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NULL SETS FOR THE CAPACITY ASSOCIATED TO RIESZ
KERNELS

LAURA PRAT

Abstract. We prove that the capacity associated to the signed vector-
valued Riesz kernel x

|x|1+α in Rn, 0 < α < n, α /∈ Z, vanishes on

compact sets with finite α-Hausdorff measure that satisfy an additional
density condition.

1. Introduction

The aim of this paper is to continue the study of the capacity γα associated
to the signed vector-valued Riesz kernel x/|x|1+α in Rn, which was initiated
in the articles [P], [MPV] and [Vo]. Given 0 < α < n and a compact set
E ⊂ Rn, one sets

(1) γα(E) = sup |〈T, 1〉|,

where the supremum is taken over all real distributions T supported on E
such that T ∗ xi

|x|1+α is a function in L∞(Rn) and ‖T ∗ xi
|x|1+α ‖∞ ≤ 1, for

1 ≤ i ≤ n.
When n = 2 and α = 1, γ1 is comparable to analytic capacity by the main

result of [T1]. For each n ≥ 2 the capacity γn−1 is called Lipschitz harmonic
capacity and has been considered in [Par], [MP], [V], and more recently in
[Vo], where it was shown to be semiadditive.

It is a remarkable fact that the behaviour of γα depends on whether α is
an integer or not, as was discovered in [P]. For integer values of α it was
proved in [MP] that γα and the α-dimensional Hausdorff measure Hα vanish
simultaneously for compact subsets of α-dimensional smooth surfaces. It was
shown in [P] that if 0 < α < 1 and Hα(E) <∞ then, surprisingly, γα(E) = 0.
In the same article it was also shown that this result holds for any non-integer
value of α between 0 and n provided that the compact set E is assumed to
be Ahlfors-David regular of dimension α. Recall that a closed subset E of Rn
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is said to be Ahlfors-David regular of dimension α if it has locally finite and
positive α-dimensional Hausdorff measure in a uniform way, i.e.,

C−1rα ≤ Hα(E ∩B(x, r)) ≤ Crα, for x ∈ E, r ≤ d(E),

where B(x, r) is the open ball centered at x of radius r and d(E) is the
diameter of E. Notice that if E is a compact Ahlfors-David regular set of
dimension α, then Hα(E) <∞.

The difficulty in extending the result just mentioned from the case α < 1
to the case of non-integer values α > 1 is due to the fact that the Riesz kernels
enjoy a special positivity property for α ≤ 1, which fails for every α in the
range 1 < α < n (see [P]). This lack of positivity makes the treatment of the
case 1 < α < n much more difficult (see [Vo]).

In this paper we take one more step towards the understanding of γα for
non-integer indexes α > 1. Our main result replaces the Ahlfors-David regu-
larity assumption by a much weaker density condition. It becomes then more
and more plausible that one can get γα(E) = 0 from Hα(E) < ∞ for all
compact sets E and every non-integer α between 0 and n.

Theorem 1 (Main Theorem). Let 0 < α < n, α /∈ Z, and let E ⊂ Rn be
a compact set with Hα(E) <∞, such that for almost all x ∈ E

0 < θα∗ (x,E) ≤ θ∗α(x,E) <∞.
Then γα(E) = 0.

Recall that the quantities θα∗ (x,E) and θ∗α(x,E) are the lower and upper
densities of E at x, defined by

θα∗ (x,E) = lim inf
r→0

Hα(E ∩B(x, r))
rα

and

θ∗α(x,E) = lim sup
r→0

Hα(E ∩B(x, r))
rα

.

The proof of the Main Theorem uses an adaptation of a result of Pajot
(see [Pa]) on coverings by Ahlfors-David regular sets. This will take us back
to the Ahlfors-David regular case. To perform the reduction we also need to
study a positive version of γα , denoted by γα,+. For 0 < α < n, the capacity
γα,+ is defined in the same way as γα, except that the supremum in (1) is
taken only over positive measures instead of all distributions. We will show
that for 0 < α < n, γα,+ is countably semiadditive, and this will play a role
in proving the Main Theorem.

