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Abstract. Let f : M → R
2 be a stable map of a closed surface M into

the plane and π2
2 : R

4
→ R

2 the orthogonal projection. In this paper,

we will show that for any such f there exists an embedding F : M → R
4

such that f = π2
2 ◦ F is satisfied.

1. Introduction

Throughout the paper, all manifolds and maps are differentiable of class
C∞ and πk

p : Rp×Rk → Rp is the orthogonal projection onto the first factor.

Let M be a closed surface and F : M → R4 an embedding. If we take a
generic projection π̃ : R4 → R2, then the composition π̃ ◦ F is a stable map
(see Mather [15]). Here, a stable map means that any small perturbation
of this stable map can be obtained from it by composition with diffeomor-
phisms of the source and target manifolds. For the precise definition, see
Subsection 2.1.

Conversely, we prove the following theorem in this paper.

Theorem 1.1. Let M be a closed surface and π2
2 : R4 → R2 the orthog-

onal projection. For any stable map f : M → R2, there exists an embedding

F : M → R4 such that f = π2
2 ◦ F is satisfied.

Let M be a closed n-dimensional manifold and f : M → Rp a stable map.
If there exists an embedding F : M → Rp+k such that πk

p ◦ F = f , we call
such an F an embedding lift of f . Therefore, Theorem 1.1 is a result about
the existence of an embedding lift.

We have the following known results about the existence of an embedding
lift. In the case where M is a closed surface, Giller [9] gave a criterion for
lifting a generic immersion f : M # R3 to an embedding in R4. For the same
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setting, Akhmetiev [2] and Carter–Saito [7] independently provided a crite-
rion when f is a generic map and M is an oriented surface. Regardless of the
orientability of M , Carter–Saito and Satoh [7], [19] obtained several necessary
and sufficient conditions. In the case where M is a closed n-dimensional man-
ifold greater than one, Saeki and Sakuma [18] gave a necessary and sufficient
condition for lifting a stable map without triple points f : M → R2n−1 to
an embedding in R2n. Note that in the case where M is a closed surface,
Carrara, Ruas and Saeki [5] studied a stable map f : M → R2 which has
the standard lifting property in R4. Let f : M → N be a (continuous) map
between n-dimensional manifolds, where M is compact and N is stably par-
allelizable. We say that f is realizable in R2n if the composition of f and
some embedding i : N → R2n is C0-close to an embedding. Akhmetiev [1],
[3] studied the problem of realizing a map f : Sn → Sn in R2n for n > 2.
Melikhov [16] gave a necessary and sufficient condition for realizing a map
f : M → N in R2n (n > 2).

The paper is organized as follows. In Section 2, we give the definition
of a stable map and prepare some tools for the proof of Theorem 1.1. In
Section 3, we prove Theorem 1.1. In Section 4, we give two examples which
clarify Theorem 1.1 and consider the relationship between the results obtained
in [7], [9], [18], [19] and Theorem 1.1.

The author would like to express his sincere gratitude to Prof. Osamu Saeki,
Prof. Peter Akhmetiev and Prof. Shin Satoh for their advice and encourage-
ment. The author was supported by JSPS Research Fellowships for Young
Scientists while he was writing the paper.

2. Preliminaries

2.1. Definition of a stable map. Let f : M → Rp be a smooth map
of a closed n-dimensional manifold M into Rp. We denote the set of such
maps by C∞(M,Rp), which is equipped with the Whitney C∞-topology. A
smooth map f is said to be a stable map if in C∞(M,Rp) there exists an open
neighborhood U of f such that for any g ∈ U , g is C∞ right-left equivalent to
f , i.e., there exist two diffeomorphisms Φ : M → M and ϕ : Rp → Rp such
that the diagram

M
Φ

−−−−→ M

f

y
yg

Rp −−−−→
ϕ

Rp

is commutative.
For a smooth map f : M → Rp, we denote by S(f) the set of the points in

M where the rank of the differential of f is strictly less than min(n, p). We
say that a point q ∈ S(f) is a singular point of f .
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In the cases where p = 1 or (n, p) = (2, 2), the following characterizations
of stable maps are well-known (see [10], [20], for example).

