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A PHASE TRANSITION IN A MODEL FOR THE SPREAD
OF AN INFECTION

HARRY KESTEN AND VLADAS SIDORAVICIUS

Abstract. We show that a certain model for the spread of an infection
has a phase transition in the recuperation rate. The model is as follows:

There are particles or individuals of type A and type B, interpreted as
healthy and infected, respectively. All particles perform independent,
continuous time, simple random walks on Zd with the same jump rate
D. The only interaction between the particles is that at the moment
when a B-particle jumps to a site which contains an A-particle, or vice

versa, the A-particle turns into a B-particle. All B-particles recuperate
(that is, turn back into A-particles) independently of each other at a
rate λ. We assume that we start the system with NA(x, 0−) A-particles

at x, and that the NA(x, 0−), x ∈ Zd, are i.i.d., mean µA Poisson
random variables. In addition we start with one additional B-particle

at the origin. We show that there is a critical recuperation rate λc > 0

such that the B-particles survive (globally) with positive probability if
λ < λc and die out with probability 1 if λ > λc.

1. Introduction

In [KSc], [KSb] we investigated the model discussed in the abstract, but
without recuperation, that is, with λ = 0 only. We heard of the present version
from Ronald Meester and we also learned from him the conjecture that there
would be a phase transition in λ, as is now confirmed by our principal theorem
here.

Before formally stating our theorem we make some comments about the
precise formulation of the model, and introduce some notation. First we define
for η = A or B

Nη(x, t) = number of η-particles at the space-time point (x, t).

Throughout we write 0 for the origin. As stated in the abstract, we put
NA(x, 0−) A-particles at x just before we start, with the {NA(x, 0−), x ∈ Zd}
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i.i.d. Poisson variables with mean µA. We then introduce a B-particle at
the origin and turn some of the particles at the origin instantaneously to B-
particles, so that at time 0 we start with NA(x, 0) = NA(x, 0−) A-particles
at x 6= 0 and NB(0, 0) ∈ [1, NA(0, 0−) + 1] B-particles at 0. However, at
any time t > 0 an A-particle can turn into a B-particle only if the A-particle
itself jumps at t or if some B-particle jumps to the position of the A-particle
at time t. Thus, we are not saying that an A-particle turns into a B-particle
whenever it coincides with a B-particle. We adopted the rule that a jump
is required for the following reason. If we did not make this requirement,
then B-particles could effectively not recover at a space-time point (x, t) with
several B-particles present. Indeed, if one of them tried to turn back into an
A-particle at time t, it would immediately become of type B again because it
coincided with another B-particle. This creates some sort of singularity in the
model which we are unable to handle at the moment (see, however, Remark
3 below). This is the reason for the requirement of a jump for a change from
type A to type B at all strictly positive times t. Only at t = 0 did we change
some A-particles at 0 to B-particles because they coincided with a B-particle
(even though no jump occurred). The choice of the set of A-particles at 0
which is turned into B-particles at time 0 will not influence our arguments.
Note that because of the jump requirement there may be particles of both
types at a single space-time point.

We have not attempted to give a formal proof of the existence of our process
here as a strong Markov process on a suitable probability space. We did
carry out such a proof for the model without recuperation in [KSb], and this
indicates that such an existence proof for the present model is probably non-
trivial, and in any case rather tedious. Probably one can build on the proof
for the case without recuperation, because there are fewer B-particles in the
model with recuperation than in the one without recuperation, as shown in
Corollary 3 below. We merely mention that in [KSb] our basic state space
for the process without recuperation was a subset of the collection of right
continuous paths with left limits from [0,∞) into

(1.1) Σ :=
∏
k≥1

(
(Zd ∪ ∂k)× {A,B}

)
.