We finally mention that the proof of the Main Theorem, as those of the
main results in [P], rely on the basic fact that if E is an α-dimensional Ahlfors-
David regular compact set, with α non-integer, then the α-Riesz operator is
unbounded on L2(HαE) (see [Vi]). We do not know how to prove this result
for general sets with finite Hα measure and non-integer α > 1. Such a result
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would imply that the conclusion of the Main Theorem holds without any
density assumptions.

Throughout the paper, the letter C will stand for an absolute constant
that may be different at different occurrences. The notation A ≈ B means,
as usual, that for some constant C one has C−1B ≤ A ≤ CB.

The plan of the paper is the following. Section 2 contains some preliminary
definitions and results that will be used throughout the paper. The semiad-
ditivity of the capacity γα,+, for 0 < α < n, is also proved in this section. In
Section 3 we prove the Main Theorem.

2. Preliminaries

2.1. L2-boundedness of Calderón-Zygmund operators. A function
K(x, y) defined on Rn × Rn \ {(x, y) : x = y} is called a Calderón-Zygmund
kernel if the following holds:

(1) |K(x, y)| ≤ C|x − y|−α for some 0 < α < n (α not necessarily an
integer) and some positive constant C <∞.

(2) There exists 0 < ε ≤ 1 such that for some constant 0 < C <∞

|K(x, y)−K(x0, y)|+ |K(y, x)−K(y, x0)| ≤ C |x− x0|ε

|x− y|α+ε
,

if |x− x0| ≤ |x− y|/2.
Let µ be a Radon measure on Rn. Then the Calderón-Zygmund operator

T associated to the kernel K and the measure µ is formally defined as

Tf(x) = T (fµ)(x) =
∫
K(x, y)f(y)dµ(y).

This integral may not converge for many functions f , because for x = y the
kernel K may have a singularity. For this reason, we introduce the truncated
operators Tε, ε > 0, by

Tεf(x) = Tε(fµ)(x) =
∫
|x−y|>ε

K(x, y)f(y)dµ(y).

We say that the singular integral operator T is bounded in L2(µ) if the oper-
ators Tε are bounded in L2(µ) uniformly in ε.

The maximal operator T ∗ is defined as

T ∗f(x) = sup
ε>0
|Tεf(x)|.

Let 0 < α < n and consider the Calderón-Zygmund operator Rα associated
to the antisymmetric vector-valued Riesz kernel x/|x|1+α.

For the proof of our Theorem a deep result of Nazarov, Treil and Volberg
will be needed (see [NTV3]). This result was originally proved for the Cauchy
transform; the modifications needed to use the result for the operators Rα are
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explained in [P]. In this way one obtains the following T (b)-Theorem for the
α-Riesz transform Rα:

Theorem 2. Let µ be a positive measure on R
n such that

lim supr→∞ µ(B(x, r))/rα < +∞ for µ almost all x, and let b be an L∞(µ)
function such that |

∫
bdµ| = γα. Assume that R∗α b (x) < +∞ for µ almost

all x. Then there is a set F with µ(F ) ≥ γα/4 such that the α-Riesz transform
Rα is bounded in L2(µ|F ).

2.2. The capacities γα,+ and γα,2. Recall that the capacity γα,+ of a
compact set E ⊂ Rn is a variant of γα, defined by

γα,+(E) = sup {µ(E)},
where the supremum is taken over those positive Radon measures µ supported
on E and such that for all 1 ≤ i ≤ n the i-th α-Riesz potential µ ∗ xi

|x|1+α is
a function in L∞(Rn) with sup1≤i≤n ‖µ ∗ xi

|x|1+α ‖∞ ≤ 1. We clearly have
γα,+(E) ≤ γα(E).

