1 / 4}}+O\left(x^{-1}\right)\right\}\left(w+\left(w^{2}-1\right)^{1 / 2}\right)^{x} \tag{3.5}
\end{equation*}
$$

uniformly on compact subsets of $\mathbf{C} \backslash[-1,1]$. Furthermore, by the BernsteinWalsh lemma [13], $\left|P_{x}(w)\right| \leq\left(w+\left(w^{2}-1\right)^{1 / 2}\right)^{x}$ for every $w \in \mathbf{C}$. Here we use the branch of the logarithmic function defined by $\log z=\log |z|+i \arg (z)$ with $\arg (z) \in(-\pi, \pi), z \in \mathbf{C} \backslash(-\infty, 0]$.

An asymptotic formula for the polynomials $p_{N-x}^{(0,2 x+1)}(1-2 t)$ can be derived using the method of Darboux. We will use the generating function [10]

$$
\begin{equation*}
g(w):=\sum_{n=0}^{\infty} p_{n}^{\left(\alpha_{0}+\alpha n, \beta_{0}+\beta n\right)}(z) w^{n}=\frac{(1+\xi)^{\alpha_{0}+1}(1+\eta)^{\beta_{0}+1}}{1-\alpha \xi-\beta \eta-(1+\alpha+\beta) \xi \eta} \tag{3.6}
\end{equation*}
$$

where
(3.7) $2 \xi=(z+1) w(1+\xi)^{1+\alpha}(1+\eta)^{1+\beta}, \quad 2 \eta=(z-1) w(1+\xi)^{1+\alpha}(1+\eta)^{1+\beta}$,
and $\alpha>-1, \beta>-1, \alpha_{0}$, and $\beta_{0}$ are real constants. This generating function was used in [3] to determine the strong asymptotics of the above Jacobi polynomials on the interval $[-1,1]$.

The generating function in (3.6) has a singularity when

$$
\begin{equation*}
D(\xi):=1-\alpha \xi-\beta \eta-(1+\alpha+\beta) \xi \eta=0 \tag{3.8}
\end{equation*}
$$

From (3.7) we get $\eta=(z-1) \xi /(z+1)$ and (3.8) takes the form

$$
\begin{equation*}
(1+\alpha+\beta)(1-z) \xi^{2}-(\alpha(z+1)+\beta(z-1)) \xi+(z+1)=0 \tag{3.9}
\end{equation*}
$$

If $(1+\alpha+\beta)(1-z) \neq 0$, the roots of (3.9) are

$$
\begin{equation*}
\xi_{ \pm}=\frac{(\alpha+\beta) z+(\alpha-\beta) \pm \sqrt{\triangle}}{2(1+\alpha+\beta)(1-z)} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\triangle=((\alpha+\beta) z+(\alpha-\beta))^{2}-4(\alpha+\beta+1)\left(1-z^{2}\right) \tag{3.11}
\end{equation*}
$$

The corresponding $w$-values are obtained from (3.7):

$$
\begin{equation*}
w_{ \pm}=2 \xi_{ \pm}\left(1+\xi_{ \pm}\right)^{-\alpha-1}\left(1+\eta_{ \pm}\right)^{-\beta-1} /(z+1) \tag{3.12}
\end{equation*}
$$

Now we study the behavior of $g(w)$ near its singularities. From (3.7) we obtain

$$
\begin{equation*}
\xi(1+\xi)(1+\eta) \frac{d w}{d \xi}=w D(\xi) \tag{3.13}
\end{equation*}
$$

hence $d w / d \xi=0$ at $\xi=\xi_{ \pm}$. Differentiating (3.13) with respect to $\xi$ at $\xi=\xi_{ \pm}$ we obtain

$$
\begin{equation*}
2 A_{ \pm}:=\left.\frac{d^{2} w}{d \xi^{2}}\right|_{\xi_{ \pm}}=\frac{w_{ \pm} D^{\prime}\left(\xi_{ \pm}\right)}{\xi_{ \pm}\left(1+\xi_{ \pm}\right)\left(1+\eta_{ \pm}\right)}=\frac{ \pm w_{ \pm} \sqrt{\triangle} /(z+1)}{\xi_{ \pm}\left(1+\xi_{ \pm}\right)\left(1+\eta_{ \pm}\right)} \tag{3.14}
\end{equation*}
$$

Thus, $w-w_{ \pm}=\left(A_{ \pm}+O\left(\xi-\xi_{ \pm}\right)\right)\left(\xi-\xi_{ \pm}\right)^{2}$ as $\xi \rightarrow \xi_{ \pm}$, and therefore,

$$
\begin{equation*}
\xi-\xi_{ \pm}=\left(w-w_{ \pm}\right)^{1 / 2}\left(A_{ \pm}+O\left(\left(w-w_{ \pm}\right)^{1 / 2}\right)\right)^{-1 / 2}, \quad w \rightarrow w_{ \pm} \tag{3.15}
\end{equation*}
$$

From (3.15) it follows that $w_{+}=w_{-}$if and only if $\xi_{+}=\xi_{-}$. Indeed, if $w_{+}=w_{-},(3.15)$ implies $\xi \rightarrow \xi_{+}$as $w \rightarrow w_{+}$, and $\xi \rightarrow \xi_{-}$as $w \rightarrow w_{-}=w_{+}$, hence $\xi_{+}=\xi_{-}$, which is equivalent to $\triangle=0$.

Assume first that $\triangle \neq 0$ and set $B_{ \pm}:=\lim _{w \rightarrow w_{ \pm}}\left(w-w_{ \pm}\right)^{1 / 2} g(w)$. From (3.6) and (3.7) it follows that $B_{ \pm} \neq 0$. Then, we define $w_{0}=w_{+}$and $B_{0}=B_{+}$ if $\left|w_{+}\right| \leq\left|w_{-}\right|$, and $w_{0}=w_{-}$and $B_{0}=B_{-}$if $\left|w_{+}\right|>\left|w_{-}\right|$. The function $g(w)$ is analytic in $|w|<\left|w_{0}\right|$, and in a neighborhood of $w_{ \pm}$,

$$
g(w)=\sum_{n=0}^{\infty} g_{n, \pm}\left(w-w_{ \pm}\right)^{n-1 / 2}
$$

where $g_{n, \pm}=\left.\left(\left(w-w_{ \pm}\right)^{1 / 2} g(w)\right)^{(n)}\right|_{w_{ \pm}} / n$ !. Consider the function $H$ defined by

$$
\begin{align*}
H(w):=g(w)-g_{0,+}(w- & \left.w_{+}\right)^{-1 / 2}-g_{1,+}\left(w-w_{+}\right)^{1 / 2}  \tag{3.16}\\
& -g_{0,-}\left(w-w_{-}\right)^{-1 / 2}-g_{1,-}\left(w-w_{-}\right)^{1 / 2}
\end{align*}
$$

It has a continuous first derivative $h(w)=H^{\prime}(w)$ in $|w| \leq\left|w_{0}\right|$. Let $H(w)=$ $\sum_{n=0}^{\infty} h_{n} w^{n}$ be the power series expansion of $H$ around $w=0$. Using that $h(w)$ is continuous in $|w| \leq\left|w_{0}\right|$ we obtain

$$
\begin{aligned}
(n+1) h_{n+1} & =\lim _{\rho \rightarrow\left|w_{0}\right|, \rho<\left|w_{0}\right|} \frac{1}{2 \pi i} \int_{|w|=\rho} \frac{h(w)}{w^{n+1}} d w \\
& =\frac{1}{2 \pi\left|w_{0}\right|^{n}} \int_{0}^{2 \pi} h\left(\left|w_{0}\right| e^{i \theta}\right) e^{-i n \theta} d \theta
\end{aligned}
$$

For a fixed $z, n h_{n}\left|w_{0}\right|^{n} \rightarrow 0$ as $n \rightarrow \infty$ by the Riemann-Lebesgue lemma. This convergence is uniform with respect to $z$. Indeed, let $E$ be a compact
set. Note that $\tilde{h}(z, \theta):=h\left(\left|w_{0}\right| e^{i \theta}\right)$ is continuous and therefore uniformly continuous on the compact set $E \times[0,2 \pi]$. Let $\epsilon>0$ and choose $\delta>0$ so that $\left|\tilde{h}\left(z_{1}, \theta_{1}\right)-\tilde{h}\left(z_{2}, \theta_{2}\right)\right|<\epsilon / 2 \pi$ whenever $\left|z_{1}-z_{2}\right|+\left|\theta_{1}-\theta_{2}\right|<\delta, z_{1,2} \in E$, $\theta_{1,2} \in[0,2 \pi]$. Let $\left\{z_{i}\right\}_{i=1}^{k} \subset E$ be such that for every $z \in E$ there exists $z_{i}$ such that $\left|z-z_{i}\right|<\delta$. Finally, for each $i=1, \ldots, k$, let $s_{i}(\theta)$ be a step-function with $p_{i}$ steps, such that $\left\|\tilde{h}\left(z_{i}, \theta\right)-s_{i}(\theta)\right\|_{[0,2 \pi]}<\epsilon / 2 \pi$. Then,

