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BEST WEAK–TYPE (p, p) CONSTANTS, 1 ≤ p ≤ 2, FOR
ORTHOGONAL HARMONIC FUNCTIONS AND

MARTINGALES

PRABHU JANAKIRAMAN

Abstract. We prove that the best weak–type (p, p) constant, 1 ≤ p ≤
2, for orthogonal harmonic functions u and v with v differentially sub-
ordinate to u is

Kp =

(
1

π

∫ ∞
−∞

∣∣ 2
π

log |t|
∣∣p

t2 + 1
dt

)−1

.

1. Introduction

A celebrated theorem of Kolmogorov [10] states that if f̃ is the conju-
gate function of an integrable real-valued function f on the unit circle, then
m{|f̃ | > λ} ≤ K

λ ‖f‖1, where m is the Lebesgue measure on the circle and K
is a positive constant independent of f . This is the weak–type (1,1) inequal-
ity for the conjugate function operator on the unit circle. In general, given a
measure space (X, ν) and an operator T acting on Lp(X, ν), 1 ≤ p <∞, T is
said to be a strong–type (p, p) operator if there exists a constant Ap > 0 such
that

(1.1) ‖Tf‖Lp(X,ν) ≤ Ap‖f‖Lp(X,ν)

for all f ∈ Lp(X, ν). T is said to be a weak–type (p, p) operator if there exists
constant Kp > 0 such that

(1.2) ν{ω ∈ X : |Tf(ω)| > 1} ≤ Kp‖f‖pLp(X,ν)

for all f ∈ Lp(X, ν). The strong–type property implies the weak–type prop-
erty but not vice versa.

An area of research for well known operators satisfying these properties is
to find the best constants Ap and Kp in (1.1) and (1.2), respectively. The best
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constant in Kolmogorov’s weak–type (1,1) inequality was shown by Davis [7]
to be

(1.3) K =
1 + 1

32 + 1
52 + 1

72 + 1
92 + · · ·

1− 1
32 + 1

52 − 1
72 + 1

92 − · · ·
.

Davis used Brownian motion techniques to prove this result and also showed
that the same inequality holds for the conjugate function operator (commonly
called the Hilbert transform) on the real line. The same was reproved by
Baernstein [1] using complex analysis. Tomaszewski [16] was the first to ex-
tend these results to the case 1 ≤ p ≤ 2. Let D be the unit disk in R2, f
analytic in D and continuous to the boundary with Im f(0) = 0. Let σ be the
Lebesgue measure on ∂D. Then Tomaszewski proved that

(1.4) σ{z ∈ ∂D : |f(z)| ≥ 1} ≤ Cp‖Re(f)‖pp,
where

Cp =
√
π

2
pΓ(p/2)

Γ((p+ 1)/2)
is the best constant possible. The objective of the present paper is to prove
the 1 ≤ p ≤ 2 result in a setting of orthogonal harmonic functions introduced
by Bañuelos and Wang [2]. Let D be a domain in Rn, where n is a positive
integer. Let D0 be a bounded subdomain of D with ∂D0 ⊂ D and ξ ∈ D0.
Let µ be the harmonic measure on ∂D0 with respect to ξ. Then the following
theorem holds.

Theorem 1.1. Let 1 ≤ p ≤ 2. If u and v are harmonic functions on D
such that

(i) |v(ξ)| ≤ |u(ξ)|,
(ii) |∇v| ≤ |∇u| on D,
(iii) ∇v · ∇u = 0 on D,

then

(1.5) µ(|v| ≥ 1) ≤ Kp

∫
∂D0

|u|pdµ.

Here Kp is the best constant given by

(1.6) K−1
p =

1
π

∫ ∞
−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt.

This agrees with (1.3) when p = 1. To show that Kp is the best constant
possible, let D = R

2
+ and ξ = (0, 1). Let u and v be the harmonic extensions

of 2
π log |t| and sgn t, respectively. Then u and v satisfy the conditions of the

theorem, and (1.5) holds only if the constant is at least as large as Kp defined
in (1.6).

