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ON LOCALLY FINITE GROUPS IN WHICH EVERY
ELEMENT HAS PRIME POWER ORDER

ALBERTO L. DELGADO AND YU-FEN WU

Abstract. A group is called a CP -group if every element of the group
has prime power order. The complete classification of locally finite CP -

groups is given in this article.

1. Introduction

Definition. A group is called a CP -group if every element of the group
has prime power order.

This definition is equivalent to the statement that the centralizer of every
nontrivial element is a p-group, for some prime p which depends on the ele-
ment. This is a generalization of groups of prime power order. Examples of
CP -groups include p-groups, where p is a prime, and Tarski groups, which
are simple groups whose proper subgroups have prime order. This shows how
complicated the structure of infinite CP -groups can be.

Finite CP -groups were first studied by Higman [3] in 1957. He showed
that a finite solvable CP -group is a split extension of its Fitting subgroup,
which must clearly be a p-group, by a complement acting fixed-point-freely.
Moreover, the order of a finite solvable CP -group is divisible by at most
two primes. In the same article, Higman studied the structure of finite in-
solvable CP -groups and showed that such a group has a non-abelian simple
section which largely determines its structure. Suzuki classified finite simple
CP -groups in his celebrated work [7], finding that only eight finite simple
CP -groups exist. Brandl continued this line of inquiry by classifying finite in-
solvable CP -groups in [2], but his work contained flaws. Finally, Bannuscher
and Tiedt gave the complete classification of finite CP -groups in [1].

We can visualize this type of group by means of a graph as follows. The
prime graph of a group G is the graph having the prime divisors of the orders
of the elements of G as vertices and an edge between two vertices p and q if
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G has an element of order pq. Then a group is a CP -group if and only if its
prime graph is totally disconnected.

Notation. Throughout the paper, p and q are two distinct primes, Op(G)
is the maximal normal p-subgroup of a group G, and π(G) denotes the set of
primes dividing orders of the elements of G.

We can now state our main result.

Main Theorem. Let G be a locally finite group. Then G is a CP-group
with Fitting subgroup P if and only if one of the following holds:

(1) G = P , i.e., G is a p-group;
(2) G = Q n P where Q acts on P fixed-point-freely and Q is either a

subgroup of a locally quaternion group or of Zq∞ where p 6= q;
(3) G = (H n Q) n P where H acts fixed-point-freely on Q, and Q acts

fixed-point-freely on P ; also HP is a Sylow p-subgroup of G, Q is a
subgroup of Zq∞ , and H is finite cyclic, where p | q − 1;

(4) G is finite almost simple and is isomorphic to PSL(2, q) (q = 4, 7,
8, 9, 17), PSL(3, 4), Sz(8), Sz(32), or M10;

(5) P = O2(G) 6= 1 and G/P is isomorphic to PSL(2, 4), PSL(2, 8),
Sz(8), or Sz(32). Moreover, P is isomorphic to a direct sum of natural
modules for G/P .

2. Finite CP -groups

It is obvious that any subgroup of a CP -group is also a CP -group. It is
only slightly less obvious that a factor group of a locally finite CP -group is
a CP -group, since an element mapping to an element of non-prime power
order would generate a cyclic group of non-prime power order. Therefore any
section of a locally finite CP -group is also a CP -group.

Theorem 1 ([3]). Suppose G is a finite solvable CP -group with Op(G) =
P 6= 1. Then G has one of the following structures:

(1) G is a p-group;
(2) G = Q n P where Q acts on P fixed-point-freely and Q is either

generalized quaternion or cyclic;
(3) G = (H n Q) n P where H acts fixed-point-freely on Q, and Q acts

fixed-point-freely on P ; also HP is a Sylow p-subgroup of G, and H
and Q are cyclic.

In each case, |π(G)| ≤ 2.

Notation. A group as in (1) will be called a 1-step group; a group as
in (2), a 2-step group; and a group as in (3), a 3-step group.
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Theorem 2 ([3]). Let G be a finite insolvable CP -group. Then G has a
normal series G ≥ N > P = Op(G) ≥ 1, where

(1) G/N is cyclic or generalized quaternion, and, in fact, cyclic if P > 1;
(2) N/P is the unique minimal normal subgroup of G/P , N/P is non-

abelian simple, and when P > 1, p divides |N/P |.

Theorem 3 ([7]). A nonabelian simple CP -group is isomorphic to
PSL(2, q) (q = 4, 7, 8, 9, 17), PSL(3, 4), Sz(8), or Sz(32).