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} \tilde{h}(z, \theta) e^{-i n \theta} d \theta\right| \leq\left|\int_{0}^{2 \pi} s_{j}(\theta) e^{-i n \theta} d \theta\right| \\
& +\left|\int_{0}^{2 \pi}\left(\tilde{h}\left(z_{j}, \theta\right)-s_{j}(\theta)\right) e^{-i n \theta} d \theta\right|+\left|\int_{0}^{2 \pi}\left(\tilde{h}(z, \theta)-\tilde{h}\left(z_{j}, \theta\right)\right) e^{-i n \theta} d \theta\right| \\
& \quad \leq \frac{2 \max \left\{p_{i}\right\}_{i=1}^{k} \max \left\{\left\|s_{i}\right\|_{[0,2 \pi]}\right\}_{i=1}^{k}}{n}+2 \epsilon<3 \epsilon
\end{aligned}
$$

if $n$ is large enough. We have shown that $h_{n}=o\left(n^{-1}\left|w_{0}\right|^{-n}\right)$ uniformly on compact sets of the variable $z$. Since $\binom{\nu-1 / 2}{n}=O\left(n^{-\nu-1 / 2}\right)$ and $g_{1, \pm}(z)$ are bounded on compact sets we obtain

$$
\begin{align*}
& p_{n}^{\left(\alpha_{0}+\alpha n, \beta_{0}+\beta n\right)}(z)  \tag{3.17}\\
& =-i\left|\binom{-1 / 2}{n}\right| w_{0}^{-n-1 / 2}\left(B_{0}+B_{1}\left(\frac{w_{0}}{w_{1}}\right)^{n+1 / 2}\right)+o\left(n^{-1}\left|w_{0}\right|^{-n}\right)
\end{align*}
$$

where $B_{1}=\left(B_{+}+B_{-}\right)-B_{0}$ and $w_{1}=\left(w_{+}+w_{-}\right)-w_{0}$. Formula (3.17) holds uniformly on compact sets of the variable $z$.

Similarly, if $\triangle=0$, then $\xi_{+}=\xi_{-}$. At $\xi=\xi_{+}, d^{2} w / d \xi^{2}=0$ and from (3.13) we get

$$
\begin{equation*}
\left.\frac{d^{3} w}{d \xi^{3}}\right|_{\xi_{+}}=\frac{2(1+\alpha+\beta)(1-z) w_{+}}{(z+1) \xi_{+}\left(1+\xi_{+}\right)\left(1+\eta_{+}\right)} \tag{3.18}
\end{equation*}
$$

Hence, $w-w_{+}=O\left(\left(\xi-\xi_{+}\right)^{3}\right)$ and $\xi-\xi_{+}=O\left(\left(w-w_{+}\right)^{1 / 3}\right), w \rightarrow w_{+}$. We set $w_{0}=w_{+}=w_{-}$. Then, $g(w)=\sum_{n=0}^{\infty} g_{n, 0}\left(w-w_{0}\right)^{n-2 / 3}, w \rightarrow w_{0}$, where $g_{n, 0}=\left.\left(\left(w-w_{0}\right)^{2 / 3} g(w)\right)^{(n)}\right|_{w_{0}} / n$ !. Using the function

$$
H(w):=g(w)-g_{0,0}\left(w-w_{0}\right)^{-2 / 3}-g_{1,0}\left(w-w_{0}\right)^{1 / 3}
$$

and the above argument we can show that in the case $\triangle=0$,

$$
\begin{equation*}
p_{n}^{\left(\alpha_{0}+\alpha n, \beta_{0}+\beta n\right)}(z)=e^{-2 \pi i / 3} g_{0,0}\left|\binom{-2 / 3}{n}\right| w_{0}^{-n-2 / 3}+o\left(n^{-1}\left|w_{0}\right|^{-n}\right) \tag{3.19}
\end{equation*}
$$

The factor $w_{0}$ in (3.17) or in (3.19) (the $n$-th root asymptotics) can be found using the asymptotic zero distribution of the polynomials $p_{n}^{\left(\alpha_{0}+\alpha n, \beta_{0}+\beta n\right)}$.

For $\alpha \geq 0$ and $\beta \geq 0$ the Jacobi weight $w_{\alpha, \beta}$ is defined by

$$
w_{\alpha, \beta}(x):=(1-x)^{\alpha}(1+x)^{\beta}, \quad x \in[-1,1] .
$$

The corresponding extremal measure $\mu_{\alpha, \beta}$ has probability density ([11, Section IV.5])

$$
\begin{equation*}
v_{\alpha, \beta}(t)=\frac{(1+\alpha+\beta)}{\pi} \frac{\sqrt{(t-a)(b-t)}}{1-t^{2}}, \quad t \in S_{\alpha, \beta} \tag{3.20}
\end{equation*}
$$

where ([11, Section IV.1]) $S_{\alpha, \beta}$ denotes the interval

$$
\begin{equation*}
[a, b]=\left[\lambda_{2}^{2}-\lambda_{1}^{2}-D^{1 / 2}, \lambda_{2}^{2}-\lambda_{1}^{2}+D^{1 / 2}\right] \tag{3.21}
\end{equation*}
$$

with $\lambda_{1}=\alpha /(1+\alpha+\beta), \lambda_{2}=\beta /(1+\alpha+\beta)$, and $D=\left(1-\left(\lambda_{1}+\lambda_{2}\right)^{2}\right)(1-$ $\left.\left(\lambda_{1}-\lambda_{2}\right)^{2}\right)$. In particular, $a b=2\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)-1$ and $a+b=2\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)$, which yield the identities

$$
\begin{equation*}
\sqrt{(1-a)(1-b)}=\frac{2 \alpha}{1+\alpha+\beta}, \quad \sqrt{(1+a)(1+b)}=\frac{2 \beta}{1+\alpha+\beta} \tag{3.22}
\end{equation*}
$$

The Jacobi polynomials $\left\{p_{n}^{(\alpha, \beta)}\right\}$ are orthogonal with respect to $w_{\alpha, \beta}$ on $[-1,1]$. The normalized zero-counting measure $\nu_{n, \alpha, \beta}$ associated with $p_{n}^{(\alpha, \beta)}$ is the discrete probability measure having mass $1 / n$ at each zero of $p_{n}^{(\alpha, \beta)}$. Let $\gamma_{n}^{(\alpha, \beta)}$ denote the leading coefficient of $p_{n}^{(\alpha, \beta)}$.

THEOREM 3.1. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences of nonnegative numbers satisfying $\alpha_{n} / n \rightarrow 2 \alpha \geq 0$ and $\beta_{n} / n \rightarrow 2 \beta \geq 0$ as $n \rightarrow \infty$. Then,

$$
\begin{equation*}
\nu_{n, \alpha_{n}, \beta_{n}} \rightarrow \mu_{\alpha, \beta}, \quad n \rightarrow \infty \tag{3.23}
\end{equation*}
$$

in the weak-star topology of measures, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(z)^{1 / n}=c_{\alpha, \beta} e^{-u_{\alpha, \beta}(z)} \tag{3.24}
\end{equation*}
$$

uniformly on compact subsets of $\mathbf{C} \backslash S_{\alpha, \beta}$, where

$$
\begin{equation*}
c_{\alpha, \beta}=\lim _{n \rightarrow \infty}\left(\gamma_{n}^{\left(\alpha_{n}, \beta_{n}\right)}\right)^{1 / n}=\frac{(2 \alpha+2 \beta+2)^{2 \alpha+2 \beta+2}}{2(2 \alpha+2 \beta+1)^{2 \alpha+2 \beta+1}} \tag{3.25}
\end{equation*}
$$

and $u_{\alpha, \beta}(z)$ is the complex logarithmic potential defined by

$$
\begin{equation*}
u_{\alpha, \beta}(z):=\int_{S_{\alpha, \beta}} \log \frac{1}{z-t} v_{\alpha, \beta}(t) d t, \quad z \in \mathbf{C} \backslash(-\infty, b] \tag{3.26}
\end{equation*}
$$