Notice that in this theorem the condition that u and v be conjugate har-
monic functions is dropped, and u and v are only assumed to be harmonic
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functions in a domain in Rn, continuous to the boundary. The standard re-
quirements are that the gradients are orthogonal and satisfy a subordination
condition as in the theorem. The weak–type (1,1) version of Theorem 1.1 was
proved by Choi [5]. The present paper follows the basic outline of Choi. How-
ever different methods of proof are introduced to prove some of the needed
lemmas. This includes an application of the characterization of maximal sub-
harmonic functions via minimal functions (Lemma 2.4) to prove Lemma 2.5.
Lemma 2.4 is a corollary to a result of Kinnunen and Martio [9]; the theory
of such characterizations is explored in depth in their paper.

In Section 5, a probabilistic analogue is proved for orthogonal martingales.
Let X and Y be two real-valued continuous time parameter martingales with a
common filtration F = {Ft}t≥0 (a family of increasing, right-continuous sub-
σ-fields in a probability space {Ω, A, P}). Assume F0 contains all null sets.
Denote the quadratic covariation process {[X,Y ]t}t≥0 between X and Y by
[X,Y ], and denote [X,X] by [X]. The processes X and Y are orthogonal
if [X,Y ] = 0. The process Y is differentially subordinate to X if [X]t −
[Y ]t is non-decreasing and non-negative as a function of t. Note that the
differential subordination and orthogonality conditions correspond to (ii) and
(iii) in Theorem 1.1. The next theorem will be proved in Section 5.

Theorem 1.2. Let 1 ≤ p ≤ 2. If X and Y are two R-valued continuous
time parameter orthogonal martingales such that Y is differentially subordi-
nate to X, then for each t > 0,

(1.7) P (|Yt| ≥ 1) ≤ Kp‖Xt‖pp,

where Kp is the constant given by (1.6). The inequality is sharp.

Bañuelos and Wang [3] prove this for p = 1. In this paper, their proof is
made simpler by the use of Itô’s formula. Without the orthogonality assump-
tion in Theorem 1.2, the best constant is 2/Γ(p+ 1). This follows from the
work of Burkholder; see Sections 1, 12 and 13 of [4]. In Theorem 1.1, without
the orthogonality assumption, the constant 2/Γ(p+ 1) is an upper bound for
the best constant. For one of the methods that can be used to establish this,
see the proof of Theorem 7.1 in Suh [15].

The methods used in the present paper break down when p > 2. The
reasons are given in Section 4, and it is shown that the best constant for
p > 2 behaves like (cp)p. Suh (Theorem 1.2, [15]) proved the following precise
result when p > 2: Let M and N be right-continuous martingales with limits
from the left, adapted to the filtration {Ft}t≥0, and suppose [M ]t − [N ]t is
nonnegative and nondecreasing in t. Then

(1.8) λpP (sup
t≥0

Nt ≥ λ) ≤ pp−1

2
‖M‖pp,
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and the constant pp−1/2 is the best possible. Hence the best constant for
martingales not necessarily orthogonal is known for p > 2. Translated to
the harmonic function setting, Suh showed (Theorem 7.1, [15]) when u and v
satisfy (i) and (ii) but not (iii) in Theorem 1.1, pp−1/2 is an upper bound for
the weak–type (p, p) constant.

2. Proof of Theorem 1.1

Consider the function on R2 given by

V (x, y) =

{
−Kp|x|p, |y| < 1,
1−Kp|x|p, |y| ≥ 1.

Then

µ(|v| ≥ 1)−Kp

∫
∂D0

|u|pdµ =
∫
∂D0

V (u, v)dµ.

Hence the goal is to show that the right hand side is ≤ 0. This is done by
finding a continuous function U ≥ V that satisfies the required condition.