The ∂k are cemetery points which we can ignore here, since the process is
defined such that it almost surely does not reach any of these points. The
initial particles are ordered in some way as ρ1, ρ2, . . . . A typical point of Σ
is written as σ =

(
σ′(k), σ′′(k)

)
k≥1

. For fixed k, t 7→
(
σ′t(k), σ′′t (k)

)
is a path

from [0,∞) into Zd × {A,B}. The value of this path at time t represents the
position and type of ρk at time t. We often write π(t, ρk) and η(t, ρk) for the
position and type of ρk at time t. Thus we have attached to each particle
ρ a path t 7→ π(t, ρ). The quantity {πA(t, ρ) := π(t, ρ) − π(0, ρ)}t≥0 gives
the displacement at time t of ρ from its starting point. The paths πA(·, ρ)
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for the different ρ are all taken as independent copies of a continuous time
simple random walk {St}t≥0 with jump rate D and starting point S0 = 0.
The type of ρk at time t is a complicated function of the initial types and the
restrictions to [0, t] of all the paths πA(·, ρ). More details of dependence of
the types as functions of the paths can be found in Section 2 of [KSb].

In the case where recuperation is allowed, as in the present article, we
further attach to each particle ρ a sequence of potential recuperation times
r(1, ρ) < r(2, ρ) < . . . . The r(i, ρ) are the jump times of a rate λ Poisson
process, and these processes are all independent of each other for different ρ
and independent of the π(·, ρ). If ρ is of type B at a time t, then its type will
turn back to A at the first r(i, ρ) ≥ t. A great advantage of the assumption
that the random walks are independent of the types is that the π(·, ρ) and
the r(i, ρ) can be determined once and for all at time 0. The actual evolution
of the type of each particle over time is then a complicated function of all
the paths and recuperation times for all particles. We shall make a few more
comments about this function in the beginning of Section 2. We point out
that another reason for our restriction to the case of equal random walks for
the different types is that the basic monotonicity properties of the next section
may fail if the random walks are different for the different types.

We say that the infection survives if

(1.2) P{there are some B-particles at all times} > 0.

Since there cannot be any B-particles after time t if there are no B-particles
at t, it follows that (1.2) is equivalent to

(1.3) lim
t→∞

P{there are some B-particles at time t} > 0.

One may even replace limt→∞ by lim inft→∞ in (1.3). Note that the survival
in (1.2) or (1.3) is only global survival. Local survival in its strongest form
would say that

(1.4) lim inf
t→∞

P{NB(0, t) > 0} > 0.

A weaker form of local survival would be that

(1.5) P{NB(0, t) > 0 for arbitrily large t} > 0.

Clearly (1.4) implies (1.5), and this, in turn implies (1.2). We do not know
how to prove that either of the forms (1.4) or (1.5) of local survival holds if
λ is small enough. The infection is said to die out or to become extinct if it
does not survive, i.e., if

(1.6) P{there is some (random) t such that

there are no B-particles after t} = 1.

Here is our principal result.
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Theorem 1. There exists a 0 < λc <∞ such that the infection survives
if λ < λc and dies out if λ > λc.

Remark 1. The restriction to only one B-particle at time 0 is for conve-
nience only. The theorem remains valid if we start with any finite number of
B-particles at (nonrandom) positions.

Remark 2. We already remarked that the theorem does not give local
survival if λ is sufficiently small. Neither does it tell us anything about the
location of the B-particles as a function of t on the event that the B-particles
survive forever.

By a special argument one can show that (1.5) holds for d = 1 and λ < λc
on the event that the B-particles survive forever.

Remark 3. The proof that there is survival for small λ > 0 works even in
the case in which an A-particle turns into a B-particle whenever it coincides
with a B-particle, that is, if we do not require that the A or B-particle jumps
before reinfection can occur after recuperation of a B-particle.