A proof of Theorem 3.1 can be found in [9]. Let $U^{\mu}(z):=\int \log 1 / \mid z-$ $t \mid d \mu(t)$ denote the logarithmic potential of a measure $\mu$. We define

$$
\tilde{u}_{\alpha, \beta}(z):=\left\{\begin{array}{l}
u_{\alpha, \beta}(z), \quad z \in \mathbf{C} \backslash(-\infty, b]  \tag{3.27}\\
U^{\mu_{\alpha, \beta}}(z), \quad z \in(-\infty, a)
\end{array}\right.
$$

Lemma 3.2. Let $z \in \mathbf{C} \backslash S_{\alpha / 2, \beta / 2}$. Then, $\left|w_{0}\right|=e^{U^{\mu} \alpha / 2, \beta / 2}(z) / c_{\alpha / 2, \beta / 2}$. Furthermore, if $\left|w_{0}\right|<\left|w_{1}\right|$ or $w_{0}=w_{1}$, then $w_{0}=e^{u_{\alpha / 2, \beta / 2}(z)} / c_{\alpha / 2, \beta / 2}$.

Proof. If $w_{0}=w_{1}$, the statement follows from (3.19) and (3.24). If $w_{0} \neq$ $w_{1}$, from (3.17) and (3.24) it follows that the limit

$$
\begin{equation*}
L:=\lim _{n \rightarrow \infty}\left(1+\frac{B_{1}}{B_{0}}\left(\frac{w_{0}}{w_{1}}\right)^{n+1 / 2}\right)^{1 / n}=w_{0} c_{\alpha / 2, \beta / 2} e^{-u_{\alpha / 2, \beta / 2}(z)} \tag{3.28}
\end{equation*}
$$

exists for every $z \in \mathbf{C} \backslash S_{\alpha / 2, \beta / 2}$. In particular, (3.24) shows that $w_{0} \neq 0$, $z \in \mathbf{C} \backslash S_{\alpha / 2, \beta / 2}$. Note that $L=L(z)$. We will show that $|L|=1$.

From (3.28) and $\left|w_{0}\right| \leq\left|w_{1}\right|$ it follows that $0 \leq|L| \leq 1$ and since $w_{0} \neq 0$, $|L|>0$. Assuming that $|L|<1$ for some $z \in \mathbf{C} \backslash S_{\alpha / 2, \beta / 2}$, from (3.28) we get

$$
\lim _{n \rightarrow \infty}\left(w_{0} / w_{1}\right)^{n+1 / 2}=\lim _{n \rightarrow \infty} B_{0} / B_{1}\left(-1+(L+o(1))^{n}\right)=-B_{0} / B_{1} \neq 0
$$

and therefore, $\left|w_{0}\right|=\left|w_{1}\right|$ and $\left|B_{0}\right|=\left|B_{1}\right|$. Setting $w_{0} / w_{1}=e^{i \theta}$ with $\theta \in$ $[0,2 \pi)$ we obtain

$$
\lim _{n \rightarrow \infty} e^{i n \theta}=-e^{-i \theta / 2} B_{0} / B_{1},
$$

which is possible if and only if $\theta=0$. Then, $w_{0}=w_{1}$, which is a contradiction. Thus, $|L|=1$, that is,

$$
c_{\alpha / 2, \beta / 2}\left|w_{0}\right|=\left|\exp \left(u_{\alpha / 2, \beta / 2}(z)\right)\right|=\exp \left(U^{\mu_{\alpha / 2, \beta / 2}}(z)\right)
$$

If $\left|w_{0}\right|<\left|w_{1}\right|,(3.28)$ yields

$$
L=\lim _{n \rightarrow \infty} \exp \left(\frac{1}{n} \log \left(1+\frac{B_{0}}{B_{1}}\left(w_{0} / w_{1}\right)^{n+1 / 2}\right)\right)=1
$$

The lemma is proved.

We recall that $x=\lambda n$ and $N=\gamma n$ with $\lambda \in(0,1]$ and $\gamma>1$. Without loss of generality we may assume that $\triangle \neq 0$. Indeed, in what follows $\alpha=0$ and $z=1-2 t$. In view of (3.11) the solutions of $\triangle=0$ are $t=0$ and $t=1-\beta^{2} /(\beta+2)^{2}$. The contours $\Gamma$ in (3.1) will be selected so that the size of $|R(n, \lambda n, \gamma n+1)|$ will be determined at a value $t_{1}$ defined by (3.40) that is either a complex number, or a real number larger than $1 / \lambda^{2}>1$.

From (3.1), (3.3), (3.4), (3.5), (3.17), and Lemma 3.2 we obtain:
LEMMA 3.3. The ${ }_{4} F_{3}$ expression $R(n, \lambda n, \gamma n+1)$ has the representation

$$
\begin{equation*}
R(n, \lambda n, \gamma n+1)=\frac{n!^{2}}{(N+2)_{n}(-N)_{n}} \frac{1}{2 \pi i} \int_{\Gamma} A_{n}(t) \exp (n f(t)) d t \tag{3.29}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{n}(t)=\frac{1}{2 t \sqrt{\pi x}}\left(\frac{1+\sqrt{t}}{\sqrt[4]{t}}+O\left(x^{-1}\right)\right) \\
& \times\left(-i\left|\binom{-1 / 2}{N-x}\right|\left(B_{0}+B_{1}\left(\frac{w_{0}(1-2 t)}{w_{1}(1-2 t)}\right)^{N-x+1 / 2}\right)+o\left((N-x)^{-1}\right)\right) \\
& \quad \times\left(\frac{\exp \left(\tilde{u}_{0, \lambda /(\gamma-\lambda)}(1-2 t)\right)}{w_{0}(1-2 t)}\right)^{N-x} w_{0}(1-2 t)^{-1 / 2} \\
& \quad f(t)=-\log t+2 \lambda \log (1+\sqrt{t})-(\gamma-\lambda) \tilde{u}_{0, \lambda /(\gamma-\lambda)}(1-2 t) \tag{3.30}
\end{align*}
$$

and $\Gamma$ is a simple closed contour containing 0 in its interior.
We shall write $A(x) \sim B(x)$ if $A(x) / B(x) \rightarrow 1$ as $x \rightarrow \infty$. Using the asymptotic formula $\Gamma(x+1) \sim(x / e)^{x} \sqrt{2 \pi x}$ we derive

$$
\begin{equation*}
\frac{n!^{2}}{(N+2)_{n}(-N)_{n}} \sim(-1)^{n} \frac{2 \pi \gamma}{\gamma+1}\left(\frac{\gamma-1}{\gamma+1}\right)^{1 / 2}\left(\frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}}\right)^{n} n . \tag{3.31}
\end{equation*}
$$

From (3.31) and Lemma 3.3 we obtain

$$
\begin{equation*}
|R(n, \lambda n, \gamma n+1)| \leq c\left(c_{0, \lambda /(\gamma-\lambda)}^{\gamma-\lambda} \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}}\right)^{n} \int_{\Gamma}|A(t)| e^{n \operatorname{Re} f(t)}|d t| \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
A(t)=\frac{1}{|t| \sqrt{\left|w_{0}(1-2 t)\right|}}\left(\frac{(1+|\sqrt{t}|)}{|t|^{1 / 4}}\left(\left|B_{0}(t)\right|+\left|B_{1}(t)\right|\right)+1\right) \tag{3.33}
\end{equation*}
$$

and

$$
c=c(\lambda, \gamma)=\frac{1}{\sqrt{\lambda(\gamma-\lambda)}} \frac{\gamma}{\gamma+1}\left(\frac{\gamma-1}{\gamma+1}\right)^{1 / 2}
$$

In (3.32) we used that $\left|\binom{-1 / 2}{x}\right| \sim 1 / \sqrt{\pi x}$ for large $x$.
From [11, Section IV.5] we have the formula

$$
\begin{equation*}
\frac{d}{d z} \tilde{u}_{\alpha, \beta}(z)=(1+\alpha+\beta) \frac{\sqrt{(z-a)(z-b)}}{1-z^{2}}-\frac{\alpha}{1-z}+\frac{\beta}{1+z} \tag{3.34}
\end{equation*}
$$

for $z \in \mathbf{C} \backslash[a, b], z \neq \pm 1$, where on $(-\infty, a)$ this is the real derivative of $U^{\mu_{\alpha, \beta}}$ restricted on $(-\infty, a)$.