We define now an L2-version of the capacity γα,+. For a compact set
E ⊂ Rn set

γα,2(E) = sup {µ(E)},
where the supremum is taken over the positive Radon measures µ supported
on E with growth µ(B(x, r)) ≤ rα for x ∈ spt(µ) and r > 0, and such that
for 1 ≤ i ≤ n the α-Riesz transform Riα is bounded on L2(µ) with L2-norm
smaller than 1.

We show now that these two capacities are comparable.

Lemma 3. For E ⊂ Rn, γα,+(E) ≈ γα,2(E).

For the proof of Lemma 3, we need the following result (see Lemma 4.2
in [MP]) that tells us how to dualize a weak type (1, 1)-inequality for several
linear operators. The result is a modification of Theorem 23 in [Ch] (see also
[U]).

Let X be a locally compact Hausdorff space and denote byM(X) the space
of all finite signed Radon measures on X equipped with the total variation
norm. For any T : M(X) → C(X) bounded and linear, denote by T t :
M(X)→ C(X) its transpose, that is,∫

(Tν1)dν2 =
∫

(T tν2)dν1 for ν1, ν2 ∈M(X).

Lemma 4 ([MP]). Let µ be a positive Radon measure on a locally compact
Hausdorff space X and let Ti :M(X)→ C(X), 1 ≤ i ≤ n, be bounded linear
operators. Suppose that every T ti is of weak type (1, 1) with respect to µ, that
is, there exists a constant A <∞ such that

µ({x : |T ti ν(x)| > t}) ≤ At−1‖ν‖



NULL SETS FOR THE CAPACITY ASSOCIATED TO RIESZ KERNELS 957

for 1 ≤ i ≤ n, t > 0, and ν ∈ M(X). Then for τ > 0 and any Borel set
E ⊂ X with 0 < µ(E) < ∞ there exists h : X → [0, 1] in L∞(µ) satisfying
h(x) = 0 for x ∈ X \ E,∫

E

hdµ ≥ µ(E)/2 and ‖Ti(hdµ)‖∞ ≤ (n+ τ)A for 1 ≤ i ≤ n.

Proof of Lemma 3. We have to prove that for some positive constants a
and b

(2) aγα,+(E) ≤ γα,2(E) ≤ bγα,+(E).

For the second inequality in (2), let σ be a positive measure supported on
E such that σ(B(x, r)) ≤ rα for x ∈ spt(σ) and r > 0, Riα is bounded on
L2(σ) with operator norm smaller than 1, 1 ≤ i ≤ n, and σ(E) ≥ γα,2(E)/2.

From the L2-boundedness of Riα, 1 ≤ i ≤ n, we get that each Riα is of weak
type (1, 1) with respect to the measure σ. This follows from the standard
Calderón-Zygmund theory if the measure is doubling, and by an argument
given in [NTV2] in the general case.

We would like to dualize this weak type (1, 1) inequality applying Lemma
4. Unfortunately, Lemma 4 does not apply to the truncated operators (Riα)ε,
because they do not map M(E) to C(E). This difficulty can be overcome by
using the following regularized operators. For ε > 0 and 1 ≤ i ≤ n define

Rψi,εν(x) =
∫
ψ

(
x− y
ε

)
xi − yi
|x− y|1+α

dν(y)

for Radon measures ν on Rn, and for f ∈ L1(σ) define

Rψi,ε(fσ)(x) =
∫
ψ

(
x− y
ε

)
xi − yi
|x− y|1+α

f(y)dσ(y),

where ψ ∈ C∞(Rn) is some radial function on Rn with 0 ≤ ψ ≤ 1, ψ = 0 on
B(0, 1/2) and ψ = 1 on Rn \B(0, 1).