Remark 4. A similar result for another variant of the model is obtained
in [AMP]. This article considers the so-called frog model in which only the
B-particles move and the A-particles stand still. In [AMP] time is taken
discrete. It is assumed that each B-particle is removed from the system at its
first recuperation. One could interpret this by means of the introduction of a
third type of particles, namely immune ones which do not interact with any
particles. When a particle recuperates from the infection it becomes immune.
This results also in some conclusions which differ from the ones in the present
paper. In particular, [AMP] shows that in their case there never is survival
in dimension 1, if recuperation is allowed (i.e., λc = 0, so that there is no
nontrivial phase transition in dimension 1, in contrast to our model).

The fact that the A-particles can move in our model makes the analysis
here much harder than in [AMP]. This also forces us to stick to Poisson initial
conditions, while [AMP] can handle much more general initial conditions, as
well as more general graphs as Zd.

We note that our proof of survival in Section 3 still goes through if the A
and B-particles perform the same random walk and B-particles are immune
after recuperation. In this case one also has extinction for large λ by The-
orem 1 and monotonicity arguments as in Lemma 4 below. The system in
which B-particles become immune lies stochastically below the system we are
investigating here (in the sense of Lemma 4). Thus Theorem 1 remains valid
if B-particles are immune after recuperation.

Remark 5. The following version of the frog model can still be analyzed
to some extent. Take time continuous, and assume that the A-particles cannot
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move. Assume further that a B-particle turns any A-particle with which
it coincides instantaneously into a B-particle. B-particles turn back to A-
particles at a constant rate λ > 0, but these recuperated particles stay in
the system and act as any original A-particle. For the initial state take the
NA(x, 0−) as i.i.d., mean µA Poisson variables, and add one B-particle at 0.
We have not constructed such a process, but we take it for granted that this
process can be properly defined so as to justify the argument below.

[AMP] proved survival for the process in discrete time, in which the A-
particles stand still, λ is small, and in which particles which recuperate are
removed from the system, and d ≥ 2. We expect that this also holds for the
process just described. It is perhaps surprising, though, that the rules of the
preceding paragraph imply that for large µA the process always survives. More
precisely, we show that if µA > some µA,d (which depends on the dimension
d only), then the B-particles survive for all values of λ, so that there is no
phase transition.

The key observation for proving this lack of a phase transition is that if
there are several particles present at some space-time point (x, t), then they
are all of type A or all of type B. In the latter case, if one of the B-particles
tries to recuperate, it is immediately reinfected by the other B-particles at
the same location, and so, as long as there are at least two particles on one
site, none of the particles at that site can change from type B to A. This
shows that B-particles can turn back to A-particles only at sites with no
other particle. Since the A-particles stand still, it follows that, at any fixed
site, at most one B-particle can recuperate and stay of type A forever after.

We shall also use that for µA > some µA,d it holds

(1.7)
∑

C : C connected
0∈C

P
{∑
x∈C

NA(x, 0−) <
1
2
µA|C|

}
<∞.

This follows from standard large deviation estimates for the Poisson distribu-
tion, since

∑
x∈C NA(x, 0−) has a Poisson distribution with mean µA|C|, and

from the fact that the number of connected sets C with 0 ∈ C grows only
exponentially in |C|. It follows from (1.7) and the Borel-Cantelli lemma that
for µA > µA,d, almost surely there exists some random k0 such that for any
connected set C ⊂ Zd which contains 0 and with |C| ≥ k0,

(1.8)
∑
x∈C

NA(x, 0−) ≥ 1
2
µA|C|.

Assume now that there exist k0 distinct particles ρ1, . . . , ρk0 , and space-time
points (xi, ti), such that ρi is at xi at time ti as a B-particle. (Some of the xi
or ti with different i may have the same value.) Assume further that

(1.9) A0 := {x1, . . . , xk0} is connected.
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Assume also that the infection dies out at some time t∞ < ∞. Let C0 be
the collection of sites visited by one of the ρi before the infection dies out, or
more precisely

(1.10) C0 := {x : for some 1 ≤ i ≤ k0, ρi visits x during [ti, t∞]}.