When $\alpha=0$ and $\beta=\lambda /(\gamma-\lambda)$, from (3.22) we get $(1-a)(1-b)=0$ and $(1+a)(1+b)=4 \lambda^{2} / \gamma^{2}$. Since $a<b \leq 1$, it follows that $b=1$ and $a=2 \lambda^{2} / \gamma^{2}-1$. Formula (3.34) implies

$$
\begin{equation*}
\left.\frac{d}{d z} \tilde{u}_{0, \lambda /(\gamma-\lambda)}(z)\right|_{z=1-2 t}=-\frac{\gamma}{\gamma-\lambda} \frac{\sqrt{t\left(t-b^{*}\right)}}{2 t(1-t)}+\frac{\lambda /(\gamma-\lambda)}{2(1-t)} \tag{3.35}
\end{equation*}
$$

where $b^{*}:=1-\lambda^{2} / \gamma^{2}$. We compute $f^{\prime}(t)$ using (3.30) and (3.35):

$$
\begin{align*}
f^{\prime}(t) & =-\frac{1}{t}+\frac{\lambda}{(1+\sqrt{t}) \sqrt{t}}+\left.2(\gamma-\lambda) \frac{d}{d z} \tilde{u}_{0, \lambda /(\gamma-\lambda)}(z)\right|_{z=1-2 t}  \tag{3.36}\\
& =\frac{t-1+\lambda \sqrt{t}-\gamma \sqrt{t\left(t-b^{*}\right)}}{t(1-t)}=\frac{1}{t}\left(-1+\frac{\left(\lambda-\gamma \sqrt{t-b^{*}}\right) \sqrt{t}}{1-t}\right) \\
& =\frac{1}{t}\left(-1+\frac{\gamma^{2} \sqrt{t}}{\lambda+\gamma \sqrt{t-b^{*}}}\right)
\end{align*}
$$

The solutions of the equation $f^{\prime}(t)=0$ will be used to determine the asymptotics of the integral in (3.32). From (3.36) it follows that $f^{\prime}(t)=0$ is equivalent to

$$
\begin{equation*}
\lambda+\gamma \sqrt{t-b^{*}}=\gamma^{2} \sqrt{t} \tag{3.37}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\gamma^{2}\left(t-b^{*}\right)=\left(\gamma^{2} \sqrt{t}-\lambda\right)^{2} \tag{3.38}
\end{equation*}
$$

and then,

$$
\begin{equation*}
\left(\gamma^{2}-1\right) t-2 \lambda \sqrt{t}+1=0 \tag{3.39}
\end{equation*}
$$

The solutions of (3.39) are

$$
\begin{equation*}
t_{1,2}=\left(\frac{\lambda \pm \sqrt{\lambda^{2}-\gamma^{2}+1}}{\gamma^{2}-1}\right)^{2} \tag{3.40}
\end{equation*}
$$

If $t_{1}$ and $t_{2}$ are complex numbers, at $t=t_{1,2}, \operatorname{Re} \sqrt{t-b^{*}}>0$ by the choice of the square root branch, and $\operatorname{Re}\left(\gamma^{2} \sqrt{t}-\lambda\right)=\lambda /\left(\gamma^{2}-1\right)>0$. Thus, $t_{1,2}$ are the solutions of (3.37) and the equation $f^{\prime}(t)=0$ in this case. If $t_{1}$ and $t_{2}$ are real, (3.38) implies $t_{1,2} \geq b^{*}$. Since $\left(\gamma^{2} \sqrt{t_{1}}-\lambda\right)+\left(\gamma^{2} \sqrt{t_{2}}-\lambda\right)=2 \lambda /\left(\gamma^{2}-1\right)>0$, we get $\gamma^{2} \sqrt{t_{1}}-\lambda>0$, and by (3.37) and (3.36), $f^{\prime}\left(t_{1}\right)=0$. Next,
$\left(\gamma^{2} \sqrt{t_{1}}-\lambda\right)\left(\gamma^{2} \sqrt{t_{2}}-\lambda\right)=\gamma^{4} \sqrt{t_{1} t_{2}}-\gamma^{2} \lambda\left(\sqrt{t_{1}}+\sqrt{t_{2}}\right)+\lambda^{2}=\frac{\gamma^{4}-\left(\gamma^{2}+1\right) \lambda^{2}}{\gamma^{2}-1}$,
which shows that in this case $f^{\prime}\left(t_{2}\right)=0$ if and only if $\lambda \leq \gamma^{2} / \sqrt{\gamma^{2}+1}$.
We will use the following formula for $u_{\alpha, \beta}$ from [11, Section IV.5]:

$$
\begin{align*}
u_{\alpha, \beta}(z)= & -\alpha \log \left(\frac{\zeta-\zeta_{+}}{\zeta_{+} \zeta-1}\right)-\beta \log \left(\frac{\zeta-\zeta_{-}}{\zeta_{-} \zeta-1}\right)  \tag{3.41}\\
& -(\alpha+\beta+1) \log \zeta+\alpha \log (1-z)+\beta \log (1+z)+F_{\alpha, \beta}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta=\phi(z)=\frac{2 z-a-b+2 \sqrt{(z-a)(z-b)}}{b-a}=\frac{(\sqrt{z-a}+\sqrt{z-b})^{2}}{b-a} \tag{3.42}
\end{equation*}
$$

$\zeta_{+}=\phi(1), \zeta_{-}=\phi(-1), a$ and $b$ are defined with (3.21), and $F_{\alpha, \beta}$ is a real constant. Note that $u_{\alpha, \beta}(z) \sim-\log z$ and $\zeta \sim 4 z /(b-a)$ as $z \rightarrow \infty$. Thus, taking real parts in (3.41) and then letting $z \rightarrow \infty$ we get

$$
\begin{equation*}
F_{\alpha, \beta}=-\alpha \log \left|\zeta_{+}\right|-\beta \log \left|\zeta_{-}\right|+(\alpha+\beta+1) \log (4 /(b-a)) \tag{3.43}
\end{equation*}
$$

From (3.42) and (3.43) we obtain

$$
\begin{align*}
& F_{\alpha, \beta}=(\alpha+\beta+1) \log 4-\log (b-a)  \tag{3.44}\\
&-2 \alpha \log |\sqrt{1-a}+\sqrt{1-b}|-2 \beta \log |\sqrt{1+a}+\sqrt{1+b}| .
\end{align*}
$$

When $\alpha=0$ and $\beta=\lambda /(\gamma-\lambda)$, we have $a=2 \lambda^{2} / \gamma^{2}-1, b=1$, and then,

$$
\begin{align*}
F_{1}: & =e^{-(\gamma-\lambda) F_{0, \lambda /(\gamma-\lambda)}}=4^{-\gamma}\left(2\left(1-\lambda^{2} / \gamma^{2}\right)\right)^{\gamma-\lambda}(\sqrt{2}(1+\lambda / \gamma))^{2 \lambda}  \tag{3.45}\\
& =2^{-\gamma}(1-\lambda / \gamma)^{\gamma-\lambda}(1+\lambda / \gamma)^{\gamma+\lambda}
\end{align*}
$$

From (3.42) we get

$$
\begin{equation*}
\zeta_{-}=-\frac{(1+\lambda / \gamma)^{2}}{\left(1-\lambda^{2} / \gamma^{2}\right)} \tag{3.46}
\end{equation*}
$$

Furthermore, (3.41) and the identity ([11, Section IV.5])

$$
\left(\zeta-\zeta_{ \pm}\right)\left(\zeta_{ \pm} \zeta-1\right)=4(z \mp 1) \zeta_{ \pm} \zeta /(b-a)
$$

yield

$$
\begin{align*}
e^{-(\gamma-\lambda) u_{0, \lambda /(\gamma-\lambda)}(z)} & =F_{1}(1+z)^{-\lambda}\left(\frac{\zeta-\zeta_{-}}{\zeta_{-} \zeta-1}\right)^{\lambda} \zeta^{\gamma}  \tag{3.47}\\
& =F_{1}((b-a) / 4)^{\lambda} \zeta_{-}^{-\lambda}\left(\frac{\zeta-\zeta_{-}}{1+z}\right)^{2 \lambda} \zeta^{\gamma-\lambda}
\end{align*}
$$