Proposition 2.1. A smooth function f : M → R1 is a stable map if and

only if the following conditions are satisfied.

(i) For every q ∈ M , there exist local coordinates (x1, . . . , xn) and X
around q ∈ M and f(q) ∈ R1, respectively, such that one of the

following holds:
(a) X ◦ f = x1 (q is a regular point),
(b) X ◦ f = ±x2

1 ± · · · ± x2
n (q is a singular point).

(ii) For any two distinct singular points q1 and q2 of f , f(q1) 6= f(q2) is

satisfied.

We call such a stable map f : M → R1 a stable Morse function.

Proposition 2.2. A smooth map f : M → R2 of a closed surface M is

a stable map if and only if the following conditions are satisfied.

(i) For every q ∈ M , there exist local coordinates (x, y) and (X,Y ) around

q ∈ M and f(q) ∈ R2, respectively, such that one of the following

holds:
(a) (X ◦ f, Y ◦ f) = (x, y) (q is a regular point),
(b) (X ◦ f, Y ◦ f) = (x, y2) (q is a fold point),
(c) (X ◦ f, Y ◦ f) = (x, xy − y3) (q is a cusp point).

(ii) If q ∈ M is a cusp point, then f−1(f(q)) ∩ S(f) = {q}.
(iii) The map f |(S(f)\{cusp points}) is an immersion with normal cross-

ings.

For a stable map f : M → R2 of a closed surface M , we denote by
C(f) ⊂ M the set of all cusp points in M and by N(f) ⊂ R2 the set of all
normal crossing points of f(S(f)). Note that S(f) is a compact 1-dimensional
submanifold of M . Both C(f) and N(f) have a finite number of elements.

Remark 2.3. Let f : M → R2 be a stable map of a closed surface. By
the image of singular points f(S(f)) ⊂ R2, R2 is naturally stratified into
2-, 1- and 0-dimensional strata. Note that the union of 1- and 0-dimensional
strata forms f(S(f)) and the union of 0-dimensional strata corresponds to
f(C(f)) ∪ N(f). On each 1-dimensional stratum of f(S(f)), we can define
an orientation as follows. We fix the canonical orientation on R2. Let Ω be
a connected component of R2 \ f(S(f)). We associate to Ω a non-negative
integer nf (Ω), which is the number of points in the fiber of f over any point
of Ω. Every 1-dimensional stratum in f(S(f)) is adjacent to exactly two
connected components of R2 \ f(S(f)). Since these two components have
distinct nf (Ω)-values, we can orient each 1-dimensional stratum in f(S(f))
so that the region with the larger nf (Ω)-value is on its left.
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2.2. Projection of a stable map. Let f : M → R2 be a stable map of
a closed surface M and π : R2 → R1 a generic projection such that π ◦ f is
a stable Morse function. There always exists such a generic projection π for
any stable map f (see [4], [6], for example).

Definition 2.4. We say that a point r ∈ f(S(π ◦ f)) ∪ f(C(f)) ∪ N(f)
is a bifurcation point of {π, f}. We call t ∈ R1 a bifurcation value of {π, f} if
π−1(t) contains a bifurcation point, otherwise we call t ∈ R1 a non-bifurcation

value of {π, f}.

Note that the number of bifurcation points of {π, f} is finite and we may
assume that for each bifurcation value t of {π, f}, there exists exactly one
bifurcation point in π−1(t).

In the following, we study the behavior of f(S(f)) with the generic pro-
jection π. Mancini and Ruas [14] determined local forms of π and f . See
also [6], [8]. Let r ∈ f(S(f)) \ (f(S(π ◦ f)) ∪ f(C(f)) ∪ N(f)) be an image
of singular point of f , but not a bifurcation point of {π, f} , and q ∈ M
the unique singular point of f such that r = f(q). By taking suitable local
coordinates around q ∈ M , r ∈ R2 and π(r) ∈ R1, π and f can be expressed
by the following form:

(x, y)
f
7→ (x, y2)

π
7→ x (see Figure 1(a)).(2.1)

π

π(r)
R1

f(S(f))

r

Figure 1. (a)