C0 is again a connected set, because each particle ρi moves by a simple random
walk through a connected set. Next, let D0 be the collection of sites at which
the k0 particles ρi are at time t∞ (and hence also at t > t∞, because each ρi
must have type A from the time of extinction of the infection on). Then, by
the one but last paragraph,

|C0| ≥ |D0| = k0.

Now, let ζ be some particle at some x ∈ C0 at time 0 (if such a particle exists).
Then x is visited by some ρi at some time si ∈ [ti, t∞]. Pick such an i and let
si be the smallest time in [ti, t∞] at which ρi is at x. We claim that ρi must
have type B at time si. Indeed, if si = ti, this is true by our assumption on ρi
at (xi, ti). If si > ti, then ρi must jump to x at time si. But only B-particles
do jump, so that our claim also holds in this case. Now, either ζ has type
B at some time during [0, si), or is of type A and sits still at x during all
of [0, si] and then it is turned into type B by ρi at si. In either case, the
infection cannot die out before ζ too recuperates for a last time. But, by (1.8)
the number of particles in C0 at time 0 is at least

(1.11)
∑
x∈C0

NA(x, 0−) ≥ 1
2
µA|C0| ≥

1
2
µAk0 ≥ 2k0,

provided we take µA ≥ µA,d ≥ 4. Thus we now have found at least 2k0

particles which must recuperate during [0, t∞]. We can repeat the argument
with he collection ρ1, . . . , ρk0 replaced by the particles in C0, and A0 replaced
by A1 := C0. k0 is then replaced by some k1 ≥ 2k0. By repeating this
argument infinitely often we see that it is impossible for the infection to die
out in finite time, if there is a k0 such that (1.8) holds for all connected
C ⊃ {0} with |C| ≥ k0, and particles ρi, 1 ≤ i ≤ k0, as above. Here we
have taken it for granted (without proof) that in any reasonable version of
the process only finitely many B-particles can be formed in finite time. We
apply the preceding remarks with A0 = {0} and a large non-random k0. This
shows that

P{infection does not die out}
≥ P{(1.8) holds for all connected C ⊃ {0}

with |C| ≥ k0 and NA(0, 0−) ≥ k0}
≥ P{(1.8) holds for all connected C ⊃ {0}

with |C| ≥ k0}P{NA(0, 0−) ≥ k0}
> 0 (by the Harris-FKG inequality).
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This argument is independent of the value of λ and therefore proves our claim
that there is no phase transition. This ends Remark 5.

In the next section we begin with a monotonicity property which imme-
diately implies that there exists a critical λc with the properties stated in
Theorem 1, except that λc = 0 or ∞ is still not excluded. In Section 3 we
then show that λc > 0 and in Section 5 we show that λc < ∞. These two
sections which show that there are nontrivial regions of survival and extinc-
tion, respectively, form the core of this paper. Section 4 is a kind of interlude
in which we prove that the maximal number of jumps during [0, t] in a cer-
tain class of paths is at most O(t). This estimate is crucial for the proof of
extinction in Section 5.

Our methods are a combination of the multi-scale analysis of [KSa], [KSc]
and percolation arguments. To show that the infection survives for small λ
we introduce (in Section 3) a certain directed (dependent) percolation process
with the property that if percolation occurs in this process, then the infection
survives. We then show that percolation occurs for sufficiently small λ by
showing that there is only a very small probability that the origin is separated
from∞ by a distant separating set. To show that the infection dies out when
λ is large we use a block argument (in Section 5). We show that with high
probability, along “almost all” paths in space-time there have to be blocks
which prevent the transmission of the infection. The paragraph following
the statement of Proposition 24 in Section 5 gives some more details of this
strategy.

A reader interested in the details of the proofs will have to refer to [KSa]–
[KSb] a number of times.

Throughout this paper we make the following convention about constants.
Ki will denote a strictly positive, finite constant, whose precise value is unim-
portant for our purposes. The value of the same Ki may be different in differ-
ent formulas. We use Ci for constants whose value remains fixed throughout
the paper. They will again have values in (0,∞). If necessary, we indicate on
what quantities a constant depends at the time when it is first introduced.
Throughout ‖x‖ denotes the `∞ norm of the vector x = (x(1), . . . , x(d)) ∈ Rd,
i.e.,

(1.12) ‖x‖ = max
1≤i≤d

|x(i)|.