Hence, from (3.30), (3.47), and (3.46) with $z=1-2 t$ it follows that

$$
\begin{equation*}
e^{f(t)}=F_{1}(-2)^{-\lambda}(1-\lambda / \gamma)^{2 \lambda} \frac{1}{t}\left(\frac{\zeta-\zeta_{-}}{2(1-\sqrt{t})}\right)^{2 \lambda} \zeta^{\gamma-\lambda} \tag{3.48}
\end{equation*}
$$

Note that by (3.25),

$$
\begin{equation*}
c_{0, \lambda /(\gamma-\lambda)}^{\gamma-\lambda}=\frac{2^{\gamma+\lambda} \gamma^{2 \gamma}}{(\gamma-\lambda)^{\gamma-\lambda}(\gamma+\lambda)^{\gamma+\lambda}} . \tag{3.49}
\end{equation*}
$$

The product of the constant factors that are raised to power $n$ in (3.32) can be computed using (3.45), (3.48), and (3.49):

$$
\begin{equation*}
F:=c_{0, \lambda /(\gamma-\lambda)}^{\gamma-\lambda} \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}} F_{1} 2^{-\lambda}(1-\lambda / \gamma)^{2 \lambda}=\frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}}(1-\lambda / \gamma)^{2 \lambda} \tag{3.50}
\end{equation*}
$$

Lemma 3.4. The function $F(t):=c_{0, \lambda /(\gamma-\lambda)}^{\gamma-\lambda} \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}} e^{f(t)}$ satisfies

$$
\begin{equation*}
\left|F\left(t_{1}\right) F\left(t_{2}\right)\right|=1 \tag{3.51}
\end{equation*}
$$

Proof. From (3.39) we obtain the identities

$$
\begin{align*}
\sqrt{t_{1}}+\sqrt{t_{2}} & =2 \lambda /\left(\gamma^{2}-1\right), \quad \sqrt{t_{1} t_{2}}=1 /\left(\gamma^{2}-1\right),  \tag{3.52}\\
t_{1}+t_{2} & =2\left(2 \lambda^{2}-\gamma^{2}+1\right) /\left(\gamma^{2}-1\right)^{2}
\end{align*}
$$

From (3.42) with $z=1-2 t, a=2 \lambda^{2} / \gamma^{2}-1$, and $b=1$ we get

$$
\begin{equation*}
\zeta=\frac{1-2 t-\lambda^{2} / \gamma^{2}-2 \sqrt{t\left(t-1+\lambda^{2} / \gamma^{2}\right)}}{1-\lambda^{2} / \gamma^{2}} \tag{3.53}
\end{equation*}
$$

In particular, at $t=t_{1,2}$, equations (3.53), (3.36), and (3.39) yield

$$
\begin{align*}
\zeta(t) & =\frac{1-2 t-\lambda^{2} / \gamma^{2}-2(t-1+\lambda \sqrt{t}) / \gamma}{1-\lambda^{2} / \gamma^{2}}  \tag{3.54}\\
& =\frac{\gamma^{2}-\lambda^{2}-\gamma\left((\gamma+1)^{2} t-1\right)}{\gamma^{2}-\lambda^{2}}
\end{align*}
$$

Furthermore, using (3.54) and (3.46), at $t=t_{1,2}$ we obtain

$$
\begin{align*}
r(t) & :=\frac{\zeta-\zeta_{-}}{2(1-\sqrt{t})}  \tag{3.55}\\
& =\frac{1-2 t-\lambda^{2} / \gamma^{2}-2(t-1+\lambda \sqrt{t}) / \gamma+(1+\lambda / \gamma)^{2}}{2\left(1-\lambda^{2} / \gamma^{2}\right)(1-\sqrt{t})} \\
& =\frac{(1+1 / \gamma)(1-t)+\lambda(1-\sqrt{t}) / \gamma}{\left(1-\lambda^{2} / \gamma^{2}\right)(1-\sqrt{t})}=\frac{(\gamma+1)(1+\sqrt{t})+\lambda}{\gamma\left(1-\lambda^{2} / \gamma^{2}\right)}
\end{align*}
$$

We evaluate the product $\zeta\left(t_{1}\right) \zeta\left(t_{2}\right)$ using (3.54) and (3.52):

$$
\begin{aligned}
\left(\gamma^{2}-\lambda^{2}\right)^{2} \zeta\left(t_{1}\right) \zeta\left(t_{2}\right)= & \left(\gamma^{2}-\lambda^{2}\right)^{2}-\gamma\left(\gamma^{2}-\lambda^{2}\right)\left[(\gamma+1)^{2}\left(t_{1}+t_{2}\right)-2\right] \\
& \quad+\gamma^{2}\left[(\gamma+1)^{4} t_{1} t_{2}-(\gamma+1)^{2}\left(t_{1}+t_{2}\right)+1\right] \\
= & \left(\gamma^{2}-\lambda^{2}\right)^{2}-4 \gamma\left(\gamma^{2}-\lambda^{2}\right)\left(\lambda^{2}-\gamma^{2}+\gamma\right) /(\gamma-1)^{2} \\
& \quad+4 \gamma^{2}\left(\gamma^{2}-\lambda^{2}\right) /(\gamma-1)^{2} \\
= & \left(\gamma^{2}-\lambda^{2}\right)^{2}\left(1+4 \gamma /(\gamma-1)^{2}\right)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\zeta\left(t_{1}\right) \zeta\left(t_{2}\right)=\frac{(\gamma+1)^{2}}{(\gamma-1)^{2}} \tag{3.56}
\end{equation*}
$$

Next, we evaluate the product $r\left(t_{1}\right) r\left(t_{2}\right)$ using (3.55) and (3.52):

$$
\begin{aligned}
\left(\gamma^{2}\right. & \left.-\lambda^{2}\right)^{2} r\left(t_{1}\right) r\left(t_{2}\right) / \gamma^{2} \\
& =(\gamma+\lambda+1)^{2}+(\gamma+\lambda+1)(\gamma+1)\left(\sqrt{t_{1}}+\sqrt{t_{2}}\right)+(\gamma+1)^{2} \sqrt{t_{1} t_{2}} \\
& =\left[(\gamma-1)(\gamma+\lambda+1)^{2}+2 \lambda(\gamma+\lambda+1)+\gamma+1\right] /(\gamma-1) \\
& =\left[(\gamma-1)\left((\gamma+1)^{2}+2 \lambda(\gamma+1)+\lambda^{2}\right)+(2 \lambda+1)(\gamma+1)+2 \lambda^{2}\right] /(\gamma-1) \\
& =(\gamma+1)\left[\left(\gamma^{2}-1\right)+2 \lambda(\gamma-1)+\lambda^{2}+2 \lambda+1\right] /(\gamma-1) \\
& =(\gamma+\lambda)^{2}(\gamma+1) /(\gamma-1)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
r\left(t_{1}\right) r\left(t_{2}\right)=\frac{\gamma^{2}(\gamma+1)}{(\gamma-\lambda)^{2}(\gamma-1)} \tag{3.57}
\end{equation*}
$$

Finally, (3.48), (3.50), (3.52), (3.56), and (3.57) yield

$$
\begin{aligned}
F\left(t_{1}\right) F\left(t_{2}\right)= & (-1)^{-2 \lambda} F^{2}\left(t_{1} t_{2}\right)^{-1}\left(r\left(t_{1}\right) r\left(t_{2}\right)\right)^{2 \lambda}\left(\zeta\left(t_{1}\right) \zeta\left(t_{2}\right)\right)^{\gamma-\lambda} \\
= & (-1)^{-2 \lambda} \frac{(\gamma-1)^{2(\gamma-1)}}{(\gamma+1)^{2(\gamma+1)}} \frac{(\gamma-\lambda)^{4 \lambda}}{\gamma^{4 \lambda}}\left(\gamma^{2}-1\right)^{2} \\
& \times \frac{\gamma^{4 \lambda}(\gamma+1)^{2 \lambda}}{(\gamma-\lambda)^{4 \lambda}(\gamma-1)^{2 \lambda}} \frac{(\gamma+1)^{2(\gamma-\lambda)}}{(\gamma-1)^{2(\gamma-\lambda)}} \\
= & (-1)^{-2 \lambda}
\end{aligned}
$$

and (3.51) follows.
In the proof of our main result below we will use the following lemma.
LEmma 3.5. Let $f$ be analytic function in a domain $D, u=\operatorname{Re}(f)$, and $z=r e^{i \theta}$. Then,

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\operatorname{Re}\left(z f^{\prime}(z)\right) / r, \quad \frac{\partial u}{\partial \theta}=-\operatorname{Im}\left(z f^{\prime}(z)\right) \tag{3.58}
\end{equation*}
$$

Proof. Let $f=u+i v$ and $z=e^{i \theta}=x+i y$. Then, with $u_{x}=\partial u / \partial x$ and $u_{y}=\partial u / \partial y$ we have

$$
\frac{\partial u}{\partial r}=u_{x} \cos \theta+u_{y} \sin \theta=\left(x u_{x}+y u_{y}\right) / r=\operatorname{Re}\left((x+i y)\left(u_{x}-i u_{y}\right)\right) / r
$$

and

$$
\frac{\partial u}{\partial \theta}=-u_{x}(r \sin \theta)+u_{y}(r \cos \theta)=-y u_{x}+x u_{y}=-\operatorname{Im}\left((x+i y)\left(u_{x}-i u_{y}\right)\right)
$$

Then (3.58) follows since $u_{x}-i u_{y}=u_{x}+i v_{x}=f^{\prime}(z)$ by the Cauchy-Riemann equations.