Let r ∈ f(S(π ◦ f)) ∪ f(C(f)) be a bifurcation point of {π, f} and q ∈ M
the singular point of π◦f or the cusp point of f such that r = f(q). By taking
suitable local coordinates around q ∈ M , r ∈ R2 and π(r) ∈ R1, π and f can
be expressed by one of the following forms:
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(x, y)
f
7→ (x2 + y2, y)

π
7→ x2 + y2 (see Figure 1(b)),(2.2)

(x, y)
f
7→ (−x2 + y2, y)

π
7→ −x2 + y2 (see Figure 1(c)),(2.3)

(x, y)
f
7→ (x, y3 − xy)

π
7→ x (see Figure 1(d)).(2.4)

π

π(r)
R1

f(S(f))

r

Figure 1. (b)

π

π(r)
R1

f(S(f))

r

Figure 1. (c)

π

π(r)
R1

f(S(f))

r

Figure 1. (d)

Let r ∈ N(f) be a bifurcation point of {π, f} and qi ∈ M the fold points
of f such that r = f(qi) (i = 1, 2) and q1 6= q2. By taking suitable local
coordinates around q1, q2 ∈ M , r ∈ R2 and π(r) ∈ R1, π and f can be
expressed by one of the following forms:

(x1, y1)
f
7→ (x1, y

2
1 + x1)

π
7→ x1,

(x2, y2)
f
7→ (x2, y

2
2 − x2)

π
7→ x2 (see Figure 1(e)),

(2.5)
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(x1, y1)
f
7→ (x1, y

2
1 + x1)

π
7→ x1,

(x2, y2)
f
7→ (x2,−y2

2 − x2)
π
7→ x2 (see Figure 1(f)).

(2.6)

π

π(r)
R1

f(S(f))

r

Figure 1. (e)

π

π(r)
R1

f(S(f))

r

Figure 1. (f)

2.3. Graphs on cylinders. Let f : M → R2 be a stable map of a closed
surface M and π : R2 → R1 a generic projection such that π ◦ f is a stable
Morse function. We set Mt = (π ◦f)−1(t) for t ∈ R1. For any non-bifurcation
value t of {π, f}, Mt is a closed 1-dimensional manifold (possibly disconnected
or empty) and f |Mt : Mt → π−1(t) is a stable Morse function.

Let t ∈ π ◦ f(M) be a non-bifurcation value of {π, f}. Note that Mt is a
disjoint union of finitely many circle components, say Mt = Mt,1 ∪ · · · ∪ Mt,k

(k ≥ 1). We let that R2
1 be the fiber of the orthogonal projection π2

2 : R4 =
R2 × R2

1 → R2. Suppose that D2
t,1, . . . ,D

2
t,k are mutually disjoint 2-disks

embedded in R2
1. Let us consider an embedding Ft : Mt → π−1(t) × R2

1.
If we have that π2

2 ◦ Ft = f |Mt and that (Pr ◦Ft)|Mt,i : Mt,i → ∂D2
t,i is a

diffeomorphism for each Mt,i, we call Ft a graph of f |Mt : Mt → π−1(t).
Here, Pr : π−1(t) × R2

1 → R2
1 is the projection onto the second factor. See

Figure 2, for example. If t /∈ π ◦ f(M), we consider that any map Ft : Mt =
∅ → π−1(t) × R2

1 is a graph of f |Mt.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemma.

Lemma 3.1. Let f : M → R2 be a stable map of a closed surface M
and π : R2 → R1 a generic projection such that π ◦ f is a stable Morse

function. Let t1 and t2 be non-bifurcation values of {π, f} such that t1 < t2.
If there is an embedding Ft1 : Mt1 → π−1(t1) × R2

1 which is a graph of

f |Mt1 : Mt1 → π−1(t1), then we can construct an embedding

F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2
1
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Mt

Ft

Pr

R2
1

∂D1
t,1

π−1(t)

π2
2

π−1(t) × ∂D1
t,1

∪
π−1(t) × R2

1

Figure 2

such that F[t1,t2]|Mt1 = Ft1 , π2
2 ◦F[t1,t2] = f |M[t1,t2] and F[t1,t2]|Mt2 is a graph

of f |Mt2 : Mt2 → π−1(t2). Here, we define M[t1,t2] = (π ◦ f)−1([t1, t2]).