Lemma 2.1. There is a continuous function U on R2 such that
(a) V ≤ U on R2,
(b) U(u, v) is superharmonic on D,
(c) U(x, y) ≤ 0 when |y| ≤ |x|.

From (a) and (b) it follows that∫
∂D0

V (u, v)dµ ≤
∫
∂D0

U(u, v)dµ ≤ U(u(ξ), v(ξ)),

because µ is the harmonic measure on ∂D0 with respect to ξ. By (c) and
assumption (i) of the theorem, U(u(ξ), v(ξ)) ≤ 0, which proves the theorem.

The proof of the lemma will be given after some preliminaries. Let H =
{(α, β) : β > 0} be the upper half-space in R2, S = {(x, y) : |y| ≤ 1} and
S+ = {(x, y) ∈ S : x > 0}. Define

(2.1) Q(α, β) =
1
π

∫ ∞
−∞

β
∣∣ 2
π log |t|

∣∣p
(α− t)2 + β2

dt.

Then Q is the harmonic function on H that vanishes as β →∞ and satisfies

lim
(α,β)→(t,0)

Q(α, β) =
∣∣∣∣ 2π log |t|

∣∣∣∣p if t 6= 0.

Next let ϕ on S be the conformal map ϕ(z) = ieπz/2 mapping S onto H.
Define W : R2 → R by

(2.2) W (x, y) =

{
|x|p, |y| ≥ 1,
Q(ϕ(x, y)), |y| < 1.
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Note that W on S is the harmonic lifting of the subharmonic function |x|p
with same boundary values. Hence W is continuous as is the function U
defined by

U(x, y) = 1−KpW (x, y) for (x, y) ∈ R2.

The main lemma (Lemma 2.1) will be proved after first proving various prop-
erties of W .

Lemma 2.2. If (x, y) ∈ S, then W (x, y) = W (−x, y) = W (x,−y) and

Wx(0, y) = Wy(x, 0) = Wxy(x, 0) = Wxy(0, y) = 0.

The proof of this lemma is omitted. It is an easy consequence of the char-
acterization of superharmonic functions via maximal functions and is similar
to that of Lemma 2.5.

Lemma 2.3. If −1 < y < 0, then both Wxx(x, y) and W (x, y) − xp → 0
as x→∞.

Proof. Under a change of variables,

W (x, y) =
1
π

∫ ∞
−∞

cos (π2 y)
∣∣ 2
π log |u|+ x

∣∣p
(u+ sin (π2 y))2 + cos2 (π2 y)

du.

By taking the x derivatives inside the integral, we get

Wx(x, y) =
p

π

∫ ∞
−∞

cos (π2 y)
∣∣ 2
π log |u|+ x

∣∣p−1 sgn( 2
π log |u|+ x)

(u+ sin (π2 y))2 + cos2 (π2 y)
du,

and

Wxx(x, y) =
p(p− 1)

π

∫ ∞
−∞

cos (π2 y)
∣∣ 2
π log |u|+ x

∣∣p−2

(u+ sin (π2 y))2 + cos2 (π2 y)
du.

Since p− 2 < 0, some basic analysis arguments show that

lim
x→∞

Wxx(x, y) = 0.

The convergence is uniform with respect to y for |y| < 1; this can be shown
by applying the maximum principle to the harmonic function Wxx. Since W
is harmonic in S, this implies that Wyy → 0 as x → ∞ uniformly in y. The
same is true for the function I(x, y) = W (x, y) − |x|p, that is, Iyy → 0 as
x → ∞ uniformly in y. This implies that I(x, y1) − I(x, y0) → 0 as x → ∞
for each y0, y1 ∈ (−1, 1). Since I(x, 1) = I(x,−1) = 0 for all x, I(x, y) → 0
as x→∞. �
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The justification for taking derivatives inside integrals to compute Wx and
Wxx follows from Fubini’s theorem. For example,

Wx(b, y)−Wx(a, y) =
∫ b

a

Wxx(x, y)dx

=
∫ b

a

(
p(p− 1)