Theorem 4 ([1]). A group G is a finite CP -group if and only if one of
the following holds:

(1) G is a 1-step group;
(2) G is a 2-step group;
(3) G is a 3-step group;
(4) G is isomorphic to PSL(2, q) (q = 4, 7, 8, 9, 17), PSL(3, 4), Sz(8),

Sz(32), or M10;
(5) G/O2(G) is isomorphic to PSL(2, 4), PSL(2, 8), Sz(8), or Sz(32).

Moreover, O2(G) is isomorphic to a direct sum of natural modules
for G/O2(G).

3. Locally finite CP -groups

First of all, we show that there are no infinite locally finite simple CP -
groups.

Theorem 5. Let G be a locally finite simple CP -group. Then G is finite.

Proof. First, assume that G is countably infinite. Then by [5, 4.5], G is
the union of a strictly ascending sequence {Rn : n ∈ N} of finite subgroups
satisfying the following property: For each n there is a maximal normal sub-
group Mn+1 of Rn+1 satisfying Mn+1 ∩Rn = 1. Thus Rn 'Mn+1Rn/Mn+1,
and so Rn is isomorphic to a subgroup of the simple group Rn+1/Mn+1.

If Rn+1 is solvable for some n, then Rn+1/Mn+1 has prime order and so
does Rn. Thus the only possible solvable subgroups in {Rn} are R1 and R2.
Discarding these solvable subgroups from the set {Rn}, if necessary, we may
assume that all Rn’s are insolvable. Since Rn is isomorphic to a subgroup
of a finite simple CP -group and there are only finitely many finite simple
CP -groups (see Theorem 3), {Rn} is a finite set and G is finite simple.

If G is not countable, then by [5, 4.4], G has a local system of countably
infinite simple subgroups. This, however, was just shown to be impossible. �

Hypothesis. From now until our main result, Theorem 10, we assume
that G is an infinite locally finite CP -group.

We need to introduce the following group.
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Definition. A group is called locally quaternion if it has a presentation

〈X, y | X ' Z2∞ , x
y = x−1 for every x ∈ X,

and y2 is the involution of X〉

In order to show our main result, we also need the following lemmas.

Notation. For k = 1, 2, 3, let Fk be the set of finite subgroups of G which
are k-step groups, and let F4 be the set of finite insolvable subgroups of G
with a non-trivial Fitting subgroup. Let 1 ≤ k(G) ≤ 4 be maximal subject to
Fk(G) 6= ∅.

Note that k(G) is well-defined by Theorem 4.

Lemma 6. Suppose G is locally solvable and let k = k(G). Let H1 and
H2 be in Fk. Then we have:

(a) π(Fit(Hi)) = π(Fit(〈H1,H2〉)), i = 1, 2;
(b) Fit(Hi) ≤ Fit(〈H1,H2〉), i = 1, 2.

Proof. First, note that k ∈ {1, 2, 3} since G is locally solvable. Let K =
〈H1,H2〉. Then K ∈ Fk. If k = 1, the claims are obvious. Put K =
K/Fit(K). Then K is a (k − 1)-step group. If the claims do not hold, then
Hi = Hi Fit(K)/Fit(K) is a k-step subgroup of K, which is impossible. �

Recall that a group X is almost simple if S ⊆ X ⊆ Aut(S), for some simple
group S.

We have a result identical to that of the previous lemma in the case that
G is not locally solvable and k = 4.

Lemma 7. Suppose G is not locally solvable. Then F4 6= ∅, and for H1

and H2 in F4 we have:
(a) π(Fit(Hi)) = π(Fit(〈H1,H2〉)), i = 1, 2;
(b) Fit(Hi) ≤ Fit(〈H1,H2〉), i = 1, 2.

Proof. Since there are only finitely many types of finite CP -groups, F4 6= ∅.
Put K = 〈H1,H2〉. If K is not in F4, then K is almost simple and parts (4)
and (5) of Theorem 4 show that K ' PSL(3, 4) and H1 ' H2 ' 24 · A5.
This means that G ≥ PSL(3, 4) and so G = PSL(3, 4) by Theorem 4 and
Theorem 5, which is impossible.