Set Ri,ε = (Riα)ε. Notice that for ε > 0 and x ∈ Rn we have

(3) |Rψi,εν(x)−Ri,εν(x)| ≤ CM̃σν(x),

where

M̃σν(x) = sup
r>0

ν(B(x, r))
σ(B(x, 3r))

is the modified maximal operator introduced in [NTV2, pp. 6–7]. Notice that
if the measure σ is doubling, then M̃σν ≈ Mσν, with constants depending
only on those involved in the doubling condition. Here

Mσν(x) = sup
r>0

ν(B(x, r))
σ(B(x, r))

is the centered Hardy-Littlewood maximal operator.
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By Lemma 3.1 in [NTV2] the operator M̃σν satisfies a weak (1,1)-inequality
with respect to σ,

(4) σ({x ∈ E : M̃σν(x) > t}) ≤ Ct−1‖σ‖ , for ν ∈M(E).

It follows from (4) and (3) that if Ri,ε satisfies a weak type (1, 1)-inequality,
so does Rψi,ε and vice versa. The advantage of the operators Rψi,ε is that
they do map M(E) to C(E), so we may apply Lemma 4 to them instead of
Ri,ε. Observe that (Rψi,ε)

t = −Rψi,ε. Thus for any compact set K in E with
0 < σ(K) <∞ we can find for each ε > 0 a function hε supported on K and
satisfying

0 ≤ hε(x) ≤ 1 for all x,(5) ∫
K

hεdσ ≥ σ(K)/2

and

(6) ‖Rψi,ε(hεσ)‖L∞(K) ≤ 2nA.

In view of (3), (5), (6) and the growth condition σ(B(x, r)) ≤ C0r
α for

x ∈ spt(σ) and r > 0, we have ‖Ri,ε(hεσ)‖L∞(K) ≤ C. But we also want
Ri,ε(hεσ) to be bounded outside of K.

We claim now that for all η > ε we have ‖Ri,η(hεσ)‖L∞(K) ≤ C. To see
this, let first ε ≤ η ≤ 2ε. Then using (3), (5), (6) and the growth condition
for σ, we have

‖Ri,η(hεσ)‖L∞(K) ≤ ‖Ri,η(hεσ)−Ri,ε(hεσ)‖L∞(K)

+ ‖Ri,ε(hεσ)‖L∞(K) ≤ C.

If η > 2ε, then Ri,η = (Rψi,ε)η. Using (5) and (6), Cotlar’s inequality (see
Theorem 7.1 in [NTV2]) implies that the maximal operator (Rψi,ε)

∗(hεσ) is
uniformly bounded on K. Hence for all η > 2ε,

‖Ri,η(hεσ)‖L∞(K) = ‖(Rψi,ε)η(hεσ)‖L∞(K) ≤ ‖(Rψi,ε)
∗(hεσ)‖L∞(K) ≤ C.

Thus the operators Ri,η(hεσ) are uniformly bounded in ε and η.
Let {εj}j be an arbitrary sequence tending monotonically to 0 and let h be

a weak-star limit of some subsequence of {hεj} in L∞(K); by passing to some
subsequence we may assume that hεj → h in the weak-star topology. Then
h is supported on K, 0 ≤ h ≤ 1,

∫
hdσ ≥ Cσ(K) and ‖Ri,η(hσ)‖L∞(K) ≤ C

uniformly in η.
If we can prove that ‖Ri,ε(hσ)‖L∞(Kc) ≤ C, then we are done with the

lower inequality in (2) because µ = hσ is an admissible measure for γα,+ and
so we have

γα,+(E) ≥
∫
E

hdσ ≥ Cσ(E) ≥ Cγα,2(E).
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Consider any x ∈ Rn \ K, set d = dist(x,K) and choose y ∈ K so that
d = |x− y|. Fix ε > 0 and distinguish the following three cases:

(1) If ε ≥ 4d, then

|Ri,ε(hσ)(x)| ≤ |Ri,ε(hσ)(x)−Ri,ε(hσ)(y)|+ ‖Ri,ε(hσ)‖L∞(K)

and

|Ri,ε(hσ)(x)−Ri,ε(hσ)(y)|

≤

∣∣∣∣∣
∫
{w: |w−x|>ε, |w−y|>ε}

h(w)
(

xi − wi
|x− w|1+α

− yi − wi
|y − w|1+α

)
dσ(w)

