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FREDHOLM PROPERTIES OF EVOLUTION SEMIGROUPS

YURI LATUSHKIN AND YURI TOMILOV

Abstract. We show that the Fredholm spectrum of an evolution semi-

group {Et}t≥0 is equal to its spectrum, and prove that the ranges of

the operator Et − I and the generator G of the evolution semigroup

are closed simultaneously. The evolution semigroup is acting on spaces
of functions with values in a Banach space, and is induced by an evo-

lution family that could be the propagator for a well-posed linear dif-
ferential equation u′(t) = A(t)u(t) with, generally, unbounded oper-

ators A(t); in this case G is the closure of the operator G given by

(Gu)(t) = −u′(t) +A(t)u(t).

1. Introduction and main results

An evolution family (propagator) associated with a well posed nonau-
tonomous linear differential equation u′(t) = A(t)u(t) on a Banach space X
with (generally, unbounded) operator coefficients generates three important
operators acting on spaces of X-valued functions: a differential operator, G,
a functional operator, Et, and a difference operator, Dτ . The objective of the
current paper is to study Fredholm and other fine spectral properties of these
operators as they are related to the dynamical properties of the evolution
family such as its exponential dichotomy. Let {U(t, τ)}t≥τ , t, τ ∈ R, denote
a strongly continuous exponentially bounded evolution family on the Banach
space X, let {Et}t≥0 denote the corresponding evolution semigroup, defined
on the spaces E(R) = Lp(R;X), 1 ≤ p < ∞, or E(R) = C0(R;X), the space
of continuous functions vanishing at ±∞, by the rule

(Etu)(τ) = U(τ, τ − t)u(τ − t), τ ∈ R, t ≥ 0,(1.1)
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and let G denote the evolution semigroup generator. If {U(t, τ)}t≥τ is the
propagator for the nonautonomous differential equation then G is the closure
of the operator G = −d/dt+A(t) when the domain of the latter is the inter-
section of the domains of the operators of differentiation and multiplication
by A(·).

The spectrum, σ(·), of the operators Et and G and the Fredholm properties
of G and their relations to the asymptotic behavior of the evolution family
are fairly well understood; see [9], [13, Ch. VI.9], [29], a newer survey [28], and
a recent paper [16] and the bibliographies therein. In particular, as it is well
known, unlike many strongly continuous semigroups, the evolution semigroups
enjoy the spectral mapping property σ(Et)\{0} = exp tσ(G), t ≥ 0; see the
above-cited references. In this paper we continue our work in [16], where the
Fredholm properties of G have been related to the exponential dichotomy
of the evolution family (see Theorem 2.4 below), and study the Fredholm
spectrum, σfred(·), of the operator Et.

To put the work in [16] and in the current paper in a broader context, we
remark first that for many classes of partial differential equations the operators
G and G coincide; see, e.g., [28]. An understanding of spectral properties of
the operator G and the corresponding semigroup is important for several
reasons. The study of Fredholm properties of G is crucial, for example, in the
stability theory of traveling waves where G appears as a linearization of certain
parabolic PDE’s [27]. Also, an asymptotically hyperbolic case when the limits
A(±∞) := limt→±∞A(t) exist in an appropriate sense, and σ(A±) ∩ iR = ∅,
is of special interest in infinite dimensional Morse theory [1], [2], where the
operator G appears after linearization of a vector field on a manifold along
an orbit connecting two hyperbolic critical points, and where understanding
its Fredholm properties is an important issue. Finally, results relating the
Fredholm index of G and the spectral flow of the operator path {A(t)}∞t=−∞
provide a set-up for generalizations of the Atiyah-Patody-Singer theory; see
[2], [12], [25], [26].

An attempt to obtain a spectral mapping property for the Fredholm spec-
trum of the evolution semigroup has led to our first main result.

Theorem 1.1. For the evolution semigroup (1.1) on E(R) we have

σfred(Et)\{0} = σ(Et)\{0}, t ≥ 0.

Thus, a more refined property than Fredholm should be of interest for the
evolution semigroups, and in this paper we study conditions when the ranges
of Et−I and G are closed. For this, we involve a family of difference operators,
Dτ , acting on the respective sequence spaces E(Z) = `p(Z;X), 1 ≤ p <∞, or
E(Z) = c0(Z;X), the space of sequences vanishing at ±∞, by

Dτ : (xn)n∈Z 7→ (xn − U(n+ τ, n+ τ − 1)xn−1)n∈Z, τ ∈ [0, 1).(1.2)
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The interplay between the three operators, the functional operator Et, the
differential operators G or G, and the difference operators Dτ , has been stud-
ied by many authors; see, e.g., [3], [4], [6], [9], [14], [16]. In particular, many
results relating their spectral properties such as invertibility, correctness (uni-
form boundedness from below), Fredholm property, etc., are available and
can be found in these references. Our second principal result settles the more
delicate issue of the closedness of their ranges. For its formulation, recall the
definition of the Kato lower bound, γ(T ), for a closed operator T ,

γ(T ) := inf
x∈dom(T )
Tx6=0

‖Tx‖
dist(x,KerT )

,

and note that γ(T ) > 0 if and only if the range ImT is closed [15, Sec. IV.5.1].

Theorem 1.2. For the operators E1 and G on E(R) and the operators
Dτ on E(Z) the following assertions are equivalent:

(i) γ(E1 − I) > 0;
(ii) γ(G) > 0;
(iii) infτ∈[0,1) γ(Dτ ) > 0.

In addition, we obtain results similar to Theorems 1.1 and 1.2 for evolution
semigroups acting on spaces of periodic X-valued functions and on spaces of
X-valued functions on the half-line; in the latter case we relate Fredholm
properties of the corresponding operators to exponential dichotomy of the
evolution family on the half-line.

The paper is organized as follows. In Section 2 we introduce notations and
recall some known facts about evolution semigroups. The Spectral Mapping
Theorem 1.1 for the Fredholm spectrum for evolution semigroups on the line
is proved in Section 3, which also contains Theorem 3.1, a rather general
result on Fredholm properties of first order autonomous differential operators.
Our second main result, Theorem 1.2, is proved in Section 4. In Section 5
we develop a Fredholm theory for evolution semigroups and their generators
on spaces of functions on the half-line, and connect it to the exponential
dichotomy on the half-line. Finally, in Section 6 we give assertions similar to
Theorems 1.1 and 1.2 for evolution semigroups on spaces of periodic functions.

2. Notation and preliminaries

Notation. R+ = [0,∞), R− = (−∞, 0], Z± = Z ∩ R±; X is a Banach
space; X∗ is the adjoint space; L(X) is the set of bounded operators on X;
A∗, domA, KerA and ImA are the adjoint, domain, kernel and range of an
operator A; σ(A) and σfred(A) = {λ ∈ C : λ − A is not Fredholm} denote
the spectrum and the Fredholm spectrum of A, and R(λ,A) is the resolvent
of A. The function space E(R) is one of the spaces Lp(R;X), 1 ≤ p < ∞, or
C0(R;X); the sequence space E(Z) is one of the spaces `p(Z;X) or c0(Z;X).
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Similarly, E(R+), resp. E0(R+), stands for one of the spaces Lp(R+;X), 1 ≤
p < ∞, or C0(R+;X), resp. C00(R+;X), the space of continuous X-valued
functions on R+ vanishing at zero and at infinity; the sequence space E(Z+)
is one of the spaces `p(Z+;X) or c0(Z+;X). Finally, E([0, 2π]) is one of the
spaces Lp([0, 2π];X) or Cper([0, 2π];X), the space of continuous X-valued 2π-
periodic functions on [0, 2π]. We use boldface to denote sequences, e.g., x =
(xn)n∈Z, xn ∈ X. If A(·) is an operator-valued function, thenMA, (MAu)(t) =
A(t)u(t), denotes the operator of multiplication on a function space E with
the maximal domain domMA = {u ∈ E : u(t) ∈ domA(t) a.e., A(·)u(·) ∈ E}.