(1.13) C(m) = {x : ‖x‖ ≤ m} = [−m,m]d.

0 will denote the origin (in Zd or Rd); |C| usually denotes the cardinality of
the set C.
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2. Two monotonicity properties

We repeat that we assume that all particles perform independent copies of
the same random walk. In this section we show that increasing the recupera-
tion rate decreases the number of infected particles. In addition we repeat a
monotonicity property from [KSc] for the system without recuperation.

First some recapitulation of the notation used in [KSc], [KSb] for the con-
struction of a suitable Markov process. Σ0 is a subset of Σ (defined in (1.1))
which serves as the state space for a strong Markov process {Yt}t≥0 con-
structed as a suitable version of our infection process without recuperation.
For our purposes here we do not have to know the exact definition of Σ0, but
we merely have to know that the initial conditions, as described by the Poisson
variables NA(x, 0−), lie almost surely in Σ0 (by Proposition 4 of [KSc]), and
that then the Markov chain takes values in Σ0 for all times, almost surely.
Moreover, we have from Section 2 in [KSc] (see (2.18) there), that almost
surely

(2.1) sup
s≤t

(number of B-particles at time s in the process {Yt}) <∞.

Σ0 will also be the state space for the infection process with recuperation.
We write {Yt(λ)} for the process with recuperation rate λ, even when λ = 0.
The process {Yt(0)} does not allow recuperation, but it is not the same as
the process {Yt} of [KSa], [KSc]. In the former process an A-particle turns
into a B-particle only when one of these two particles jumps to the position
of the other. In particular this process can have A and B-particles at the
same site. In the process {Yt} this is not possible, because an A-particle
turns instantaneously to a B-particle when it coincides with a B-particle.
The difference between these two processes, even though it is small, forces
some extra work on us.
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To motivate our construction for {Yt(λ)} consider a particle ρ which is of
type B at time s in the process {Yt(λ)}, and which has changed type only
finitely often in this process. Such a particle should have an analogue of a
genealogical path as introduced in Proposition 4 in [KSc] in {Yt}. Specifically,
there should be space-time points (xi, si) with 1 ≤ i ≤ ` for some `, and
0 < s1 < · · · < s` < s, and particles ρi for 0 ≤ i ≤ ` + 1 with ρ`+1 = ρ,
such that at time si, ρi jumps to the position of ρi+1 or vice versa. Moreover,
(with s`+1 = s) ρ0 should have type B at time 0, and ρi should have type B
and not recuperate during [si, si+1] in {Yt(λ)}. This last requirement was of
course not present in [KSc], but nevertheless the backwards construction of the
genealogical path from [KSc] works with only trivial modifications. To be more
specific, start with ρ of type B at time s and find the time t1 := min{u : ρ has
type B in {Yt(λ)} during [u, s]} = min{u : ρ does not recuperate in {Yt(λ)}
during [u, s]}. Then, either t1 = 0 or t1 > 0. If t1 = 0 then ρ was of type B
at time 0 and did not recuperate during [0, s] and we are done. If t1 > 0, then
there must have been some other particle ρ(1) of type B in {Yt(λ)}, and this
ρ(1) must have jumped to the position of ρ, or vice versa, at time t1. We then
define t2 = min{u : ρ(1) has type B in {Yt(λ)} during [t2, t1]}, etc., until we
arrive, for some ` at time t` and a particle ρ(`+1) which had type B in {Yt(λ)}
during [0, t`]. The genealogical path for ρ in {Yt(λ)} is then obtained by using
the ti and ρ(i) in reverse order for the si and ρi. Note that if ρ is of type B
at time s and has a genealogical path of times 0 < s1 < · · · < s` < s`+1 = s
and corresponding particles ρi, in the process {Yt(λ)}, then ρ can also be
regarded as a B-particle at time s in the process {Yt}. Indeed, one easily
shows by induction on i that each of the particles ρi must have type B at
time si in {Yt}. (Note that we are not saying that ρi changes type from A to
B at time si in {Yt}; the argument here does not rule out that ρi is already
of type B just before si, but this does not matter.)