π

∫ ∞
−∞

cos (π2 y)
∣∣ 2
π log |u|+ x

∣∣p−2

(u+ sin (π2 y))2 + cos2 (π2 y)
du

)
dx

=
p(p− 1)

π

∫ ∞
−∞

cos (π2 y)
(u+ sin (π2 y))2 + cos2 (π2 y)

∫ b

a

∣∣∣∣ 2π log |u|+ x

∣∣∣∣p−2

dxdu

=
p

π

∫ ∞
−∞

cos (π2 y)
[∣∣ 2
π log |u|+ x

∣∣p−1 sgn( 2
π log |u|+ x)

]b
a

(u+ sin (π2 y))2 + cos2 (π2 y)
du.

This verifies the formula for Wxx given the formula for Wx. A similar argu-
ment would verify the formula for Wx.

Notice that the proof also gives that Wxx ≥ 0 in S. This will be used in
the proof of the main lemma.

Next, we show that Wxy ≤ 0 on Ω = {(x, y) : x > 0 and −1 < y < 0}. The
proof will use the fact that Wx(x, y) is the harmonic drop of p|x|p−1 in S+

via maximal functions. The required lemma is the following; it is a corollary
of the results in [9].

Lemma 2.4. Let D be a region in Rn, z ∈ D and Rz = dist(z, ∂D). If g is
a superharmonic function continuous to the boundary and G is the harmonic
function with same boundary values as g, then

G(z) = lim
k→∞

mk
Dg(z).

Here m0
Dg(z) = g(z) on D, and for positive integers k, mk

Dg is defined induc-
tively by

mk+1
D g(z) = inf

0<r<Rz

1
|B(z, r)|

∫
B(z,r)

mk
Dg(ζ)dζ.

Lemma 2.5. On the set {(x, y) : x > 0 and − 1 < y < 0}, denoted by Ω,
the partial derivative Wxy exists and satisfies Wxy ≤ 0.

Proof. Because 1 ≤ p ≤ 2, the function g defined by g(z) = pxp−1 is
superharmonic on S+. Furthermore, g and the harmonic function Wx, the
partial derivative with respect to x of the harmonic function W defined above,
satisfy the same boundary conditions on the closure of S+. So, by Lemma
2.4,

(2.3) Wx(z) = lim
k→∞

mk
S+g(x) for all z in S+.
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If z = (x, y), let z∗ denote (x,−y). If k = 0, then

(2.4) mk
S+g(z) = mk

S+g(z∗) for all z in S+.

If k is any nonnegative integer, then (2.4) holds also as can be shown by
induction. The easy proof is omitted. However, the proof of the following
result will be given:

(2.5) mk
S+g(z2) ≤ mk

S+g(z1)

for all z1 and z2 such that z1 = (x, y1) and z2 = (x, y2) with x > 0 and
−1 < y1 < y2 ≤ 0. It will follow from this after an additional argument that
Wx(z1) ≤Wx(z2).

The inequality (2.5) holds for k = 0. Suppose that k is any nonnegative
integer such that (2.5) holds. Let Rz1 = min{x, y1 +1} and Rz2 = min{x, y2 +
1}, so that Rz1 ≤ Rz2 . Let 0 < r < Rz1 and z = (x, y), where x is as before
and y is chosen so that z ∈ B(z1, r). Then z̃ ∈ B(z2, r), where z̃ denotes the
reflection of z across the horizontal line containing (x, (y1 + y2)/2). If ζ is any
point in Ω below this horizontal line, then ζ̃ is above it. Letting ζ̃ = (α̃, β̃),
there are two possibilities: β̃ ≤ 0 or β̃ > 0. If β̃ ≤ 0, then by the induction
hypothesis,

(2.6) mk
S+g(ζ̃) ≤ mk

S+g(ζ).