Since M is compact, there exists a closed interval [α, β] ⊂ R1 such that
π ◦ f(M) ( [α, β]. If we put α = t1 and β = t2 in Lemma 3.1, an embedding
F[α,β] : M → R4 is a desired embedding lift of f . This completes the proof of
Theorem 1.1. �

Proof of Lemma 3.1. Suppose that the closed interval [t1, t2] does not have
a bifurcation value of {π, f}. For this case, π and f can be described as (2.1)
(see Figure 1(a)) and it is easy to construct a required embedding F[t1,t2] :

M[t1,t2] → π−1([t1, t2]) × R2
1.

Suppose that the closed interval [t1, t2] has bifurcation values of {π, f}. We
may assume that [t1, t2] has exactly one bifurcation value b ∈ (t1, t2) of {π, f}.
We let r ∈ f(S(f)) be the bifurcation point such that π(r) = b. Since each
circle Ft1(Mt1,i) is on π−1(t1) × ∂D2

t1,i and all solid cylinders π−1(t1) × D2
t1,i

are mutually disjoint, we may consider only connected components of Mb that
have at least one singular point q ∈ S(f) such that f(q) = r.

Let π and f be expressed as the local form (2.2). If the positive direction
of R1 is left to right in Figure 1(b), then M[t1,t2] is obtained by attaching
a 0-handle to an empty set. It is easy to construct a required embedding
F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2

1. See Figures 3. If the positive direction

of R1 is right to left in Figure 1(b), then M[t1,t2] is obtained by attaching

a 2-handle to a circle Mt1 . Since Ft1 is a graph of f |Mt1 : Mt1 → π−1(t1),



712 MINORU YAMAMOTO

we can construct a required embedding F[t1,t2] : M[t1,t2] → π−1([t1, t2]) ×R2
1.

That is, we change t1 and t2 in Figures 3 (see Remark 3.2).

π−1(t1) × R2
1 π−1(t2) × R2

1π−1(b) × R2
1

∅

Figure 3

Let π and f be expressed as the local form (2.3). Let q ∈ Mb ∩S(f) be the
singular point of f such that f(q) = r. Then M[t1,t2] is obtained by attaching

a 1-handle to Mt1 . Let ϕ : J × J → π−1(t1) × R2
1 be an embedding such

that ϕ(J × J) ∩ Ft1(Mt1) = ϕ(∂J × J), where we set J = [−1, 1]. By this
embedding ϕ, we have an embedding F[t1,t2] : M[t1,t2] → π−1([t1, t2])×R2

1. We
say that F[t1,t2] and F[t1,t2]|Mt2 is obtained from Ft1 by a 1-handle operation
along the 1-handle ϕ. We also call the arc ϕ(J ×{0}) the core of the 1-handle
ϕ. If we can choose an orientation of Mt1 such that ϕ is consistent with this
orientation (i.e., ϕ(∂(J × J)) is oriented and the inclusion ϕ(∂J × J) ⊂ Mt1

is orientation reversing), we call the above operation an oriented 1-handle
operation. Otherwise, we call it a non-oriented 1-handle operation. To prove
Lemma 3.1, we have to perform a 1-handle operation so that π2

2 ◦ F[t1,t2] =

f |M[t1,t2] and F[t1,t2]|Mt2 is a graph of f |Mt2 : Mt2 → π−1(t2).

If the positive direction of R1 is left to right in Figure 1(c), both arcs
ϕ(∂J × J) of a 1-handle ϕ are at regular points of f |Mt1 : Mt1 → π−1(t1).
Suppose that Mt1 is connected and a 1-handle ϕ is an oriented operation.
In this case, we attach ϕ to Mt1 such that ϕ(J × J) ⊂ π−1(t1) × D2

t1
. See

Figure 4(a). In this figure, we depict the cylinder π−1(t1) × ∂D2
t1

from the

top {∞} × R2
1 to the bottom {−∞} × R2

1 and the black dots are the critical
points of f |Mt1 : Mt1 → π−1(t1).