Assume that K ∈ F4 and put K = K/Fit(K). So K is almost simple. As
Fit(K) ∩Hi ≤ Fit(Hi), we see that Hi/(Hi ∩ Fit(K)) is almost simple. Thus
Fit(Hi) = Fit(K) ∩Hi and the claims hold. �

Lemma 8. Fit(G) = Op(G) 6= 1 for some unique prime p.
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Proof. Let k = k(G), H ∈ Fk, and x ∈ G. Let K = 〈H,Hx〉. By Lemmas 6
and 7, we have that Fit(H) ≤ Fit(K) = Op(K) for some prime p. Thus
〈Op(Hy); y ∈ G〉 is a p-group and 1 6= Op(HG) ≤ Op(G), where HG denotes
the normal closure of H in G. �

Theorem 9. Let G be a locally finite group and let G have a normal
series G ≥ M > N > 1. If the centralizer CM (n) lies in N for each non-
trivial element n of N , then G splits over N .

Proof. Clearly M is a locally finite Frobenius group with complement K,
say, and kernel N . As all complements to N in M are conjugate in M , by [5,
1.J.2], a Frattini argument gives that NG(K) is a complement to N . �

Now we are able to prove our main result.

Proof of Main Theorem. By Theorem 4, we may assume that G is an infi-
nite locally finite CP -group, and we put k = k(G).

If k = 1, then (1) holds obviously.
If k = 2, then, for every H ∈ F2, we have Op(H) ≤ P 6= 1, by Lemmas 6

and 8. Since Op(H) is the Sylow p-subgroup of H, elements of G not in P
have order relatively prime to p. Thus elements of G\P act fixed-point-freely
by conjugation on P . By Theorem 9, G splits over P and we may write
G = Q n P . Put G = G/P . Then H is isomorphic to either Zqn or to a
generalized quaternion group. Therefore, Q is a subgroup of either Zq∞ or of
a locally quaternion group.

If k = 3, then P 6= 1 by Lemma 6. Put G = G/P , and k = k(G).
Then k = 2. Let Fk = {H ≤ G | H ∈ F3}. By the result of the previous
paragraph, Oq(G) 6= 1, for some prime q 6= p, G splits over Oq(G) and any
complement to Oq(G) acts fixed-point-freely on Oq(G). Now G has a normal
series G > Op,q(G) > P > 1 and elements of Op,q(G) not in P act fixed-point-
freely by conjugation on P . Therefore, by Theorem 9, G splits over P and G
is a 3-step group.

Write G = (H n Q) n P . Since H acts fixed-point-freely on Q, and Q
acts fixed-point-freely on P , it follows that Q and H are either subgroups
of a locally quaternion group or a subgroup of Zq∞ and Zp∞ , respectively.
Moreover, if Q is locally quaternion, it has a characteristic subgroup of order
2, and so H = 1; in the other case, H is a subgroup of the automorphism
group of Zq∞ and hence is finite cyclic of order pn.

If k = 4 and H ∈ F4, then O2(H) ≤ Fit(G) and so p = 2. By Lemma 7,
O2(H) = 1 and H is isomorphic to PSL(2, 4), PSL(2, 8), Sz(8), or Sz(32).
None of these simple groups contains any of the other ones, so G = H. By
the results of Higman [4] and Martineau [6], (5) holds.
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Conversely, assume that a group in the theorem has an element of order
pq. Then the finite subgroup generated by that element must be contained in
a finite group listed in Theorem 4, which is impossible. �

4. Examples of infinite locally finite solvable CP -groups

Example 1. Let p be an odd prime and V a 2-dimensional vector space
over an infinite locally finite field F of characteristic p. Then a Sylow 2-
subgroup, Q, of SL(2, F ) is locally quaternion and acts fixed-point-freely on
V . Thus G = Qn V is a locally finite 2-step CP -group.

Example 2. Let F be the locally finite field which is the direct limit of
finite fields of order 22·3k−1

for all k ≥ 1. By induction, it is easy to see that
3k divides 22·3k−1 − 1. Thus there is a subgroup H of F ∗ isomorphic to Z3∞ .
Let

H0 =
{(

λ 0
0 λ−1

)
: λ ∈ H

}
and z =

(
0 1
1 0

)
.

Then H0 ' H and z inverts under conjugation each element of H0. If V is a
2-dimensional vector space over F , then G = (〈z〉nH0)nV is a locally finite
3-step CP -group.

It is worthwhile mentioning that the class of locally solvable CP -groups
is contained in that of locally finite CP -groups since CP -groups are torsion.
Moreover, it is known that a torsion group G has a unique maximal normal
locally solvable subgroup R such that G/R has no non-trivial normal locally
solvable subgroups (see [8]). R is called the locally solvable radical of G and
G/R is said to be locally solvably semisimple. For instance, Tarski groups
are locally solvably semisimple CP -groups. The structure of infinite locally
solvably semisimple CP -groups remains to be settled.
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