Evolution semigroups. Let J denote one of the intervals R+, R−, or R.
A family {U(t, τ)}t≥τ , t, τ ∈ J , of bounded linear operators on X is called a
strongly continuous exponentially bounded evolution family on J if it satisfies:

(1) For each x ∈ X the map (t, τ) 7→ U(t, τ)x is continuous for all t ≥ τ
in J .

(2) sup{‖e−ω(t−τ)U(t, τ)‖ : t, τ ∈ J, t ≥ τ} <∞ for some ω ∈ R.
(3) U(t, t) = I, U(t, τ) = U(t, s)U(s, τ) for all t ≥ s ≥ τ in J .

Throughout, all evolution families are assumed to be strongly continuous and
exponentially bounded.

First, consider the evolution semigroup {Et}t≥0 defined on E(R) in (1.1).
The generator G of the evolution semigroup can be described as follows (see
[20], [9, Proposition 4.32], [9, Lemma 3.16]).

Proposition 2.1. Let u, f ∈ E(R). Then u ∈ dom G and Gu = f if and
only if u ∈ E(R) ∩ C0(R;X) and, for all t ≥ τ in R,

u(t) = U(t, τ)u(τ)−
∫ t

τ

U(t, s)f(s)ds.(2.1)

If {U(t, τ)}t≥τ solves the abstract Cauchy problem

ẋ(t) = A(t)x(t), x(τ) = xτ , xτ ∈ domA(τ), t ≥ τ,

in the sense of [9, Definition 3.2], then by [9, Theorem 3.12] and [28], G is
a closed extension of the operator G, (Gu)(t) = −u′(t) + A(t)u(t), which
is defined in E(R) with the domain dom(d/dt) ∩ dom(MA). If, for example,
A(·) ∈ Cb(R;L(X)), then G = G. For more general situations when G = G see
[28] and the references therein, and, in addition, recent work in [24], [25] that
includes, e.g., the case of Fredholm elliptic differential operators on compact
manifolds.
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Next, consider an evolution semigroup, {Et+}t≥0, on E0(R+) defined1 as

(Et+u)(τ) =

{
U(τ, τ − t)u(τ − t), τ ≥ t,
0, 0 ≤ τ ≤ t,

(2.2)

and let G+
0 denote its generator. Extending functions from E0(R+) by zero

on R−, we may identify E0(R+) with a subspace of E(R). The semigroup
(1.1) leaves this subspace invariant, and Et+ is the restriction of Et on this
subspace. Arguing as in [13, p. 60], we conclude that G+

0 is the restriction
of G on this subspace. Similarly to Proposition 2.1, G+

0 can be described as
follows (see [20, Lemma 1.1] and [21], and note that Lemma 3.16 in [9] also
holds for the half-line case).

Proposition 2.2. Let u, f ∈ E0(R+). Then u ∈ dom G+
0 and G+

0 u = f
if and only if u ∈ E0(R+) ∩ C00(R+;X) and, for all t ≥ 0,

u(t) = −
∫ t

0

U(t, s)f(s)ds.(2.3)

Note that (2.3) implies (2.1) for all t ≥ τ in R+. If {U(t, τ)}t≥τ≥0 is
the propagator of a differential equation u′ = A(t)u(t) on R+, then (2.3)
corresponds to the inhomogeneous equation u′ = A(t)u(t) + f(t) with the
boundary condition u(0) = 0. We will also consider the following operator,
G+, on E(R+) (see [4], [20], [21]).

Definition 2.3. Let u, f ∈ E(R+). Then u ∈ dom G+ and G+u = f if
and only if u ∈ E(R+) ∩ C0(R+;X) and (2.1) holds for all t ≥ τ in R+.

By [20, Lemma 1.1] and [21, Lemma 1.1], the operator G+ is well-defined
and closed on E(R+); also, dom G+

0 = {u ∈ dom G+ : u(0) = 0} and G+
0 u =

G+u for u ∈ dom G+
0 . In addition, G+ on E(R+) = C0(R+;X) is related to

the generator of the following evolution semigroup; see [20, Lemma 1.1(b)]:

(Ẽt+u)(τ) =

{
U(τ, τ − t)u(τ − t), τ ≥ t,
U(τ, 0)u(0), 0 ≤ τ ≤ t.

Finally, note that

Ker G+ = {u ∈ E(R+) : u(t) = U(t, τ)u(τ) for all t ≥ τ ≥ 0},(2.4)

Ker G+
0 = {0},(2.5)

and define the subspace X0 ⊆ X of stable initial data by

X0 = {x = u(0) : u ∈ Ker G+}.(2.6)

1Recall that if E0(R+) = C00(R+;X) then u(0) = u(+∞) = 0.
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Dichotomy. Recall that the evolution family {U(t, τ)}t≥τ is said to have
an exponential dichotomy {Pt}t∈J on J with dichotomy constants M ≥ 1 and
α > 0 (see [11], [13], [14], [18]) if Pt, t ∈ J , are bounded projections on X,
and for all t ≥ τ in J the following assertions hold:

(i) U(t, τ)Pτ = PtU(t, τ).
(ii) The restriction U(t, τ)|KerPτ of the operator U(t, τ) is an invertible

operator from KerPτ to KerPt.
(iii) The following stable and unstable dichotomy estimates hold:

‖U(t, τ)|ImPτ ‖ ≤Me−α(t−τ) and ‖(U(t, τ)|KerPτ )−1‖ ≤Me−α(t−τ).(2.7)

Also, recall that a pair of subspaces (W,V ) in X is called a Fredholm pair
provided α(W,V ) := dim(W ∩ V ) < ∞, the subspace W + V is closed, and
β(W,V ) := codim(W + V ) <∞; the Fredholm index of the pair is defined as
ind(W,V ) = α(W,V )− β(W,V ); see, e.g. [15, Sec. IV.4.1].

The Fredholm property of the operator G is related to the exponential
dichotomies of {U(t, τ)}t≥τ on R+ and R−. The following particular case of
a result from [16] is a generalization of the celebrated Dichotomy Theorem;
cf. [5], [6], [22], [23], [27], [30].

Theorem 2.4 ([16, Theorem 1.2]). If the Banach space X is reflexive and
the family {U(t, τ)}t,τ∈R consists of invertible operators, then the operator G
is Fredholm on E(R) if and only if the following conditions hold:

(i) The evolution family {U(t, τ)}t≥τ , t, τ ∈ R, admits exponential di-
chotomies {P−t }t≤0 and {P+

t }t≥0 on R− and R+, respectively.
(ii) The pair of subspaces (KerP−0 , ImP+

0 ) is Fredholm in X.

Also, dim Ker G = α(KerP−0 , ImP+
0 ), codim Im G = β(KerP−0 , ImP+

0 ), and
ind G = ind(KerP−0 , ImP+

0 ).