With the motivation provided by the preceding paragraph we construct
{Yt(λ)} on the product of the probability space for {Yt} with the probability
space for all the recuperation processes {r(i, ρ)}. For a generic point σ =(
σ′(k), σ′′(k)

)
in the state space Σ (see (1.1)) define σ to be the point obtained

from σ by taking σ′′(k) = B for all k for which there is an ` with σ′(`) = σ′(k)
and σ′′(`) = B. This means that σ is obtained from σ by changing to B the
type of all particles at a position which already has at least one B-particle.
We now describe the process {Yt(λ)} starting from a σ for which σ ∈ Σ0. In
[KSc], [KSb] we defined the process {Yt} starting from σ. This begins with
assigning to each particle ρ a random walk path πA(·, ρ) and then giving ρ
the position π(t, ρ) = π(0, ρ) + πA(t, ρ) at time t, where π(0, ρ) is just the
initial position of ρ. We now assign to ρ the same positions {π(t, ρ)}t≥0 in
{Yt(λ)}. To complete the description we merely have to decide what type to
assign to a particle ρ as a function of time in {Yt(λ)}. If ρ has type A at time
s in {Yt} starting from σ, then we also assign it type A at time s in {Yt(λ)}.
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In particular, since almost surely only finitely many particles meet a particle
of type B during [0, s] in {Yt} (by (2.1) and the fact that any particle which
meets a B-particle before time s has type B at time s in {Yt}), this rule also
assigns type A during [0, s] to all but finitely many particles in {Yt(λ)}. Let
ρ(1), . . . , ρ(m) be the finitely many particles of type B at time s in {Yt}. The
particles which have type A at time s in {Yt} have no influence at all on the
types of the ρ(j), 1 ≤ j ≤ m, during [0, s]. We can therefore construct the
types of the finitely many ρ(j) in {Yt(λ)} by changing types appropriately at
the only finitely many times during [0, s] when one of these particles jumps
to the position of another one, or when a recuperation event r(i, ρ(j)) occurs
for some j ≤ m. It is not hard to check that if 0 ≤ s1 < s2, then the
restriction of the process so constructed on [0, s2] to [0, s1] agrees with the
process constructed on [0, s1]. Indeed the only difference between the two
constructions on [0, s1] could come from the particles which have type A at
s1, but type B at s2. However, these particles have not interacted with any
particle during [0, s1]. We shall not discuss the construction of the process
{Yt(λ)} further, and in particular shall not verify that the above construction
actually gives us a good version of {Yt(λ)}.

The preceding construction provides also a coupling of the processes {Yt}
and {Yt(λ)}. This coupling shows that {Yt} has more B-particles than the
{Yt(λ)} process starting from σ, in the sense of the following lemma.

Lemma 2. Let {Yt(λ)} and {Yt} start at σ and σ, respectively, with σ ∈
Σ0. In particular, each particle is at the same position at time 0 in both
processes and each particle which has type B in {Yt(λ)} at time 0 also has
type B in {Yt} at time 0. Then the coupling described above is such that any
particle present at a space-time point (x, s) in one of the processes {Yt(λ)}
and {Yt} is also present in the other. Moreover, if a particle at (x, s) has type
B in {Yt(λ)}, then it also has type B in {Yt}.

The lemma is immediate from the construction. The next lemma is very
similar. It proves a monotonicity in the recuperation rate.