∣∣∣∣∣
+

∣∣∣∣∣
∫
{w: |w−y|≤ε, |w−x|>ε}

h(w)
xi − wi
|x− w|1+α

dσ(w)

∣∣∣∣∣
+

∣∣∣∣∣
∫
{w: |w−x|≤ε, |w−y|>ε}

h(w)
yi − wi
|y − w|1+α

dσ(w)

∣∣∣∣∣
= A+B + C.

To deal with A, note that |y − w| > ε ≥ 4d = 4|x − y| ≥ 2|x − y|. Hence
using the standard estimates for the Calderón-Zygmund kernels, 0 ≤ h ≤ 1
and the α-growth of σ we get

A ≤ C
∞∑
j=0

∫
{w: 2jε≤|y−w|≤2j+1ε}

|x− y|
|y − w|1+α

|h(w)|dσ(w)

≤ Cd
∞∑
j=0

1
(2jε)1+α

∫
{|y−w|≤2j+1ε}

|h(w)|dσ(w)

≤ C d
ε

sup
r>0

1
rα

∫
|y−w|<r

|h(w)|dσ(w)
∞∑
j=1

2−j ≤ C,

where the last inequality comes from the α-growth of the measure σ and the
boundedness of h.

For the term B we have

B ≤ 1
εα

∫
|w−y|≤ε

|h(w)|dσ(w) ≤ C.

Term C is treated in the same way as B, but with the roles of x and y
interchanged.

(2) If d/2 ≤ ε < 4d, then

|Ri,ε(hσ)(x)| ≤ |Ri,4d(hσ)(x)| + |Ri,ε(hσ)(x)−Ri,4d(hσ)(x)|

≤ C + C sup
r>0

1
rα

∫
B(y,r)

|h(w)|dσ(w) ≤ C,
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by using the previous case to bound |Ri,4d(hσ)(x)| and the α-growth condition
on σ and 0 ≤ h ≤ 1 to bound the difference |Ri,ε(hσ)(x)−Ri,4d(hσ)(x)|.

(3) If ε < d/2, then Ri,ε(hσ)(x) = Ri,d/2(hσ)(x), which leads us to the
second case.

For the first inequality in (2), let σ be a positive measure supported on E

such that σ(E) ≥ γα,+(E)
2 and ‖σ ∗ xi

|x|1+α ‖∞ ≤ 1, 1 ≤ i ≤ n.
To see that σ is admissible for γα,2, we check first that it satisfies the

growth condition σ(B(x, r)) ≤ Crα. Take an infinitely differentiable function
ϕ, supported on B(x, 2r) such that ϕ = 1 on B(x, r), and ‖∂sϕ‖∞ ≤ Csr−|s|,
|s| ≥ 0. Here s = (s1, . . . , sn), with 0 ≤ si ∈ Z, |s| = s1 + s2 + · · · + sn and
∂s = (∂/∂xi)s1 . . . (∂/∂xn)sn . Assume first that n is odd and of the form
n = 2k + 1. Then, by Lemma 11 in [P],

σ(B(x, r)) ≤
∫
ϕdσ = cn,α

∫ ( n∑
i=1

∆k∂iϕ ∗
1

|x|n−α
∗ xi
|x|1+α

)
(y)dσ(y)

= −cn,α
n∑
i=1

∫ (
σ ∗ xi
|x|1+α

)
(y)
(

∆k∂iϕ ∗
1

|x|n−α

)
(y)dy

≤ C

{
n∑
i=1

∫
B(x,3r)

∣∣∣∣(∆k∂iϕ ∗
1

|x|n−α

)
(y)
∣∣∣∣ dy

+
∫
Rn\B(x,3r)

∣∣∣∣(∆k∂iϕ ∗
1

|x|n−α

)
(y)
∣∣∣∣ dy
}
.