Theorem 2.5 ([16, Theorem 1.4]). The range Im G of the operator G is
closed in E(R) if and only if the range ImD0 of the operator D0 defined in
(1.2) is closed in E(Z). Also, dim Ker G = dim KerD0 and codim Im G =
codim ImD0. In particular, G is Fredholm if and only if D0 is Fredholm, and
ind G = indD0.

Let Wτ (t, s) = U(t+τ, s+τ), t ≥ s, τ ∈ [0, 1), and define on E(R) the shift
group, {S(t)}t∈R, by

(S(t)u)(s) = u(s− t), s, t ∈ R.(2.8)

If EtWτ
and EtU denote the evolution semigroups on E(R) induced by the

evolution families {Wτ (t, s)} and {U(t, s)}, then S(τ)EtWτ
S(−τ) = EtU and

S(τ)GWτS(−τ) = GU . Thus, Theorem 2.5 holds if the operator D0 is re-
placed by any operator Dτ , τ ∈ (0, 1).
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The spectral properties of the operators G+ and G+
0 are related to the

dichotomy of {U(t, τ)}t≥τ≥0 on R+. The following result from [20] and [21]
has a long prehistory going back to classical characterizations of the dichotomy
in terms of the operator G+ = −d/dt+MA for A(·) ∈ Cb(R+;L(X)); see [11]
and the references therein.

Theorem 2.6 ([20, Theorem 4.3], [21, Theorem 3.1]). The evolution fam-
ily {U(t, s)}t≥s≥0 has an exponential dichotomy {Pt}t≥0 on R+ if and only if
the operator G+ is surjective on E(R+) and the subspace X0 defined in (2.6)
is complemented in X.

Sun-duals. Given a strongly continuous semigroup {etA}t≥0 on X, the
adjoint semigroup {(etA)∗}t≥0 on the Banach space X∗ is, in general, not a
strongly continuous semigroup. The subspace

X� := {x∗ ∈ X∗ : ‖(etA)∗x− x∗‖ → 0 as t ↓ 0}

is a closed linear subspace of X∗ and (etA)∗(X�) ⊆ X� for all t ≥ 0. The
restrictions etA

�
of (etA)∗ to X� define a strongly continuous semigroup in

X�; moreover, X� is equal to the norm closure of dom(A∗) in X∗, so that
X� = R(λ,A)∗(X∗) for all λ ∈ C \ σ(A).

Remark 2.7. The definition of X� implies that Ker(I− etA)∗ ⊂ X� and
Ker(I − etA)∗ = Ker(I − etA�) for every t ≥ 0, and that Ker(A∗ − µ) ⊂ X�

and Ker(A∗ − µ) = Ker(A� − µ) for any µ ∈ C; see, e.g. [10, Ch. II.2].

3. Fredholm property implies invertibility

Proof of Theorem 1.1. It suffices to prove that the operator E1 − I is in-
vertible provided it is Fredholm. First, we claim that Ker G 6= {0} im-
plies dim Ker(E1 − I) = ∞. To prove the claim, for each k ∈ Z define a
bounded operator M = Mk on E(R) by (Mu)(τ) = e2πikτu(τ), τ ∈ R. Then
MEt = e2πiktEtM for all t ≥ 0 and M(G− 2πik) = GM . Therefore,

Ker(G− 2πik) = M−1 Ker G.(3.1)

Fix a nonzero u ∈ Ker G and let uk = M−1
k u, k ∈ Z. Then uk ∈ Ker(G−2πik)

is a nonzero eigenfunction for G that corresponds to its eigenvalue 2πik. The
functions in the family {uk : k ∈ Z} are linearly independent since nonzero
eigenfunctions corresponding to different eigenvalues of a linear operator are
linearly independent. Since

Ker(E1 − I) = lin{Ker(G− 2πik) : k ∈ Z}(3.2)

by [13, p. 278], we have uk ∈ Ker(E1 − I) and thus dim Ker(E1 − I) = ∞,
proving the claim. Next, if Ker(E1 − I) 6= {0}, then Ker G 6= 0 by (3.2) and
(3.1). Thus Ker(E1 − I) 6= {0} implies dim Ker(E1 − I) = ∞ by the claim
above. Finally, let {(Et)�}t≥0 be the sun-dual semigroup for {Et}t≥0. Since
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(M−1)∗(E1)∗M∗ = e−2πik(E1)∗, we note that M∗((E(R))�) ⊂ (E(R))�, and
moreover M∗(G� − 2πik)(M−1)∗ = G�. Using Remark 2.7 for A = G, and
arguing as above, we infer that the assumption Ker(E1 − I)∗ 6= {0} leads to
dim Ker(E1 − I)∗ =∞. �

We conclude this section with a general result related to Theorem 1.1 re-
garding constant coefficient first order differential operators on E(R). Let A
be a closed linear operator on X with a dense domain. Consider the oper-
ator of differentiation Du = −u′ on E(R) with the maximal domain. Let
D = domD ∩ domMA, consider the sum D + MA with dom(D + MA) = D
and consider an operator, GA, which is a closed extension of D + MA such
that D is a core for GA (i.e., GA is the closure of GA

∣∣∣
D

). Remark that domD,

domMA and D are invariant for the isometric shift group {S(t)}t∈R defined
in (2.8). An example of the operator GA is furnished by GA = G with G in-
duced by U(t, τ) = e(t−τ)A, where A is the generator of a strongly continuous
semigroup.

Theorem 3.1. The operator GA is Fredholm on E(R) if and only GA is
invertible on E(R).

Proof. First, we claim that the domain and the range of GA are shift-
invariant. Indeed, suppose u ∈ domGA. Since D is a core for GA, there exists
{un : n ≥ 0} ⊂ D such that ‖un − u‖E → 0 and ‖GAun − GAu‖E → 0
as n → ∞. Since the core D is shift-invariant, for every t ∈ R we have
‖S(t)un−S(t)u‖E → 0 and ‖GAS(t)un−S(t)GAu‖E → 0 as n→∞. Since the
operator GA is closed, it follows that S(t)u ∈ domGA and S(t)GAu = GAS(t)u,
proving the claim. Moreover,

S(t) (ImGA) = ImGA, t ∈ R.(3.3)

Next, suppose that GA is Fredholm on E(R), and assume that dim KerGA > 0.
For any u ∈ KerGA we have S(t)u ∈ KerGA, t ∈ R. Hence the operator
group {S(t)}t∈R given by (2.8) is well-defined on the Banach space X :=
(KerGA, ‖ · ‖E) and is isometric there. Since KerGA is finite-dimensional,
S(t) = etB , t ∈ R, for some B ∈ L(X ). Since {S(t)}t∈R is isometric, σ(B)
belongs to iR and consists of eigenvalues of B. So, there exists a ξ ∈ R and
a nonzero u0 ∈ KerGA such that S(t)u0 = eitξu0. Hence, for every t ∈ R we
have u0(s+ t) = eitξu0(s) for a.e. s ∈ R. In particular, u0(s+ 2π/ξ) = u0(s)
for a.e. s ∈ R. But then u0 does not belong to E(R), a contradiction. Thus,
KerGA = {0}. Finally, consider the quotient space Y := E(R)/ ImGA and
assume that dimY > 0. Since ImGA is S(t)-invariant, the quotient group
{Ŝ(t)}t∈R is well-defined on Y , and, if f ∈ f̂ , the equivalence class in Y , then

‖Ŝ(t)f̂‖Y = inf
g∈ImGA

‖S(t)f + g‖E = inf
g∈ImGA

‖f + g‖E = ‖f̂‖Y ,
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so that {Ŝ(t)}t∈R is isometric on the finite dimensional space Y. Since dimY <
∞, there exists a finite dimensional subspace N of E(R) isomorphic to Y such
that ImGA ⊕ N = E(R). Using the isomorphic image of {Ŝ(t)}t∈R on N , as
above, we infer that there exists a nonzero f ∈ N such that f(s+2π/ξ) = f(s)
for some ξ ∈ R and a.e. s. This leads to a contradiction again. Thus, Y = {0},
and GA must be invertible. �

A particular case of Theorem 3.1 for concrete classes of pseudo-differential
operators has been proved by M. Shubin in [31, Theorem 11.1].