Lemma 3. Let 0 ≤ λ1 ≤ λ2 and let {r1(i, ρ)} and {r2(i, ρ)} be Poisson
processes with the rates λ1 and λ2, respectively. Assume that these are coupled
such that for each ρ

(2.2) {r1(i, ρ)}i≥1 ⊂ {r2(i, ρ)}i≥1.

Let {Yt(λj)} be the infection process corresponding to the recuperation rate
λj , j = 1, 2, and assume that {Yt(λ1)} and {Yt(λ2)} are constructed from
the same initial state σ and the same set of random walk paths π(·, ρ), but
potential recuperation times r1(i, ρ) and r2(i, ρ), respectively. Assume that
σ ∈ Σ0. Then the processes {Yt(λ1)} and {Yt(λ2)} are coupled in such a way
that any particle present at a space-time point (x, s) in one of the {Yt(λj)} is
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also present in the other. Moreover, a.s. it holds for all s that if a particle at
(x, s) has type B in {Yt(λ2)}, then it also has type B in {Yt(λ1)}.

Proof. Clearly any particle ρ present in one of the {Yt(λj)} at (x, s) is also
present at (x, s) in the other process since the position of any initial particle
ρ at time s is π(s, ρ) in both processes.

We can now couple the process {Yt(λj)} with a process {Yt} which starts in
σ, as in Lemma 2. Then, by Lemma 2, the number of particles in {Yt(λj)} and
in {Yt} at any space-time point is the same, and the number of B-particles in
{Yt(λj)} is no more than in {Yt} at any space-time point. This implies that
a.s., for j = 1 and for j = 2,

(2.3) sup
s≤t

(
number of particles at (x, s) in {Yt(λj)}

)
<∞

for all x ∈ Zd, t ≥ 0,

and that there are only finitely many B-particles in Yt(λj) at any time t (by
virtue of Lemma 2 of [KSc]). In particular, a.s. for all s, any B-particle at
time s in {Yt(λj)} has an analogue of a genealogical path as above.

Assume now that a particle ρ has type B at time s in {Yt(λ2)}. Let its
genealogical path in {Yt(λ2)} be determined by the space-time points (xi, si)
and by the particles ρi. That means that there are space-time points (xi, si)
with 1 ≤ i ≤ ` for some `, and 0 < s1 < · · · < s` < s and particles ρi for
0 ≤ i ≤ ` + 1 with ρ`+1 = ρ, such that at time si, ρi jumps to the position
of ρi+1 or vice versa. Moreover, ρ0 has type B at time 0, and ρi does not
recuperate during [si, si+1] in {Yt(λ2)} (with s`+1 = s). Note that, because
ρi stays of type B in {Yt(λ2)} during [si, si+1], r2(j, ρi) /∈ [si, si+1] for all j.
But then ρi does not recuperate during [si, si+1] in {Yt(λ1)} either, by virtue
of (2.2). It then follows by induction on i that also in {Yt(λ1)}, each ρi is
of type B at time si and stays of type B through time si+1. In particular
ρ = ρ`+1 must have type B at time s in {Yt(λ1)}. �

A consequence of Lemma 3 is that if the infection dies out for some value
λ(1) of the recuperation rate, then it dies out for all larger recuperation rates.
As already stated this shows that λc exists, but it may still have the value 0
or ∞.

We will also need another monotonicity property for {Yt(λ)}. Basically this
says that if we increase the number of B-particles in the initial state, then
this will increase the number of B-particles at any later time. The analogue
of this result for {Yt} is in Lemma 14 of [KSc].
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Lemma 4. Let λ ≥ 0 and let σ(2) be such that σ(2) ∈ Σ0. Assume further
that σ(1) lies below σ(2) in the following sense:

(2.4) for any site x ∈ Zd, all particles present in σ(1) at x

are also present in σ(2) at x,

and

(2.5) any particle which has type B in σ(1) also has type B in σ(2).