We will also use a theorem based on the Laplace method from [8, Theorem 3.7.1].

THEOREM 3.6. Let $p(\tau)$ and $q(\tau)$ be functions defined on an interval $(a, b)$ that satisfy the following conditions:
(a) $p(\tau)<p(a)$ when $\tau \in(a, b)$, and for every $c \in(a, b)$ the infimum of $p(a)-p(\tau)$ in $[c, b)$ is positive.
(b) $p^{\prime}(\tau)$ and $q(\tau)$ are continuous in a neighborhood of a, except possibly at $a$.
(c) As $\tau \rightarrow$ a from the right,

$$
p(\tau)-p(a) \sim P(\tau-a)^{\nu}, \quad q(\tau) \sim Q
$$

and the first of these relations is differentiable. Here $P<0$ and $\nu>0$ are constants.
(d) The integral

$$
I(n)=\int_{a}^{b} q(\tau) e^{n p(\tau)} d \tau
$$

converges absolutely throughout its range for all sufficiently large $n$.
Then,

$$
I(n) \sim \frac{Q}{\nu} \Gamma\left(\frac{1}{\nu}\right) \frac{e^{n p(a)}}{(-P n)^{1 / \nu}}, \quad n \rightarrow \infty
$$

Next, we determine the set $\left\{t: \operatorname{Im}\left(t f^{\prime}(t)\right)=0\right\}$ for the function $f(t)$ defined with (3.30). For $t \in \mathbf{C} \backslash\left(-\infty, b^{*}\right]$ we set

$$
\begin{equation*}
t=J(w):=\frac{b^{*}}{4}\left(w+\frac{1}{w}\right)^{2}, \quad w=R e^{i \theta}, \quad R>1, \quad \theta \in(-\pi / 2, \pi / 2) \tag{3.59}
\end{equation*}
$$

Then, $t-b^{*}=\left(b^{*} / 4\right)(w-1 / w)^{2}$. Substituting in (3.36) we obtain

$$
\begin{align*}
t f^{\prime}(t) & =-1+\frac{\gamma^{2} \sqrt{b^{*}}\left(w^{2}+1\right)}{2 \lambda w+\gamma \sqrt{b^{*}}\left(w^{2}-1\right)}=-1+\frac{\gamma\left(w^{2}+1\right)}{w^{2}+\delta w-1}  \tag{3.60}\\
& =-1+\gamma+\frac{\gamma(2-\delta w)}{w^{2}+\delta w-1}=-1+\gamma\left(1+\frac{w_{1}}{w-w_{1}}+\frac{w_{2}}{w-w_{2}}\right) \\
& =-1+\gamma\left(1+\frac{w_{1}\left(\bar{w}-w_{1}\right)}{\left|w-w_{1}\right|^{2}}+\frac{w_{2}\left(\bar{w}-w_{2}\right)}{\left|w-w_{2}\right|^{2}}\right)
\end{align*}
$$

where $\delta:=2 \lambda /\left(\gamma \sqrt{b^{*}}\right)=2 \lambda / \sqrt{\gamma^{2}-\lambda^{2}}$ and $w^{2}+\delta w-1=\left(w-w_{1}\right)\left(w-w_{2}\right)$. Note that the numbers $w_{1,2}=(-\lambda \pm \gamma) / \sqrt{\gamma^{2}-\lambda^{2}}$ are real. From (3.60) it follows that

$$
\operatorname{Im}\left(t f^{\prime}(t)\right)=-\gamma\left(\frac{w_{1}}{\left|w-w_{1}\right|^{2}}+\frac{w_{2}}{\left|w-w_{2}\right|^{2}}\right) R \sin \theta
$$

Thus, $\operatorname{Im}\left(t f^{\prime}(t)\right)=0$ is equivalent to $\sin \theta=0$, that is, $t \in\left(b^{*}, \infty\right)$, or

$$
w_{1}\left|w-w_{2}\right|^{2}+w_{2}\left|w-w_{1}\right|^{2}=0
$$

Since $w_{1}+w_{2}=-\delta$ and $w_{1} w_{2}=-1$, the last equation becomes

$$
\begin{align*}
w_{1}\left(R^{2}+w_{2}^{2}\right. & \left.-2 R w_{2} \cos \theta\right)+w_{2}\left(R^{2}+w_{1}^{2}-2 R w_{1} \cos \theta\right)  \tag{3.61}\\
& =-\delta R^{2}+4 R \cos \theta+\delta=0
\end{align*}
$$

which represents a circle $\tilde{C}$ with center $2 / \delta$ and radius $\tilde{r}=\sqrt{4 / \delta^{2}+1}=\gamma / \lambda$. Setting $\tilde{C}_{+}:=\{w \in \tilde{C}: \operatorname{Re}(w)>0\}$ we obtain:

Lemma 3.7. The zero set of $\operatorname{Im}\left(t f^{\prime}(t)\right)$ is the set $\left(b^{*}, \infty\right) \cup J\left(\tilde{C}_{+}\right)$.
The set $J\left(\tilde{C}_{+}\right)$has an interesting property. If $t=t(\theta)=J(w)$, where $w=R e^{i \theta}$ and $R=R(\theta)>1$ is the solution of (3.61), then $|t(\theta)|$ decreases as $|\theta| \in[0, \pi / 2)$ increases. This can be seen as follows: For $t \in J\left(\tilde{C}_{+}\right)$,

$$
t(\theta)=J\left(R e^{i \theta}\right)=\frac{b^{*}}{4}((R+1 / R) \cos \theta+i(R-1 / R) \sin \theta)^{2}
$$

and from (3.61) we have $R-1 / R=\left(R^{2}-1\right) / R=4 \cos \theta / \delta$. Therefore,

$$
\begin{align*}
\left(4 / b^{*}\right)|t(\theta)| & =(R+1 / R)^{2} \cos ^{2} \theta+(R-1 / R)^{2} \sin ^{2} \theta  \tag{3.62}\\
& =R^{2}+1 / R^{2}+2 \cos 2 \theta=\left(16 / \delta^{2}\right) \cos ^{2} \theta+2+2 \cos 2 \theta \\
& =4\left(4 / \delta^{2}+1\right) \cos ^{2} \theta=4\left(\gamma^{2} / \lambda^{2}\right) \cos ^{2} \theta
\end{align*}
$$

which is a decreasing function of $|\theta| \in[0, \pi / 2)$. In particular, since the set $J\left(\tilde{C}_{+}\right)$is symmetric about the real line, every circle $C_{r}$ with center at the origin and radius $r>0$ intersects that set at most twice.