4. Ranges of the generators of evolution semigroups

In this section we prove our main result, Theorem 1.2, saying that the
ranges of the operators Dτ , G and E1 − I are closed simultaneously. We
mention related work in [3]–[5] dealing with correctness (uniform boundedness
from below) and invertibility of these operators. Note that the implication
(ii)⇒(i) in Theorem 1.2, asserting that the range of the operator F (G) =
eG−I is closed provided the range of G is closed, is a consequence of the very
special structure of the evolution semigroup. Generally, the assertion “range
of T is closed implies range of F (T ) is closed” fails even for bounded operators
T and the function F (T ) = Tn, n ∈ N. Indeed, by a result in [8, p. 124], for
every sequence {nk} ⊂ N \ {1} there is a T ∈ L(X) with closed range so that
the ranges of Tnk are not closed. On the other hand, if T ∈ L(X) and eT − I
has closed range, then T has closed range; see [19].

Lemma 4.1. For the operators Dτ , τ ∈ [0, 1), defined in (1.2),

(i) If (zn)n∈Z ∈ KerDτ then (U(n, n+ τ − 1)zn−1)n∈Z ∈ KerD0.
(ii) If (zn)n∈Z ∈ KerD0 then (U(τ + n, n)zn)n∈Z ∈ Ker Dτ .

Proof. (i) For any τ ∈ [0, 1),

KerDτ = {(xn)n∈Z : xn = U(n+ τ,m+ τ)xm for all n ≥ m in Z}.(4.1)

If (zn)n∈Z ∈ KerDτ then zn = U(n+ τ, n+ τ − 1)zn−1 = U(n+ τ, n)U(n, n+
τ − 1)zn−1. If xn = U(n, n+ τ − 1)zn−1, then

U(n, n− 1)xn−1 = U(n, n− 1)U(n− 1, n+ τ − 2)zn−2

= U(n, n+ τ − 2)zn−2 = U(n, n+ τ − 1)U(n+ τ − 1, n+ τ − 2)zn−2

= U(n, n+ τ − 1)zn−1 = xn, n ∈ Z.

(ii) If (zn)n∈Z ∈ KerD0 then zn = U(n, n− 1)zn−1 and

Dτ (U(τ + n, n)zn)n∈Z = (U(τ + n, n)zn − U(τ + n, n− 1)zn−1)n∈Z
= (U(τ + n, n)zn − U(τ + n, n)U(n, n− 1)zn−1)n∈Z = 0. �
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Fix a smooth function α : [0, 1] → [0, 1] such that α(τ) = 0 for τ ∈
[
0, 1

3

]
and α(τ) = 1 for τ ∈

[
2
3 , 1
]
; cf. [9, p. 39]. For a sequence x = (xn)n∈Z define

a function, Bx, so that if t ∈ [n, n+ 1], n ∈ Z, then

(Bx)(t) = U(t, n)[α(t− n)xn + (1− α(t− n))U(n, n− 1)xn−1].(4.2)

Recall that the evolution family {U(t, τ)}t≥τ is exponentially bounded; thus
C := sup{‖U(t, τ)‖ : 0 ≤ t− τ ≤ 1} <∞. We will use the following estimates
valid for any t ∈ [n, n+ 1], n ∈ Z, and x ∈ X:

‖U(n+ 1, n)x‖ = ‖U(n+ 1, t)U(t, n)x‖ ≤ C‖U(t, n)x‖,
‖U(t, n)x‖ ≤ C‖x‖.

(4.3)

Lemma 4.2.

(i) B : E(Z)→ E(R) is a bounded linear operator;
(ii) B : KerD0 → Ker G is an isomorphism;
(iii) (E1 − I)B = −BD0.

Proof. Since (Bx)(n) = U(n, n − 1)xn−1, n ∈ Z, the function Bx is con-
tinuous. Assertion (i) follows from (4.3). Assertion (iii) follows from a direct
calculation. To prove (ii), recall from Proposition 2.1 that u ∈ Ker G if and
only if u ∈ Lp(R;X)∩C0(R;X) (resp., u ∈ C0(R;X)), and u(t) = U(t, τ)u(τ)
for all t ≥ τ in R. Also, x ∈ KerD0 if and only if xn = U(n, n − 1)xn−1,
n ∈ Z. If x ∈ KerD0 then (Bx)(t) = U(t, n)xn for t ∈ [n, n + 1], n ∈ Z, and
thus Bx ∈ Ker G (see also (iii) in the lemma). If x ∈ KerD0 and Bx = 0 then
x = 0. Thus, B : KerD0 → Ker G is an injection. To see that it is a surjection,
take u ∈ Ker G and let x = (u(n))n∈Z. Then (Bx)(t) = U(t, n)u(n) = u(t).
It remains to check that x ∈ `p(Z;X). This follows from (4.3):

‖x‖p`p = ‖(u(n))n∈Z‖p`p =
∑
n∈Z

∫ n+1

n

‖U(n+ 1, t)U(t, n)u(n)‖pdt

≤ Cp
∑
n∈Z

∫ n+1

n

‖U(t, n)u(n)‖pdt

= Cp
∑
n∈Z

∫ n+1

n

‖u(t)‖pdt = Cp‖u‖pLp . �

Proof of Theorem 1.2. We give the proof for Lp-spaces; the case of C0(R;X)
is similar.

(i)⇒(ii) Using Lemma 4.2(iii), and setting γ = γ(E1 − I), we have

‖D0x‖`p ≥ ‖B‖−1‖BD0x‖Lp = ‖B‖−1‖(E1 − I)Bx‖Lp(4.4)

≥ γ‖B‖−1 dist(Bx,Ker(E1 − I)) ≥ γ

2‖B‖
‖Bx− u‖Lp
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for some u ∈ Ker(E1− I). Due to (3.2), we may assume that u =
∑
|k|≤K uk,

where uk ∈ Ker(G−2πik). Using (3.1) and Lemma 4.2(ii), find z(k) ∈ KerD0

such that uk(t) = e−2πikt(Bz(k))(t), t ∈ R, |k| ≤ K. Recall that z(k) =
(z(k)
n )n∈Z ∈ KerD0 implies z(k)

n+1 = U(n+1, n)z(k)
n and (Bz(k))(t) = U(t, n)z(k)

n

for t ∈ [n + 1, n] and n ∈ Z. Thus, with C from (4.3) and using (4.2), we
continue estimate (4.4) as follows:

Cp‖D0x‖p`p ≥
(

γC

2‖B‖

)p
‖Bx− u‖pLp

=
(

γC

2‖B‖

)p∑
n∈Z

∫ n+1

n

∥∥∥U(t, n)
[
α(t− n)xn

+ (1− α(t− n))U(n, n− 1)xn−1 −
∑
|k|≤K

e−2πiktz(k)
n

]∥∥∥p dt
≥
(

γ

2‖B‖

)p∑
n∈Z

∫ n+1

n

∥∥∥U(n+ 1, n)
[
α(t− n)xn

+ (1− α(t− n))U(n, n− 1)xn−1 −
∑
|k|≤K

e−2πiktz(k)
n

]∥∥∥p dt.
Since α(t) = 1 for t ∈

[
2
3 , 1
]

and U(n+ 1, n)z(k)
n = z

(k)
n+1, we infer:

C‖D0x‖`p ≥
γ

2‖B‖

∫ 1

2/3

∑
n∈Z

∥∥∥U(n+ 1, n)xn −
∑
|k|≤K

e−2πiktz
(k)
n+1

∥∥∥pdt
1/p

=
γ

2‖B‖

(∫ 1

2/3

∑
n∈Z

∥∥∥xn+1 − (xn+1 − U(n+ 1, n)xn)

−
∑
|k|≤K

e−2πiktz
(k)
n+1

∥∥∥pdt
1/p

=
γ

2‖B‖

∫ 1

2/3

∥∥∥x−D0x−
∑
|k|≤K

e−2πiktz(k)
∥∥∥p
`p
dt

1/p

.

Since
∑
k e
−2πiktz(k) ∈ KerD0 for each t ∈

[
2
3 , 1
]
, we may continue as follows:
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C‖D0x‖`p ≥
γ

2‖B‖

(∫ 1

2/3

dist(x−D0x,KerD0)pdt

)1/p

=
γ

2(3)1/p‖B‖
inf

y∈KerD0
‖x−D0x− y‖`p

≥ γ

2(3)1/p‖B‖
dist(x,KerD0)− γ

2(3)1/p‖B‖
‖D0x‖`p .

Thus, γ(D0) > 0. By Theorem 2.5, assertion (ii) in Theorem 1.2 is proved.
(ii)⇒(iii) By Theorem 2.5, γ(G) > 0 implies γ(D0) > 0. Using (4.3), for

each τ ∈ [0, 1) we infer:

C‖Dτx‖`p = C

(∑
n∈Z

‖xn − U(n+ τ, n+ τ − 1)xn−1‖p
)1/p

≥

(∑
n∈Z

‖U(n+ 1, n+ τ)xn − U(n+ 1, n+ τ)U(n+ τ, n+ τ − 1)xn−1‖p
)1/p

= ‖D0(U(n, n+ τ − 1)xn−1)n∈Z‖`p
≥ γ(D0) dist((U(n, n+ τ − 1)xn−1)n∈Z,KerD0)

≥ (γ(D0)/2)‖(U(n, n+ τ − 1)xn−1)n∈Z − z‖`p

for some z = (zn)n∈Z ∈ KerD0. Using (4.3) again,

‖U(n+ τ, n+ τ − 1)xn−1 − U(n+ τ, n)zn‖
= ‖U(n+ τ, n)[U(n, n+ τ − 1)xn−1 − zn]‖
≤ C‖U(n, n+ τ − 1)xn−1 − zn‖.

Since (U(n+ τ, n)zn)n∈Z ∈ KerDτ for z ∈ KerD0 by Lemma 4.1(ii),

C‖Dτx‖`p ≥
γ(D0)

2C

(∑
n∈Z

‖U(n+ τ, n+ τ − 1)xn−1 − U(n+ τ, n)zn‖p
)1/p

=
γ(D0)

2C
‖x−Dτx− (U(n+ τ, n)zn)n∈Z‖`p

≥ γ(D0)
2C

dist(x,KerDτ )− γ(D0)
2C

‖Dτx‖`p .

Assertion (iii) in Theorem 1.2 is proved.
(iii)⇒(i) Set γ = infτ∈[0,1) γ(Dτ ) > 0, consider a continuous compactly

supported function u : R → X, and note that the set of such functions is
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dense in Lp(R;X). We have:

‖(E1 − I)u‖pLp =
∑
n∈Z

∫ n+1

n

‖u(t)− U(t, t− 1)u(t− 1)‖p dt(4.5)

=
∫ 1

0

‖Dτ ((u(τ + n))n∈Z) ‖p`p dτ.

Using Lemma 4.1(i) and (4.3), for any y ∈ `p and τ ∈ [0, 1) we infer:

dist(y,KerDτ ) = inf
x∈KerDτ

‖y − x‖`p(4.6)

≥ C−1 inf
x∈KerDτ

‖(U(n, n+ τ − 1)yn−1)n∈Z

− (U(n, n+ τ − 1)xn−1)n∈Z‖`p
≥ C−1 dist ((U(n, n+ τ − 1)yn−1)n∈Z,KerD0) .

Using (4.6) for y = (u(τ + n))n∈Z, we have:

‖Dτ ((u(τ + n))n∈Z) ‖`p ≥ γ dist ((u(τ + n))n∈Z,KerDτ )(4.7)

≥ γC−1 dist ((U(n, n+ τ − 1)u(τ + n− 1))n∈Z,KerD0) .

Next, we claim that for each τ ∈ [0, 1) one can choose x = (xn)n∈Z ∈
KerD0, x = x(τ), so that the function x : [0, 1)→ `p is continuous, and that
the following inequality holds:

dist ((U(n, n+ τ − 1)u(τ + n− 1))n∈Z,KerD0)(4.8)

≥ 1
2
‖(U(n, n+ τ − 1)u(τ + n− 1))n∈Z − x‖`p .

To prove the claim, consider a continuous function u : [0, 1] → `p defined by
the rule u(τ) := (U(n, n+τ−1)u(τ+n−1))n∈Z. By the choice of u, the values
u(τ), τ ∈ [0, 1], are sequences with finite support and therefore do not belong
to KerD0. Let ε := infτ∈[0,1] dist(u(τ),KerD0) > 0 and choose an η > 0 so
that ‖u(t)−u(t′)‖`p < ε/10 provided |t− t′| < η. Let {τ0 = 0, . . . , τn = 1} be
a partition of [0, 1] with the size η. Choose yi ∈ KerD0 so that ‖u(τi)−yi‖ <
(11/10) dist(u(τi),KerD0), and define a piecewise constant function x0 by
x0(τ) = yi for τ ∈ [τi, τi+1). Then, for τ ∈ [τi, τi+1), i = 0, . . . , n − 1, we
have:

‖u(τ)− x0(τ)‖ ≤ ‖u(τ)− u(τi)‖+ (11/10) dist(u(τi),KerD0)(4.9)

≤ ε/10 + (11/10)(ε/10 + dist(u(τ),KerD0))

≤ (3/2) dist(u(τ),KerD0).

Extending u and x0 periodically to [1, 2), for a δ ∈ (0, 1) consider a continuous
on [0, 1] function x defined by x(τ) = (1/δ)

∫ τ+δ

τ
x0(s) ds. Using (4.9), for
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τ ∈ [0, 1) we infer:

‖u(τ)− x(τ)‖ ≤ (1/δ)
∫ τ+δ

τ

‖u(τ)− x0(s)‖ ds

≤ (1/δ)
∫ τ+δ

τ

‖u(s)− x0(s)‖ ds+ (1/δ)
∫ τ+δ

τ

‖u(τ)− u(s)‖ ds

≤ (1/δ)
∫ τ+δ

τ

(3/2) dist(u(s),KerD0) ds+ sup
s∈[τ,τ+δ]

‖u(τ)− u(s)‖.