By this operation along ϕ, we have an embedding

F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2
1

such that F[t1,t2]|Mt1 = Ft1 and π2
2 ◦ F[t1,t2] = f |M[t1,t2]. Note that Mt2 has

two components and each component Mt2,i has a new born critical point ci

of f |Mt2 , i = 1, 2. We can check that the embedding F[t1,t2]|Mt2 is a graph of
f |Mt2 . Therefore, the embedding F[t1,t2] is a required one. See Figure 4(b).
In this figure, we see each cylinder from the side and the top. Both A and B

are parts of Mt1 \ ϕ(∂J × J).
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ϕ(J × J)

Ft1(Mt1)

Figure 4. (a)

π−1(t1) × R2
1 π−1(t2) × R2

1
π−1(b) × R2

1

A

A

B

B
Ft2(c1)

Ft2(c2)

Figure 4. (b)

Suppose that Mt1 is connected and a 1-handle ϕ is a non-oriented operation.
Let c0 ∈ Mt1 be the minimal critical point of f |Mt1 : Mt1 → π−1(t1) and
l(c0) = Pr−1(Pr ◦Ft1(c0)) the line in π−1(t1)× ∂Dt1 passing through Ft1(c0).
In this case, we attach ϕ to Mt1 such that ϕ([−1, 0] × J) ⊂ π−1(t1) × D2

t1
,

ϕ([0, 1]×J) ⊂ π−1(t1)×(R2
1\IntD2

t1
) and ϕ({0}×J) ⊂ l(c0). See Figure 5(a).

This figure has the same setting as Figure 4(a).
Let ε ∈ R1 be a sufficiently small positive number such that we have

b < b+ε < t2. After we perform the operation along ϕ, we have an embedding
F[t1,b+ε] : M[t1,b+ε] → π−1([t1, b + ε]) × R2

1 such that F[t1,t2]|Mt1 = Ft1 and

π2
2 ◦ F[t1,b+ε] = f |M[t1,b+ε]. Note that Mb+ε is connected and Mb+ε has two

new born critical points ci of f |Mb+ε, i = 1, 2. See Figure 5(b). In this figure,
A, B and C are parts of Mt1 \ ϕ(∂J × J).
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ϕ(J × J)

Ft1(Mt1)

Ft1(c0)

Figure 5. (a)

π−1(t1) × R2
1 π−1(b + ε) × R2

1π−1(b) × R2
1

l(c0)

AA BB

CC

Ft1(c0)

Ft1(c0)

Fb+ε(c2)

Fb+ε(c1)

Fb+ε(c1)
Fb+ε(c0)

Figure 5. (b)

Since c0 is also the minimal critical point of f |Mb+ε, we have an isotopy F̃t :

Mt → π−1(t) ×R2
1 (t ∈ [b + ε, t2]) such that F̃b+ε = F[t1,b+ε]|Mb+ε, π2

2 ◦ F̃t =

f |Mt and F̃t2 is a graph of f |Mt2 : Mt2 → π−1(t2). See Figure 5(c). By gluing

the embedding F[t1,b+ε] and the isotopy F̃t, we have a desired embedding

F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2
1.

Suppose that Mt1 has two components. In this case, a 1-handle operation ϕ
is always an oriented operation and we attach ϕ to Mt1 such that ϕ(J ×J) ⊂
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π−1(b + ε) × R2
1 π−1(t1) × R2

1

Fb+ε(c0)

Fb+ε(c0)

Fb+ε(c1)

Fb+ε(c1)

Fb+ε(c2)

Ft2(c0)

Ft2(c0)

Ft2(c1) Ft2(c2)

AA
B

C C C
C

A

A
B

B

B

Figure 5. (c)

π−1(t1) × (R2
1 \ (IntD2

t1,1 ∪ IntD2
t1,2)). See Figure 6(a). This figure has the

same setting as Figure 4(a).