Arguing as in Lemma 12 in [P] we get that the last two integrals can be
estimated by Crα.

When n is even we use the corresponding representation formula in Lemma
11 of [P].

We are left now with the L2-boundedness of the α-Riesz transform Riα for
i = 1, · · · , n. By assumption ‖σ ∗ xi

|x|1+α ‖∞ ≤ 1 for 1 ≤ i ≤ n. In particular,
this implies that we can apply the T (1) Theorem (Theorem 2 with b ≡ 1)
and so we get the L2-boundedness of Riα for 1 ≤ i ≤ n. This means that σ is
admissible for γα,2. Thus

γα,2(E) ≥ Cσ(E) ≥ Cγα,+(E),

which finishes the proof of the lemma. �

From this lemma we can deduce the semiadditivity of the capacity γα,+.
In fact, γα,+ is countably semiadditive.
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Corollary 5. Let E ⊂ Rn be compact. Let Ei, i ≥ 1, be Borel sets such
that E =

⋃∞
i=1Ei. Then

γα,+(E) ≤ C
∞∑
i=1

γα,+(Ei),

where C is some absolute constant.

Proof. Let µ be an admissible measure for γα,2(E). Then using Lemma 3
and the fact that the measures µ|Ei are admissible for the capacity γα,2(Ei),
we obtain

γα,+(E) ≈ γα,2(E) ≈ µ(E) = µ

(⋃
i

Ei

)
≤
∑
i

µ(Ei)

≤ C
∑
i

γα,2(Ei) ≈
∑
i

γα,+(Ei). �

3. Proof of the Main Theorem

We need the following result, which is inspired by a theorem of H. Pajot
(see Proposition 4.4 in [Pa]). Pajot’s result says that under a certain density
condition every compact set of Rn with finite Hα-measure can be covered by
a countable union of α-dimensional Ahlfors-David regular sets. Pajot proved
the result for sets in Rn of integer dimension α, but with some minor changes
in the proof the same result holds also for sets in Rn of non-integer dimension
α with 0 < α < n. That is, we have:

Theorem 6. Let E ⊂ Rn be a compact set with Hα(E) < ∞ such that
for almost all x ∈ E

0 < θα∗ (x,E) ≤ θ∗α(x,E) <∞.

Then

E ⊂
∞⋃
i=0

Ei,

where Hα(E0) = 0 and for all i ∈ N, Ei are compact Ahlfors-David regular
sets of dimension α.

Proof of the Main Theorem. Suppose γα(E) > 0. Applying Lemma 8 in
[P] we find a measure of the form ν = bHα, with b ∈ L∞(Hα, E) such that
the signed α-Riesz potential Rα(ν) = ν ∗ x

|x|1+α is in L∞(Rn) and
∫
E
b dHα =

γα(E). We can apply now Theorem 2 to get a set F ⊂ E of positive Hα-
measure such that the operator Rα is bounded on L2(Hα, F ). This implies



962 LAURA PRAT

that γα,2(E) > 0. By Lemma 3, γα,+(E) > 0. From Theorem 6 one can
deduce that

E ⊂
∞⋃
i=0

Ei,

where Hα(E0) = 0 and for i ≥ 1 the sets Ei are α-dimensional compact
Ahlfors-David regular sets.

Since sets with zero Hα measure have zero γα capacity (see Lemma 12 in
[P]), we have γα,+(E0) = 0.

The semiadditivity of the capacity γα,+, stated in Corollary 5 implies then
that

0 < γα,+(E) ≤ C
∞∑
i=1

γα,+(Ei).

Therefore, for some k 6= 0, γα,+(Ek) > 0. For this set Ek we then have

0 < γα,+(Ek) ≤ γα(Ek).

Applying now Theorem 2 in [P] to the Ahlfors-David regular set Ek, we
get that α must be an integer. �
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