Choosing δ so that the first term is less than (3/2) dist(u(τ),KerD0) + (ε/4)
and the second term is less than ε/4, we conclude that ‖u(τ) − x(τ)‖ ≤
2 dist(u(τ),KerD0), τ ∈ [0, 1), and the claim is proved.

Next, using (4.7) and (4.8), taking into account (4.3) again, and letting
w(τ + n) = U(τ + n, n)xn(τ) for n ∈ Z and τ ∈ [0, 1), we have:

C‖Dτ (u(τ + n))n∈Z‖`p
(4.10)

≥ (γ/2)‖ (U(n, n+ τ − 1)u(n+ τ − 1)− xn)n∈Z ‖`p
≥ γ(2C)−1‖ (U(τ + n, n)[U(n, n+ τ − 1)u(n+ τ − 1)− xn])n∈Z ‖`p
= γ(2C)−1‖ (U(τ + n, n+ τ − 1)u(τ + n− 1)− U(τ + n, n)xn)n∈Z ‖`p
= γ(2C)−1‖

(
(E1u)(τ + n)− w(τ + n)

)
n∈Z ‖`p .

Since x ∈ KerD0, for any n ∈ Z and τ ∈ [0, 1) we obtain:

(E1w)(τ + n) = U(τ + n, τ + n− 1)w(τ + n− 1) = U(τ + n, n− 1)xn−1

= U(τ + n, n)U(n, n− 1)xn−1 = U(τ + n, n)xn = w(τ + n).

Thus w ∈ Ker(E1 − I). Using (4.5) and (4.10), we thus infer:

C2‖(E1 − I)u‖Lp ≥ (γ/2)
(∫ 1

0

‖
(
(E1u)(τ + n)− w(τ + n)

)
n∈Z ‖

p
`p
dτ

)1/p

= (γ/2) ‖E1u− w‖Lp ≥ (γ/2)
(
‖u− w‖Lp − ‖(E1 − I)u‖Lp

)
.

Since w ∈ Ker(E1 − I), assertion (i) in Theorem 1.2 follows. �

5. Fredholm operators on the half-line

In this section we study Fredholm properties of the generator G+
0 of the

evolution semigroup (2.2) on E0(R+) and the operator G+ on E(R+), de-
scribed in Definition 2.3. On the sequence space E(Z+) we introduce the
following difference operator D+ : x = (xn)n≥0 7→ ((D+x)n)n≥0, where

(D+x)n =

{
x0, n = 0,
xn − U(n, n− 1)xn−1, n ≥ 1,

(5.1)



FREDHOLM PROPERTIES OF EVOLUTION SEMIGROUPS 1013

and remark that KerD+ = {0}. First, we will provide an analog of Theo-
rem 2.5 for the operators G+

0 and D+. To start, fix a continuous 1-periodic
function α : R+ → R+ such that α(0) = α(1) = 0 and

∫ 1

0
α(s)ds = 1, and

let x = (xn)n∈Z+ ∈ E(Z+). Define bounded linear operators R0 : E(R+) →
E(Z+) and S : E(Z+)→ E(R+) as follows:

(R0f)n =

{
0, n = 0,
−
∫ n
n−1

U(n, s)f(s) ds, n ≥ 1;
(5.2)

(Sx)(t) = α(t)U(t, n)xn, t ∈ [n, n+ 1], n ≥ 0.

Lemma 5.1.

(i) If y = D+x for some x ∈ E(Z+) then G+
0 u = Sy for some u ∈

dom G+
0 ;

(ii) if Sy = G+
0 u for some u ∈ dom G+

0 then y = D+x for an x ∈ E(Z+);
(iii) if f = G+

0 u for some u ∈ dom G+
0 then R0f = D+(u(n))n∈Z+ ;

(iv) if R0f = D+x for an x ∈ E(Z+) then f = G+
0 u for some u ∈

dom G+
0 .

Proof. We give the proof only for Lp-spaces. The argument for the space
C00(R+;X) is similar.

(i) Define u(t) = U(t, n)(yn−xn)−
∫ t
n
U(t, s)Sy(s) ds for t ∈ [n, n+1], n ≥ 0.

Then u(0) = 0. A calculation similar to [9, p. 117] shows that u ∈ Lp(R+;X)∩
C00(R+;X) and that u satisfies (2.3) with f = Sy. Thus G+

0 u = Sy.
(ii) For u ∈ Lp(R+;X)∩C00(R+;X) satisfying (2.3) with f = Sy equation

(2.1) holds for all t ≥ τ in R+. In particular, for t = n+ 1 and τ = n,

u(n+ 1) = U(n+ 1, n)u(n)−
∫ n+1

n

U(n+ 1, s)α(s)U(s, n)yn ds

= U(n+ 1, n)u(n)− U(n+ 1, n)yn, n ≥ 0.

Thus, y = D+(yn − u(n))n∈Z+ . Moreover, u = (u(n))n∈Z+ ∈ `p(Z+;X).
Indeed, (2.1) implies that

‖u(n)‖ ≤ C(‖u(t)‖+ ‖yn−1‖), t ∈ [n− 1, n], n ≥ 1,(5.3)

with C > 0 from (4.3). Then, using the inequality (a+b)p ≤ 2p−1(ap+bp) and
integrating (5.3) along [n− 1, n], we have ‖u‖p`p ≤ 2p−1Cp(‖u‖pLp + ‖y‖p`p).

(iii) Since u and f satisfy (2.1) for all t ≥ τ in R+, letting t = n and
τ = n− 1, we have that −

∫ n
n−1

U(n, s)f(s) ds = u(n)− U(n, n− 1)u(n− 1),
n ≥ 1. As above, u = (u(n))n∈Z+ ∈ `p(Z+;X). By (5.2), (R0f)0 = u(0) = 0.

(iv) For x = (xn)n∈Z+ such that R0f = D+x define

u(t) = U(t, n)xn −
∫ t

n

U(t, s)f(s)ds, t ∈ [n, n+ 1], n ∈ Z+.



1014 YURI LATUSHKIN AND YURI TOMILOV

Note that u(0) = x0 = (R0f)0 = 0. A calculation similar to [9, p. 117] again
shows that u ∈ Lp(R+;X) ∩ C00(R+;X), and that u and f satisfy (2.1) for
all t ≥ τ in R+. Thus, G+

0 u = f . �

Theorem 5.2. The range Im G+
0 is closed in E0(R+) if and only if ImD+

is closed in E(Z+). Also, codim Im G+
0 = codim ImD+. In particular, the

operator G+
0 is Fredholm if and only if D+ is Fredholm, and ind G+

0 = indD+.

The proof of Theorem 5.2 is identical to the proof of [16, Theorem 1.4] with
[16, Lemma 6.1] replaced by Lemma 5.1, and is therefore omitted. Recall that
Ker G+

0 = {0}; see (2.5). The main result of this section is given next.

Theorem 5.3. Let X be a reflexive Banach space and assume the family
{U(t, τ)}t,τ∈R consists of invertible operators. Then the following statements
are equivalent.

(i) The operator G+
0 is Fredholm on E0(R+).

(ii) The evolution family {U(t, s)}t≥s≥0 admits an exponential dichotomy
{Pt}t≥0 on R+ and codim ImP0 <∞.

Also, ind G+
0 = − codim ImP0.