ϕ(J × J)

Ft1(Mt1,1) Ft1(Mt1,2)

Figure 6. (a)

From this operation along ϕ, we have an embedding

F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2
1

such that F[t1,t2]|Mt1 = Ft1 and π2
2 ◦ F[t1,t2] = f |M[t1,t2]. Note that Mt2 is

connected and Mt2 has two new born critical points ci of f |Mt2 , i = 1, 2. We
can check that the embedding F[t1,t2]|Mt2 is a graph of f |Mt2 . See Figure 6(b).
In this figure, A and B are parts of Mt1 \ ϕ(J × J).
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π−1(t1) × R2
1 π−1(t2) × R2

1
π−1(b) × R2

1

AA ABB B

Ft2(c1) Ft2(c2)

Figure 6. (b)

If the positive direction of R1 is right to left in Figure 1(c), the core of a
1-handle ϕ connects two critical points c1 and c2 ∈ Mt1 of f |Mt1 : Mt1 →
π−1(t1) which are eliminated by f |M[t1,t2]. Suppose that Mt1 is connected
and a 1-handle ϕ is an oriented operation. In this case, we attach ϕ to
Mt1 such that ϕ(J × J) ⊂ π−1(t1) × D2

t1
. See Figure 7(a). Suppose that

Mt1 is connected and a 1-handle ϕ is a non-oriented operation. In this case,
we attach ϕ to Mt1 such that ϕ([−1, 0] × J) ⊂ π−1(t1) × D2

t1
, ϕ([0, 1] × J) ⊂

π−1(t1)×(R2
1\Int D2

t1
) and ϕ({0}×J) ⊂ l(c0). Here, c0 ∈ Mt1 is the minimal

critical point of f |Mt1 : Mt1 → π−1(t1) and l(c0) = Pr−1(Pr ◦Ft1(c0)) is the
line in π−1(t1)×∂Dt1 passing through Ft1(c0). See Figure 7(b). Suppose that
Mt1 has two components. In this case, a 1-handle operation ϕ is always an
oriented operation and we attach ϕ to Mt1 such that ϕ(J × J) ⊂ π−1(t1) ×
(R2

1 \ (IntD2
t1,1 ∪ IntD2

t1,2)). See Figure 7(c).
From each operation along ϕ, we have an embedding

F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2
1,

which is a required one. We leave it to the reader to check that we have
F[t1,t2]|Mt1 = Ft1 and π2

2 ◦ F[t1,t2] = f |M[t1,t2], and that the embedding

F[t1,t2]|Mt2 is a graph of f |Mt2 : Mt2 → π−1(t2).
Let π and f be written as the local forms (2.4) or (2.5). Then, it is known

that the 1-parameter family of f |Mt : Mt → π−1(t) is a birth or death bi-
furcation or an exchange of levels of the corresponding two critical values,
respectively (t ∈ [t1, t2]; see [12]). Since it is easy to construct the required
embeddings F[t1,t2] : M[t1,t2] → π−1([t1, t2]) × R2

1 for both cases, we leave
these constructions to the reader. This completes the proof. �
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ϕ(J × J)

Ft1(Mt1)

Ft1(c1)

Ft1(c2)

Figure 7. (a)

ϕ(J × J)

Ft1(Mt1)

Ft1(c0)

Ft1(c1)
Ft1(c2)

Figure 7. (b)

ϕ(J × J)

Ft1,1(Mt1,1) Ft1,2(Mt1,2)

Ft1(c1) Ft1(c2)

Figure 7. (c)

Remark 3.2. To prove Lemma 3.1, it is necessary that an embedding
Fti

|Mti
: Mti

→ π−1(ti) × R2
1 is a graph of f |Mti

: Mti
→ π−1(ti), i = 1, 2.

The reason is as follows. Suppose that π and f are expressed as the local
form (2.2) and the positive direction of R1 is right to left in Figure 1(b). We
let q ∈ S(f) ∩ Mb be the singular point of f such that f(q) = r, M[t1,t2],q

is the component of M[t1,t2] which contains q and Mt1,q is the boundary of

M[t1,t2],q. To construct an embedding lift F[t1,t2] : M[t1,t2] → π−1([t1, t2])×R2
1

of f |M[t1,t2] : M[t1,t2] → π−1([t1, t2]), it is necessary that Ft1(Mt1,q) and

Ft1(Mt1 \ Mt1,q) are unlinked in π−1(t1) × R2
1. Thus, the above assumption

is necessary to prove Lemma 3.1.