If β̃ > 0, then both ζ and (ζ̃)∗ are in Ω with (ζ̃)∗ above ζ. Consequently, by
(2.4) and the induction hypothesis,

(2.7) mk
S+g(ζ̃) = mk

S+g((ζ̃)∗) ≤ mk
S+g(ζ).

(2.6) and (2.7) will both be important in the proof of the following inequal-
ity in which z1 and z2 are as above:

(2.8)
1

|B(z2, r)|

∫
B(z2,r)

mk
S+g(ζ)dζ ≤ 1

|B(z1, r)|

∫
B(z1,r)

mk
S+g(ζ)dζ.

To prove this inequality, it is enough to show that the integral on the right is
greater than or equal to the integral on the left. With Bj = B(zj , r), j = 1, 2,
the integral on the right can be expressed as the sum of two integrals over the
two disjoint sets given by the partition

B(z1, r) = B1 ∩B2 ∪ B1 ∩Bc2.
Analogously, the integral on the left can be split into two integrals correspond-
ing to the partition

B(z2, r) = B1 ∩B2 ∪ Bc1 ∩B2.

If ζ ∈ B1 ∩ Bc2, then ζ is below the horizontal line generated by z1 and z2.
Moreover, the mapping ζ 7→ ζ̃ : B1 ∩ Bc2 → Bc1 ∩ B2 is one-to-one and onto.
So by (2.6) and (2.7), the integral over Bc1 ∩ B2 is less than or equal to the
integral over B1 ∩ Bc2. Consequently, the inequality (2.8) holds. Since Rz1 ≤
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Rz2 , taking the infimum of both sides of (2.8) with respect to r ∈ (0, Rz1)
gives mk+1

S+ g(z1) on the right and an upper bound to mk+1
S+ g(z2) on the left.

Therefore, (2.5) holds for all nonnegative integers, and by (2.3),

(2.9) Wx(z2) ≤Wx(z1).

Since Wx is harmonic, Wxy exists and (2.9) leads at once to Wxy ≤ 0 on Ω,
which proves Lemma 2.5. �

3. Proof of Lemma 2.1

(a) By definition, U(x, y) = V (x, y) if |y| ≥ 1. Also W (0, 0) = K−1
p . Thus,

if |y| < 1, then

(3.1) U(x, y) = 1−KpW (x, y) = −Kp[W (x, y)−W (0, 0)].

Hence the property (a) follows if −Kp|x|p ≤ −Kp[W (x, y) −W (0, 0)] on S.
By the symmetry of W , it suffices to show

E(x, y) ≤ 0 if (x, y) ∈ S+,

where E(x, y) = W (x, y) −W (0, 0) − |x|p. Since E(0, y) ≤ 0, it suffices to
show

Ex(x, y) = Wx(x, y)− pxp−1 ≤ 0
in S+. But Wx is the harmonic drop in S+ of the superharmonic function
pxp−1. This is a consequence of Lemma 2.4. Hence Wx(x, y) − pxp−1 ≤ 0 in
S+.

(b) By (3.1), property (b) becomes

W (u, v) is subharmonic on D.

First observe that

(3.2) W (x, y) ≥ |x|p if |y| < 1.

Let w = W (u, v) on D. When |v| > 1, w = |u|p is subharmonic since u is
harmonic. When |v| < 1,

∆w = Wxx|∇u|2 +Wyy|∇v|2 + 2Wxy∇u · ∇v +Wx∆u+Wy∆v

= Wxx(|∇u|2 − |∇v|2) ≥ 0,

using the assumptions (i) and (ii) of Theorem 1.1, Lemma 2.3 and the har-
monicity of u and v. For |v| = 1 we have at η ∈ D and for all r > 0 small
enough,

Avg(w; η, r) ≥ Avg((|u|p; η, r) ≥ |u(η)|p = w(η),
where the first inequality follows by (3.2). The function w is therefore sub-
harmonic at η and on D.