Proof. Extend the evolution family {U(t, τ)}t≥τ≥0 from R+ to an evolution
family {V (t, τ}t≥τ on R as follows:

V (t, τ) =


U(t, τ) for t ≥ τ ≥ 0,
U(t, 0)eτ for t ≥ 0 ≥ τ,
e−(t−τ) for 0 ≥ t ≥ τ.

(5.4)

On E(R) consider the generator GV of the evolution semigroup associated
with {V (t, τ)}t≥τ ; cf. Proposition 2.1. Let DV denote the corresponding
difference operator DV ((xn)n∈Z) = (xn − V (n, n − 1)xn−1)n∈Z on E(Z). In
the direct sum decomposition E(Z) = E(Z ∩ (−∞,−1])⊕ E(Z+) the operator
DV allows the following matrix representation:

DV =
[
D−V 0
D±V D+

V

]
=
[
D−V 0
D±V I

]
·
[
I 0
0 D+

V

]
.(5.5)

Here D−V = DV |E(Z∩(−∞,−1]), D+
V : (xn)n≥0 7→ (x0, x1 − V (1, 0)x0, . . .), and

D±V : (xn)n≤−1 7→ (−V (0,−1)x−1, 0, . . .). Note that D−V = I − e−1S, where
S : (xn)n≤−1 7→ (xn−1)n≤−1 is the backward shift, and the operator D−V
is invertible because ‖S‖ = 1. Since the first factor in the product (5.5)
is an invertible operator, we infer that DV is Fredholm if and only if D+

V is
Fredholm, and that indDV = indD+

V . Thus, by Theorem 5.2, DV is Fredholm
if and only if G+

0 is Fredholm, and indDV = ind G+
0 . Next, we claim that DV

is Fredholm if and only if GV is Fredholm and that indDV = ind GV . Indeed,
by Theorem 2.5 applied to the evolution family {V (t, τ)}t≥τ , t, τ ∈ R, we
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know that Im GV and ImDV are closed at the same time with codim Im GV =
codim ImDV . By Lemma 4.2(ii), we have dim Ker GV = dim KerDV (in fact,
KerDV ⊂ KerD+

V = {0}), and the claim is proved. Thus, G+
0 is Fredholm if

and only if GV is Fredholm and ind G+
0 = ind GV .

By Theorem 2.4, GV is Fredholm if and only if the evolution families
{U(t, τ)}t≥τ≥0 and {U(t, τ)}0≥t≥τ admit exponential dichotomies {P+

t }t≥0

and {P−t }t≤0 on R+ and R−, and the pair of subspaces (KerP−0 , ImP+
0 ) is

Fredholm (note that the dichotomy subspaces Ker P−0 and ImP+
0 are uniquely

defined; cf. [11, Remark IV.3.4]). But, using formula (5.4), one has P−t = I,
t ∈ R−, and KerP−0 = {0}. So, the pair (KerP−0 , ImP+

0 ) is Fredholm if and
only if codim ImP+

0 < ∞. Moreover, by Theorem 2.4, ind G+
0 = ind GV =

ind(KerP−0 , ImP+
0 ) = − codim ImP0. �

In particular, if dimX <∞ then the operator G+
0 is Fredholm if and only

if {U(t, τ)}t≥τ≥0 admits an exponential dichotomy on R+. Turning to the
study of Fredholm properties of G+, we will assume in the remaining part
of this section that the evolution family {U(t, τ)}t≥τ≥0 consists of invertible
operators. We note the following fact; cf. [6, Lemma 5.2].

Lemma 5.4. The range Im G+ is dense in E(R+).

Proof. For any function f ∈ E(R+) with compact support the function
u(t) :=

∫∞
t
U(t, s)f(s) ds, t ≥ 0, has compact support and satisfies (2.1) for

all t ≥ τ in R+. So, u ∈ dom G+ and G+u = f. The lemma follows from the
density of such f in E(R+). �

In our next result we recast Theorem 2.6 in the current context.

Theorem 5.5. If X is a Banach space and the family {U(t, τ)}t,τ∈R con-
sists of invertible operators then the following statements are equivalent.

(i) The operator G+ is Fredholm on E(R+).
(ii) The family {U(t, s)}t≥s≥0 admits an exponential dichotomy {Pt}t≥0

on R+ and dim ImP0 <∞.
(iii) The operator G+ is surjective on E(R+) and dimX0 < ∞ for the

subspace X0 defined in (2.6).
Also, ind G+ = dimX0.

Proof. If {U(t, τ)}t≥τ admits an exponential dichotomy on R+, then ImP0

= X0. Indeed, if u ∈ Ker G then, from (2.4) and the dichotomy estimates
(2.7),

‖u(t)‖ = ‖U(t, 0)u(0)‖ ≥M−1eαt‖(I − P0)u(0)‖ −Me−αt‖P0u(0)‖, t ∈ R+.

Since u ∈ E(R), we have (I − P0)u(0) = 0, i.e., X0 ⊂ ImP0. The inverse
inclusion follows from (2.4) and (2.6).
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Since any finite-dimensional subspace is complemented in X, the equiva-
lence (ii)⇔(iii) follows from Theorem 2.6.

(i)⇒(ii) If G+ is Fredholm then Im G+ is closed, and thus Im G+ = E(R+)
by Lemma 5.4. Since dim Ker G+ < ∞, we also have dimX0 < ∞ due to
(2.4), and X0 is complemented in X. Since (iii)⇒(ii), {U(t, τ)}t≥τ≥0 admits
an exponential dichotomy {Pt}t≥0 on R+ with ImP0 = X0.

(ii)⇒(i) By the implication (ii)⇒(iii), G+ is surjective. By (2.4), u ∈
Ker G+ if and only if u(0) ∈ ImP0 and u(t) = U(t, 0)u(0), t ≥ 0. Thus, the
map u(0) 7→ u(·), u(t) = U(t, 0)u(0), is a bijection from ImP0 on Ker G+,
and thus dim Ker G+ = dimX0 = dim ImP0 <∞. �

To conclude this section, we remark that Theorem 1.1 (with a similar proof)
holds on E0(R+) with Et replaced by Et+.

6. Evolution semigroups on spaces of periodic functions

Let {eAt}t≥0 be a strongly continuous semigroup on the Banach space
X. Define an evolution semigroup, {etGp}t≥0, on the space E([0, 2π]) of 2π-
periodic functions by the formula

(etGpu)(τ) = eAtu([τ − t](mod 2π)), τ ∈ [0, 2π], t ≥ 0.(6.1)

Its generator Gp is the closure of the operator Gpu = −u′ +MAu defined on
dom(d/dt) ∩ dom(MA); cf. [9, p. 38].

Lemma 6.1. Let T be a bounded linear operator on a Banach space X. For
the multiplication operator MT on E([0, 2π]) the following assertions hold.

(i) dim KerMT <∞ if and only if KerMT = {0};
(ii) codim ImMT <∞ if and only if ImMA = E([0, 2π]);
(iii) ImT is closed in X if and only if ImMT is closed in E([0, 2π]).