Remark 3.3. After the author proved Theorem 1.1, Akhmetiev pointed
out that any map f : S2 → N , where N is a closed orientable surface, is
realizable in R4. For the definition of “realizable”, see Section 1 and for the
proof of this result, see [16, p. 148].
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4. Examples

In this section, we will give two examples which clarify Theorem 1.1.

Example 4.1. Let f1 : S2 → R2 be a stable map such that f1(S
2) is

depicted as in Figure 8(a). See [11], [13] for the precise definition. Then
Figure 8(b) shows how to construct the embedding lift F1 : S2 → R4 of f1

which is described in the proof of Theorem 1.1. In [11], Haefliger showed that
for the above stable map f1, there is no immersion g1 : S2 → R3 such that
π1

2 ◦ g1 = f1 is satisfied (see also [17]).

π

s1 s2 s3 s4 s5
R

1

f1(S(f1))

Figure 8. (a)

Fs1
(Ms1

)

Fs2
(Ms2

)

Fs3
(Ms3

)

Fs4
(Ms4

)

Fs5
(Ms5

)

Figure 8. (b)

Example 4.2. Let f2 : RP 2 → R2 be a stable map such that f2(RP 2) is
depicted as in Figure 9(a). See [13] for the precise definition. Then Figure 9(b)
shows how to construct the embedding lift F2 : RP 2 → R4 of f2 which is
described in the proof of Theorem 1.1. For the above stable map f2, there
exists an immersion g2 : RP 2 → R3 such that π1

2 ◦ g2 = f2 (see Figure 9(c)).
This immersion g2 is known as the Boy surface and that there is no embedding
lift G2 : RP 2 → R4 such that π1

3 ◦ G2 = g2 is satisfied (see [7], [9], [19]).
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π

R
1

s1 s2 s3 s4s5 s6 s7 s8 s9 s10

f2(S(f2))

Figure 9. (a)

Fs1
(Ms1

)

Fs2
(Ms2

)

Fs3
(Ms3

)

Fs4
(Ms4

)

Fs5
(Ms5

)

Fs6
(Ms6

)

Fs7
(Ms7

)

Fs8
(Ms8

)

Fs9
(Ms9

)

Fs10
(Ms10

)

Figure 9. (b)
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g2(RP 2)

π1
2

R2

double point set

Figure 9. (c)
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No. 6. MR 0353337 (50 #5821)
[13] H. Levine, Stable maps: an introduction with low dimensional examples, Bol. Soc.

Brasil. Mat. 7 (1976), 145–184. MR 0649263 (58 #31177)

[14] S. Mancini and M. A. S. Ruas, Bifurcations of generic one parameter families of func-

tions on foliated manifolds, Math. Scand. 72 (1993), 5–19. MR 1225992 (94g:58026)
[15] J. N. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226–245. MR 0362393

(50 #14835)

[16] S. A. Melikhov, Sphere eversions and the realization of mappings, Tr. Mat. Inst.
Steklova 247 (2004), 159–181. MR 2168168 (2006i:57050)

[17] K. C. Millett, Generic smooth maps of surfaces, Topology Appl. 18 (1984), 197–215.
MR 769291 (86j:57014)

[18] O. Saeki and K. Sakuma, Immersed n-manifolds in R
2n and the double points of

their generic projections into R
2n−1, Trans. Amer. Math. Soc. 348 (1996), 2585–2606.

MR 1322957 (96i:57033)

[19] S. Satoh, Lifting a generic surface in 3-space to an embedded surface in 4-space, Topol-
ogy Appl. 106 (2000), 103–113. MR 1769336 (2001h:57028)

[20] H. Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane

into the plane, Ann. of Math. (2) 62 (1955), 374–410. MR 0073980 (17,518d)

Minoru Yamamoto, Department of Mathematics, Hokkaido University, Kita 10,

Nishi 8, Kita-ku, Sapporo 060-0810, Japan

Current address: Department of Science, Kurume National Collage of Technology, Ko-
morino 1-1-1, Kurume City, Fukuoka, 830-8555, Japan

E-mail address: minomoto@kurume-nct.ac.jp