The main result of this paper is the following theorem:
Theorem 3.8. Let $\lambda \in(0,1]$ and $\gamma>1$ be fixed rational numbers. Then, $R(n, \lambda n, \gamma n+1) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. From (3.36) we obtain

$$
\begin{equation*}
\left(t f^{\prime}(t)\right)^{\prime}=f^{\prime}(t)+t f^{\prime \prime}(t)=\frac{\gamma^{2}\left(\frac{\lambda+\gamma \sqrt{t-b^{*}}}{2 \sqrt{t}}-\frac{\gamma \sqrt{t}}{2 \sqrt{t-b^{*}}}\right)}{\left(\lambda+\gamma \sqrt{t-b^{*}}\right)^{2}}, t \notin\left(-\infty, b^{*}\right] \tag{3.63}
\end{equation*}
$$

At $t=t_{1,2}, f^{\prime}(t)=0$ and (3.63) and (3.37) yield

$$
\begin{equation*}
2 t^{2} f^{\prime \prime}(t)=1-\frac{\sqrt{t}}{\gamma^{2} \sqrt{t}-\lambda}=\frac{\left(\gamma^{2}-1\right) \sqrt{t}-\lambda}{\gamma^{2} \sqrt{t}-\lambda}, \quad t=t_{1,2} \tag{3.64}
\end{equation*}
$$

We consider three cases separately.
Case 1. The numbers $t_{1,2}$ in (3.40) are complex. In this case $D:=\lambda^{2}+1-$ $\gamma^{2}<0$ and $\sqrt{t_{1,2}}=(\lambda \pm i \sqrt{|D|}) /\left(\gamma^{2}-1\right)$. We set $t=t_{1} e^{i \tau}$. Then, as $\tau \rightarrow 0$, $t-t_{1}=t_{1}\left(i \tau-\tau^{2} / 2+O\left(\tau^{3}\right)\right)$ and

$$
\begin{aligned}
f(t) & =f\left(t_{1}\right)+\left(t-t_{1}\right)^{2} f^{\prime \prime}\left(t_{1}\right) / 2+O\left(\left(t-t_{1}\right)^{3}\right) \\
& =f\left(t_{1}\right)+\left(-\tau^{2}-i \tau^{3}+O\left(\tau^{4}\right)\right) t_{1}^{2} f^{\prime \prime}\left(t_{1}\right) / 2+O\left(\tau^{3}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\operatorname{Re}\left(f(t)-f\left(t_{1}\right)\right)=-\tau^{2} \operatorname{Re}\left(t_{1}^{2} f^{\prime \prime}\left(t_{1}\right)\right) / 2+O\left(\tau^{3}\right), \quad \tau \rightarrow 0 \tag{3.65}
\end{equation*}
$$

Now from (3.64) we get

$$
2 t_{1}^{2} f^{\prime \prime}\left(t_{1}\right)=\frac{i \sqrt{|D|}}{\gamma^{2}(\lambda+i \sqrt{|D|}) /\left(\gamma^{2}-1\right)-\lambda}=\frac{i\left(\gamma^{2}-1\right) \sqrt{|D|}}{\lambda+i \gamma^{2} \sqrt{|D|}}
$$

and (3.65) becomes

$$
\begin{equation*}
\operatorname{Re}\left(f(t)-f\left(t_{1}\right)\right)=-\frac{\left(\gamma^{2}-1\right) \gamma^{2}|D|}{4\left(\lambda^{2}+\gamma^{4}|D|\right)} \tau^{2}+O\left(\tau^{3}\right), \quad \tau \rightarrow 0 \tag{3.66}
\end{equation*}
$$

Hence, $\operatorname{Re}\left(f\left(t_{1}\right)\right)$ is a local maximum of $\operatorname{Re}(f(t))$ on the circle $C_{\left|t_{1}\right|}$. Note that in this case $t_{2}=\bar{t}_{1}$ and by (3.64) the real parts of $t_{1}^{2} f^{\prime \prime}\left(t_{1}\right)$ and $t_{2}^{2} f^{\prime \prime}\left(t_{2}\right)$ are the same. Since $C_{\left|t_{1}\right|} \cap J\left(\tilde{C}_{+}\right)=\left\{t_{1}, t_{2}\right\}$, using Lemmas 3.5 and 3.7 we obtain $\operatorname{Re}(f(t))<\operatorname{Re}\left(f\left(t_{1}\right)\right)$ for every $t \in C_{\left|t_{1}\right|}, t \neq t_{1,2}$. We choose the contour of integration in (3.32) to be $\Gamma=C_{\left|t_{1}\right|}$ in this case. To apply Theorem 3.6 we set (for all cases)

$$
p(\tau):=\log |F(t(\tau))|, \quad q(\tau):=|A(t(\tau))|
$$

where $F(t)$ is the function defined in Lemma 3.4 and $t=t(\tau)$ is a suitable parametrization of the contour $\Gamma$ or part of $\Gamma$. In this case it is enough to consider $t(\tau)=t_{1} e^{i \tau}$ with $\tau \in[0, \pi)$. Then, $P=-\operatorname{Re}\left(t_{1}^{2} f^{\prime \prime}\left(t_{1}\right)\right) / 2<0, \nu=2$, and $Q=\left|A\left(t_{1}\right)\right|$. It is clear that all conditions of Theorem 3.6 are satisfied, including (d), which follows from Lemma 3.4 and the choice of the contour $\Gamma$. From (3.32), Theorem 3.6, and Lemma 3.4 we get

$$
\begin{equation*}
|R(n, \lambda n, \gamma n+1)|=O\left(\frac{\left|A\left(t_{1}\right)\right| \cdot\left|F\left(t_{1}\right)\right|^{n}}{\sqrt{n}}\right)=O\left(\frac{1}{\sqrt{n}}\right) . \tag{3.67}
\end{equation*}
$$

Case 2. The numbers $t_{1,2}$ are real and $t_{1} \neq t_{2}$. Now we have $D>0$, $\sqrt{t_{1,2}}=(\lambda \pm \sqrt{D}) /\left(\gamma^{2}-1\right)$, and by (3.38), $t_{1}>t_{2}>b^{*}$. From (3.64), at $t=t_{1,2}$ we get

$$
\begin{equation*}
2 t^{2} f^{\prime \prime}(t)=\frac{ \pm\left(\gamma^{2}-1\right) \sqrt{D}}{\lambda \pm \gamma^{2} \sqrt{D}} \tag{3.68}
\end{equation*}
$$

In particular, $f^{\prime \prime}\left(t_{1}\right)>0$. Furthermore, if $f^{\prime}\left(t_{2}\right)=0$, then $\gamma^{4} \geq\left(\gamma^{2}+1\right) \lambda^{2}$, which implies $\lambda^{2} \geq \gamma^{4} D$ and by (3.68), $f^{\prime \prime}\left(t_{2}\right)<0$ or it is undefined. Then, $f\left(t_{1}\right)<f\left(t_{2}\right)$ and by Lemma 3.4, $F\left(t_{1}\right)<1$. We set $t=t_{1} e^{i \tau}$ and using that $f^{\prime}(t)=\left(t-t_{1}\right) f^{\prime \prime}\left(t_{1}\right)+O\left(\left(t-t_{1}\right)^{2}\right)$ as $\tau \rightarrow 0, \tau>0$ and Lemma 3.5 we obtain

$$
\begin{align*}
\frac{d}{d \tau} \operatorname{Re}(f(t)) & =-\operatorname{Im}\left(t_{1}^{2}\left(e^{2 i \tau}-e^{i \tau}\right) f^{\prime \prime}\left(t_{1}\right)\right)+O\left(\tau^{2}\right)  \tag{3.69}\\
& =-\frac{\left(\gamma^{2}-1\right) \sqrt{D}}{2\left(\lambda+\gamma^{2} \sqrt{D}\right)} \tau+O\left(\tau^{2}\right), \quad \tau \rightarrow 0, \quad \tau>0
\end{align*}
$$

Thus, $\operatorname{Re}(f(t))$ has a local maximum at $t_{1}$ on the circle $C_{\left|t_{1}\right|}$. Furthermore, by (3.62),

$$
\begin{equation*}
t^{*}:=\max \left\{|t|: t \in J\left(\tilde{C}_{+}\right)\right\}=\frac{\gamma^{2}-\lambda^{2}}{\lambda^{2}}<\frac{1}{\lambda^{2}}<\frac{1}{\gamma^{2}-1}=\sqrt{t_{1} t_{2}}<t_{1} \tag{3.70}
\end{equation*}
$$

in this case, and therefore, $C_{\left|t_{1}\right|} \cap J\left(\tilde{C}_{+}\right)=\emptyset$. From Lemmas 3.5 and 3.7 it follows that $\operatorname{Re}(f(t))<\operatorname{Re}\left(f\left(t_{1}\right)\right)$ for every $t \in C_{\left|t_{1}\right|}, t \neq t_{1}$, and we again select the contour $\Gamma$ in (3.32) to be the circle $C_{\left|t_{1}\right|}$. As in Case 1, we use the parametrization $t(\tau)=t_{1} e^{i \tau}, \tau \in[0, \pi)$, and the same $P, \nu$, and $Q$. From (3.32), Theorem 3.6, and Lemma 3.4 it follows that

$$
\begin{equation*}
|R(n, \lambda n, \gamma n+1)|=O\left(\frac{F\left(t_{1}\right)^{n}}{\sqrt{n}}\right) \tag{3.71}
\end{equation*}
$$