Proof. (i) For k ∈ N consider functions ϕk : [0, 2π]→ [0, 1] defined so that
ϕk((2k)−1) = 1, ϕk(t) = 0 for t ∈ [0, 2π] \ [(2k − 1)−1, (2k + 1)−1], and ϕk is
linear on [(2k− 1)−1, (2k)−1) and ((2k)−1, (2k+ 1)−1]. Suppose that there is
a nonzero x ∈ KerT and let n = dim KerMT . The functions in the family

Sx = {ϕk(·)x : 1 ≤ k ≤ n+ 1} ⊂ E([0, 2π])

are linearly independent. Indeed, if
n+1∑
k=1

λkϕk(·) = 0 for λk ∈ C, then, applying

the functionals Fk = 〈·, ϕk(·)x∗〉 ∈ (E ([0, 2π]))∗ with 〈x, x∗〉 = 1, we obtain
λk = 0, 1 ≤ k ≤ n+ 1. Thus, dim KerMT ≥ n+ 1, a contradiction.

(ii) Suppose that there is an x ∈ X \ ImT and let n = dim(X/ ImMT ).
Consider the family Sx constructed above. If ϕk(·)x−ϕm(·)x ∈ ImMT for k 6=
m then x ∈ ImT , which contradicts x ∈ X \ImT . Therefore, ϕk(·)x belong to

different quotient classes of X/ ImMT . Moreover, if
n+1∑
k=1

λkϕk(·) ∈ ImMT then
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for each k we have λkϕk(t) ∈ ImMT for a.e. t ∈ [(2k−1)−1, (2k+ 1)−1]. This
can hold only if λk = 0. Thus, the quotient classes containing ϕk(·)x, 1 ≤ k ≤
n+ 1, are linearly independent, and dim(X/ ImMT ) ≥ n+ 1, a contradiction.

(iii) This part of the lemma is proved2 in [7]. �

The following well-known spectral mapping theorem relates σ(e2πA) on X
and the spectra of Gp and e2πGp on E([0, 2π]); see [9, Theorem 2.30].

Theorem 6.2. The following statements are equivalent.

(i) e2πA − I is invertible in X;
(ii) Gp is invertible in E([0, 2π]);
(iii) e2πGp − I is invertible in E([0, 2π]).

The next proposition shows, once again, that an analog of Theorem 6.2 for
the Fredholm spectra can hold only trivially; cf. Theorem 1.1.

Proposition 6.3. For each λ ∈ C\{0}, the operator e2πGp−λ is Fredholm
in E([0, 2π]) if and only if it is invertible.

Indeed, this holds by Lemma 6.1 because

(e2πGpu)(τ) = e2πAu(τ), u ∈ E([0, 2π]), τ ∈ [0, 2π].(6.2)

We will need a description of dom Gp; cf. Proposition 2.1 and [17].

Lemma 6.4. A function u belongs to dom Gp on E([0, 2π]) if and only if
u ∈ Cper([0, 2π];X) and there exists an f ∈ E([0, 2π]) such that

u(t) = etAu(0) +
∫ t

0

e(t−s)Af(s)ds, t ∈ [0, 2π].(6.3)

Proof. Define a closed operator, Gp,1, as Gp,1u = f for u and f satisfying
(6.3). The set P of trigonometric polynomials on [0, 2π] with values in domA
is a core for Gp,1. Since Gp,1u = Gpu for every u ∈ P, we infer that Gp =
Gp,1. �

The next result is an analog of Theorem 1.2 for the space E([0, 2π]).

Theorem 6.5. The following statements are equivalent.

(i) Im(e2πA − I) is closed in X;
(ii) Im Gp is closed in E([0, 2π]);
(iii) Im(e2πGp − I) is closed in E([0, 2π]).

2We thank L. Burlando for making her preprint [7] available.
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Proof. (i)⇔(iii) This follows directly from (6.2) and Lemma 6.1(iii).
(i)⇒(ii) Consider a sequence {fk = Gpuk : k ∈ N} ⊂ Im Gp such that

fk → f in E([0, 2π]) as k →∞. By Lemma 6.4,

(I − e2πA)uk(0) =
∫ 2π

0

e(2π−s)Afk(s) ds ∈ Im(I − e2πA).

Since fk → f , we obtain (I − e2πA)uk(0) →
∫ 2π

0
e(2π−s)Af(s) ds in X as

k → ∞. Since Im(e2πA − I) is closed, there exists an x ∈ X such that∫ 2π

0
e(2π−s)Af(s) ds = (I − e2πA)x. Define u ∈ Cper([0, 2π];X) by

u(t) = etAx+
∫ t

0

e(t−s)Af(s) ds for t ∈ [0, 2π].

By Lemma 6.4, f = Gpu and thus Im Gp is closed.
(ii)⇒(i) Suppose that γ(e2πA − I) = 0 and choose a sequence {xn : n ∈

N} ⊂ X such that ‖xn‖ = 1, n ∈ N, and also assertions (a) ‖(e2πA − I)xn‖ ≤
n−1 and (b) q := inf

n∈N
inf

y∈Ker(e2πA−I)
‖xn − y‖ > 0 hold. As in [9, p. 39],

let α : [0, 2π] → [0, 1] be a smooth function such that α(τ) = 0 provided
τ ∈ [0, 2π/3] and α(τ) = 1 provided τ ∈ [4π/3, 2π]. Define a sequence of
functions {gn : n ≥ 0} in E([0, 2π]) by the formula

gn(τ) = (1− α(τ))e(2π+τ)Axn + α(τ)eτAxn, τ ∈ [0, 2π].

We claim that infn∈N dist(gn,Ker Gp) > 0 and ‖Gpgn‖E → 0 as n→∞. This
implies γ(Gp) = 0, a contradiction with (ii).

To prove the claim, we note, first, that u ∈ Ker Gp if and only if u(τ) =
eAτu(0), τ ∈ [0, 2π], and e2πAu(0) = u(0). Hence,

dist(gn,Ker Gp) = inf
u∈Ker Gp

‖gn − u‖ = inf
y∈Ker(e2πA−I)

‖gn − e(·)Ay‖.(6.4)

Set a := max{|α′(τ)| : τ ∈ [0, 2π]} and b := max{‖eτA‖ : τ ∈ [0, 2π]}.
If E([0, 2π]) = Cper([0, 2π];X) then, as in [9, p. 39], {gn : n ≥ 0} ⊂ dom Gp

and ‖Gpgn‖ ≤ ab/n. Moreover, if y ∈ Ker(e2πA − I) then

‖gn − e(·)Ay‖Cper ≥ ‖gn(0)− y‖ = ‖e2πAxn − y‖
≥ ‖xn − y‖ − ‖e2πAxn − xn‖ ≥ q/2 > 0

for sufficiently large n since e2πAxn − xn → 0 as n → ∞. By (6.4), we have
dist(gn,Ker Gp) > 0. If E([0, 2π]) = Lp([0, 2π];X), 1 ≤ p <∞, then, as in [9,
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p. 39], {gn : n ≥ 0} ⊂ dom Gp, and ‖Gpgn‖ ≤ (2π)1/pab/n. Furthermore,

‖gn − e(·)Ay‖pLp ≥
∫ 2π/3

0

‖eτA(e2πAxn − y)‖p dτ

≥ b−1

∫ 2π/3

0

‖e(2π−τ)AeτA(e2πAxn − y)‖p dτ

=
2π
3b
‖e2πA(e2πAxn − y)‖p

=
2π
3b
‖e2πA(e2πAxn − xn) + (e2πAxn − xn) + (xn − y)‖p

for y ∈ Ker(e2πA − I). Since e2πAxn − xn → 0 as n → ∞, we have
‖gn − e(·)Ay‖Lp ≥ c > 0 for some c > 0 and sufficiently large n, and thus
dist(gn,Ker Gp) > 0. �
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