(c) By (3.1), property (c) of U follows from

(3.3) W (x, y) ≥W (0, 0) if |x| ≥ |y|.
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Let I0 = [0,∞) and for−1 ≤ a < 0 let Ia = [0,−1/a). Define Φa(t) = W (t, at)
for t ∈ Ia. Then for t in the interior of Ia,

Φ′a(t) = Wx(t, at) + aWy(t, at)

and

Φ′′a(t) = Wxx(t, at) + a2Wyy(t, at) + 2aWxy(t, at)

= (1− a2)Wxx(t, at) + 2aWxy(t, at)
≥ 0,

because W is harmonic, Wxx(t, at) ≥ 0 by Lemma 2.3 and Wxy(t, at) ≤ 0 by
Lemma 2.5. Observe that Φ′a(0) = Wx(0, 0) + aWy(0, 0) = 0 by Lemma 2.2.
Hence Φa(t) ≥ Φa(0) for t ∈ Ia. Thus W (t, at) ≥ W (0, 0) if −1 ≤ a ≤ 0
and t ∈ Ia. But {(x, y) : x ≥ −y and − 1 ≤ y ≤ 0} = {(t, at) : −1 ≤ a ≤
0 and t ∈ Ia}. Using the symmetry of W , we have

W (x, y) ≥W (0, 0) if |x| ≥ |y| and |y| < 1.

Also, if |x| ≥ |y| and |y| ≥ 1, then

W (x, y) = |x|p ≥ 1 ≥ 1
Kp

= W (0, 0).

This proves (3.3) and hence (c). �

To see that 1/Kp ≤ 1, note that

K−1/p
p =

(
1
π

∫ ∞
−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)1/p

is the Lp norm of the function 2
π log |t| on a probability measure space and

hence is increasing with respect to p. When p = 2, W (0, 0) = 1 since the
harmonic lift of |x|2 in S is W (x, y) = x2 − y2 + 1.

4. The case p > 2

The proof given above does not work for p > 2 since it is no longer true
that W (x, y)−|x|p ≤W (0, 0). It can be verified that W (x, 0)−W (0, 0) ≥ |x|p
for all x. In fact, the constant is not equal to Kp for p > 2. To see this, first
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observe that if p > 2, then

K−1
p =

2
π

∫ ∞
0

∣∣ 2
π log t

∣∣p
t2 + 1

dt

=
(

2
π

)p+1 ∫ ∞
−∞

|s|pes

e2s + 1
ds

= 2
(

2
π

)p+1 ∫ ∞
0

spe−s
∞∑
k=0

(−e−2s)
k
ds

= 2
(

2
π

)p+1 ∞∑
k=0

(−1)k

(1 + 2k)p+1

∫ ∞
0

spe−sds

= 2
(

2
π

)p+1

Γ(p+ 1)
∞∑
k=0

(−1)k

(1 + 2k)p+1
.

Therefore

K−1
p ≥ 2

(
2
π

)p+1

Γ(p+ 1)(1− 3−(p+1))

and

Kp ≤ c
(π

2

)p
(Γ(p+ 1))−1.

Now if µξ(|v| ≥ 1) ≤ Kp‖u‖pp, then µξ(|v| ≥ 1)1/p ≤ K1/p
p ‖u‖p. As p→∞,

the left hand side goes to 1 whenever µξ(|v| ≥ 1) > 0, whereas for all u with
‖u‖∞ < ∞, the right hand side goes to 0. This suggests that for all u with
‖u‖∞ <∞, ‖v‖∞ ≤ 1, which is false. Hence the constant Kp is too small for
the inequality to hold.

Let Cp be the correct weak–type (p, p) constant for p > 2. Then by Theo-
rem (7.1) in Suh [15],

(4.1) Cp ≤
pp−1

2
.

A lower bound is given below by considering the Hilbert transform. The
Hilbert transform on L1(R) is defined by

Hf(x) = p.v.
1
π

∫ ∞
−∞

f(x− t)
t

dt.