Case 3. The numbers $t_{1,2}$ are equal. In this case $\gamma^{2}=\lambda^{2}+1$ and $t_{1}=t_{2}=$ $1 / \lambda^{2}$. From (3.36) we have $f^{\prime}(t)=N(t) / S(t)$ with

$$
N(t):=\gamma^{2} \sqrt{t}-\gamma \sqrt{t-b^{*}}-\lambda, \quad S(t):=t\left(\lambda+\gamma \sqrt{t-b^{*}}\right)
$$

Differentiating the equation $S f^{\prime}=N$ twice we get $S^{\prime \prime} f^{\prime}+2 S^{\prime} f^{\prime \prime}+S f^{\prime \prime \prime}=N^{\prime \prime}$. At $t=t_{1}$ we have $f^{\prime}(t)=0, f^{\prime \prime}(t)=0, \sqrt{t-b^{*}}=1 /(\gamma \lambda)$, and $S(t)=\gamma^{2} / \lambda^{3}$. Therefore, at $t=t_{1}$ we obtain

$$
\begin{align*}
f^{\prime \prime \prime}(t) & =\frac{N^{\prime \prime}(t)}{S(t)}=\left(-\frac{\gamma^{2}}{4 t^{3 / 2}}+\frac{\gamma}{4\left(t-b^{*}\right)^{3 / 2}}\right) \frac{1}{S(t)}  \tag{3.72}\\
& =-(\gamma / 4)\left(\lambda^{3} \gamma-\lambda^{3} \gamma^{3}\right) \lambda^{3} / \gamma^{2}=\lambda^{8} / 4
\end{align*}
$$

By Taylor's theorem,

$$
\begin{equation*}
f(t)=f\left(t_{1}\right)+\left(t-t_{1}\right)^{3} f^{\prime \prime \prime}\left(t_{1}\right) / 6+O\left(\left(t-t_{1}\right)^{4}\right), \quad t \rightarrow t_{1}, \quad t \in \mathbf{R} \tag{3.73}
\end{equation*}
$$

and since $f^{\prime \prime \prime}\left(t_{1}\right)>0$, it follows that on the interval $\left(t_{1}, \infty\right), f(t)$ is increasing.
Setting $t=t_{1}+s e^{i \pi / 3}$ with $s>0$ in the Taylor series for $f^{\prime}$ we obtain

$$
f^{\prime}(t)=\left(t-t_{1}\right)^{2} f^{\prime \prime \prime}\left(t_{1}\right) / 2+O\left(\left(t-t_{1}\right)^{3}\right)=s^{2} e^{2 i \pi / 3} \lambda^{8} / 8+O\left(s^{3}\right), \quad s \rightarrow 0
$$

and then,

$$
\begin{aligned}
\frac{d}{d s} \operatorname{Re}\left(f\left(t_{1}+s e^{i \pi / 3}\right)\right) & =\operatorname{Re}\left(\frac{d}{d s} f\left(t_{1}+s e^{i \pi / 3}\right)\right)=\operatorname{Re}\left(f^{\prime}(t) d t / d s\right) \\
& =\operatorname{Re}\left(s^{2} e^{i \pi} \lambda^{8} / 8+O\left(s^{3}\right)\right)=-s^{2} \lambda^{8} / 8+O\left(s^{3}\right), \quad s \rightarrow 0
\end{aligned}
$$

which shows that $\operatorname{Re}\left(f\left(t_{1}+s e^{i \pi / 3}\right)\right)$ is decreasing on an interval $(0, h)$ for some $h>0$. We set

$$
r:=\left|t_{1}+h e^{i \pi / 3}\right|=\sqrt{t_{1}^{2}+h^{2}+t_{1} h}>t_{1}=t^{*}
$$

where $t^{*}$ is the number defined with (3.70). By the definitions of $r$ and $t^{*}$ it follows that $C_{r} \cap J\left(\tilde{C}_{+}\right)=\emptyset$, and therefore, $\operatorname{Re}(f(t))$ is monotone on each of the semicircles $C_{r}^{ \pm}=\left\{r e^{ \pm i \theta}: \theta \in(0, \pi)\right\}$. Since

$$
\operatorname{Re}(f(r))>\operatorname{Re}\left(f\left(t_{1}\right)\right)>\operatorname{Re}\left(f\left(t_{1}+h e^{i \pi / 3}\right)\right)
$$

and $\operatorname{Re}(f(\bar{t}))=\operatorname{Re}(f(t))$, the functions $\operatorname{Re}\left(f\left(r e^{ \pm i \theta}\right)\right)$ are decreasing on $(0, \pi)$.
In Case 3 we choose the contour $\Gamma$ in (3.32) to be the union of the arc $\left\{t \in C_{r}: \operatorname{Re}(t) \leq t_{1}+h / 2\right\}$ and the line segments $\left\{t=t_{1}+s e^{ \pm i \pi / 3}: s \in\right.$ $[0, h]\}$. It is sufficient to apply Theorem 3.6 only on one of the line segments: $t(\tau)=t_{1}+\tau e^{i \pi / 3}, \tau \in[0, h]$. In this case $P=-f^{\prime \prime \prime}\left(t_{1}\right) / 6=-\lambda^{8} / 24<0$, $\nu=3$, and $Q=\left|A\left(t_{1}\right)\right|$. From (3.32), Theorem 3.6, and Lemma 3.4 we get $F\left(t_{1}\right)=1$ and

$$
\begin{equation*}
|R(n, \lambda n, \gamma n+1)|=O\left(\left|A\left(t_{1}\right)\right| \cdot F\left(t_{1}\right)^{n} n^{-1 / 3}\right)=\left(n^{-1 / 3}\right) \tag{3.74}
\end{equation*}
$$

This completes the proof of Theorem 3.8.

## References

[1] G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
[2] L. C. Biedenharn and J. D. Louck, The Racah-Wigner algebra in quantum theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley Publishing Co., Reading, Mass., 1981, With a foreword by Peter A. Carruthers, With an introduction by George W. Mackey. MR 636504 (83d:81002)
[3] L.-C. Chen and M. E. H. Ismail, On asymptotics of Jacobi polynomials, SIAM J. Math. Anal. 22 (1991), 1442-1449. MR 1112518 (92g:33011)
[4] C. F. Dunkl, Orthogonal polynomials with symmetry of order three, Canad. J. Math. 36 (1984), 685-717. MR 756539 (86h:33003)
[5] M. E. H. Ismail and J. A. Wilson, Asymptotic and generating relations for the $q$-Jacobi and ${ }_{4} \varphi_{3}$ polynomials, J. Approx. Theory 36 (1982), 43-54. MR 673855 (84e:33012)
[6] R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Reports of the Faculty of Technical Mathematics and Informatics, No. 98-17, Delft University of Technology, Delft, 1998.
[7] A. Kresch and H. Tamvakis, Standard conjectures for the arithmetic Grassmannian $G(2, N)$ and Racah polynomials, Duke Math. J. 110 (2001), 359-376. MR 1865245 (2003d:14033)
[8] F. W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd., Wellesley, MA, 1997, Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 \#8655)]. MR 1429619 (97i:41001)
[9] P. Simeonov, Zero distribution of sequences of classical orthogonal polynomials, Abstr. Appl. Anal. (2003), 985-993. MR 2029520 (2006a:33011)
[10] H. M. Srivastava and J. P. Singhal, New generating functions for Jacobi and related polynomials, J. Math. Anal. Appl. 41 (1973), 748-752. MR 0326028 (48 \#4374)
[11] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, vol. 316, Springer-Verlag, Berlin, 1997. MR 1485778 (99h:31001)
[12] G. Szegő, Orthogonal polynomials, fourth ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517 (51 \#8724)
[13] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587 (36 \#1672a)

Mourad E. H. Ismail, Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

E-mail address: ismail@math.ucf.edu
Plamen Simeonov, Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, TX 77002, USA

E-mail address: simeonovp@uhd.edu


[^0]:    Received November 23, 2005; received in final form September 10, 2006.
    2000 Mathematics Subject Classification. Primary 26D15. Secondary 30E15, 33C45.
    Key words and phrases. Asymptotics, integral representation, logarithmic potential, the Kresch-Tamvakis conjecture, extremal measure.