By standard arguments (see Zygmund [17], Vol.2, p. 256), it can be shown
that H satisfies

sup
λ>0

λpm(x ∈ R : |Hf(x)| ≥ λ) ≤ Cp‖f‖pp,

where m is the Lebesgue measure on R and Cp is the same constant as in our
case. Let f(x) = χE(x) be the characteristic function of a measurable set E.
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Stein and Weiss [13] proved that

λpm(x ∈ R : |Hf(x)| ≥ λ) =
4λpm(E)
eπλ − e−πλ

.

Putting λ = p/π shows that Cp ≥ 4 (p/π)p e−p. This and (4.1) give

(4.2)
1
eπ
≤ C1/p

p p−1 ≤ 1.

So in general, Cp behaves like (cp)p. This suggests that the best constant in
the orthogonal case may also be pp−1/2.

5. Proof of Theorem 1.2

Recall that X and Y are real-valued orthogonal martingales such that for
the covariation process, [X,Y ]t = 0 for all t > 0 and [X]t − [Y ]t is non-
increasing process with respect to t. Theorem 1.2 states that for 1 ≤ p ≤ 2
and t > 0,

P (|Yt| ≥ 1) ≤ Kp‖Xt‖pp,

where Kp is the constant given by (1.6). Moreover this inequality is sharp in
general.

Let V and U be the functions defined before. It suffices to show EV (Xt, Yt)
≤ 0, and since V ≤ U by Lemma 2.1, this follows from

EU(Xt, Yt) ≤ EU(X0, Y0).

The second term is less than or equal to 0 since |Y0| ≤ |X0| (which follows
from Lemma 2.1 in [3]).

Define the stopping time as

T = inf {t ≥ 0 : |Yt| ≥ 1},

and let Z = {Zt}t≥0 = {U(Xt∧T , Yt∧T )}t≥0. Then it is enough to show

(5.1) EU(Xt, Yt) ≤ EZt

and that

(5.2) Zt is a supermartingale.

To prove (5.1), note that EU(Xt, Yt) = E[U(Xt, Yt)It≥T ] +E[U(Xt, Yt)It<T ].
By Lemma 2.3, W (Xt, Yt) ≥ |Xt|p. Since X is a martingale, |Xt|p is a sub-
martingale. Thus,

E[|Xt|pIt≥T ] = E[E(|Xt|p|FT )It≥T ]

≥ E[|XT |pIt≥T ].
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Consequently,

E[U(Xt, Yt)It≤T ] = E[(1−KpW (Xt, Yt))It≥T ]

≤ E[(1−Kp|Xt|p)It≥T ]

≤ E[(1−Kp|XT |p)It≥T ]

= E[(1−KpW (XT , YT ))It≥T ]

= E[U(XT , YT )It≥T ],

where we used the fact that |YT | = 1 on {t ≥ T}, since Y has continuous
paths. It remains to prove (5.2).

By Itô’s formula,

W (Xt∧T , Yt∧T )−W (X0, Y0) =
∫ t∧T

0

∇W (Xs, Ys) · d(Xs, Ys)

+
1
2

∫ t∧T

0

∂2

∂x2
W (Xs, Ys)d[X]s

+
1
2

∫ t∧T

0

∂2

∂y2
W (Xs, Ys)d[Y ]s

+
∫ t∧T

0

∂2

∂x∂y
W (Xs, Ys)d[X,Y ]s.

Since [X,Y ] = 0 and W is harmonic on S, it follows that

W (Xt∧T , Yt∧T )−W (X0, Y0) =
∫ t∧T

0

∇W (Xs, Ys) · d(Xs, Ys)

+
1
2

∫ t∧T

0

∂2

∂x2
W (Xs, Ys)d([X]− [Y ])s.

The first term is a martingale. The second is an increasing process since
Wxx ≥ 0 by Lemma 2.3 and since [X]s− [Y ]s is an non-decreasing process by
the assumption of differential subordination. Therefore W (Xt∧T , Yt∧T ) is a
submartingale, and Zt is a supermartingale. �
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