Let πA(·, ρ) be the random walk paths associated to the various particles. As-
sume that the Markov processes {Y (1)

t (λ)} and {Y (2)
t (λ)} are constructed (as

explained before Lemma 2) by means of the same set of paths πA(·, ρ) and
the same recuperation processes {r(1, ρ)} for any ρ present in σ(1). As-
sume further that {Y (i)

t (λ)} starts in σ(i), i = 1, 2. Then, almost surely,
{Y (1)

t (λ)} and {Y (2)
t (λ)} satisfy (2.4) and (2.5) for all t, with σ(i) replaced by

Y
(i)
t (λ), i = 1, 2. Moreover, almost surely

(2.6) sup
s≤t

(
number of particles at (x, s) in {Y (i)

t (0)}
)
<∞

for all x ∈ Zd, t ≥ 0,

for i = 1 and for i = 2.

Proof. It is clear that (2.4) holds with σ(i) replaced by Y (i)
t (λ), that is,

for any site x ∈ Zd, and t ≥ 0, all particles present in Y
(1)
t at x(2.7)

are also present in Y
(2)
t at x.

By Lemma 14 in [KSc] σ(2) ∈ Σ0 implies that also σ(1) ∈ Σ0. In the same way
as in the second paragraph of the proof of Lemma 3 one now shows that a.s.
(2.6) holds and that a.s. there are only finitely many B-particles in Y

(i)
t (λ)

at any time t. Also a.s. for all s any B-particle at time s in {Y (i)
t (λ)} has an

analogue of a genealogical path.
To prove (2.5) with σ(i) replaced by Y (i)

s (λ), assume that ρ has type B at
time s in the first process, i.e., in {Y (1)

t (λ)}. Then it has a genealogical path
determined by space-time points (xj , sj)1≤j≤` for some `, and 0 < s1 < · · · <
s` < s and particles ρj for 0 ≤ j ≤ ` + 1 with ρ`+1 = ρ and s`+1 = s, such
that at time sj , ρj jumps to the position of ρj+1 or vice versa. Moreover, all
these ρj and ρ are present in σ(1) (and hence are particles in {Y (1)

t }), ρ0 has
type B at time 0, and ρj has type B and does not recuperate during [si, si+1]
in {Y (1)

t (λ)} (with s`+1 = s). One then proves by induction on j that each
ρj , 0 ≤ j ≤ `+ 1, is also present and has type B during [sj , sj+1] in {Y (2)

t }.
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In particular, ρ = ρ`+1 is present and of type B at time s in {Y (2)
t }. Thus,

(2.5) holds. �

3. Survival for small λ

In this section we show that 0 < λc ≤ ∞. To introduce the directed
percolation process which we promised in the introduction, we must describe
certain blocks in Zd+1. C0 will be the same large integer as in [KSc] (see (4.18),
(4.19) there). Without loss of generality we take C0 even. Also γ0 ∈ (0,∞)
will be as in [KSc]. Many constants Ki and pi will appear in the proof.
These will all depend only on d,D,C0, γ0, µA. All Ki and pi are finite and
strictly positive. These properties of the Ki, pi will not be mentioned further.
Throughout this section we think of p as fixed, and often suppress it in the
notation; we shall see at the end of the proof of Lemma 12 that any large
enough value of p will work for our purposes. For the time being we only need
to know that p is an integer ≥ 1. We also fix

q = 2d+ 1

and define, for any positive integer r,

∆r = C6r
0 .

For i = (i(1), . . . , i(d)) ∈ Zd and k ∈ Z we take

(3.1) B̂p(i, k) =
d∏
s=1

[i(s)∆p, (i(s) + 1)∆p)× [kpq∆p, (k + 1)pq∆p).

This definition is similar to that of the blocks Br(i, k) used in [KSa]–[KSb],
but there are obvious differences in the handling of the last coordinate in these
definitions. We further define the bottom of the block B̂p(i, k) as

(3.2) Zp(i, k) =
d∏
s=1

[(i(s)− 4d− 1)∆p, (i(s) + 4d+ 2)∆p)× {kpq∆p}.

The directed graph D will be the graph with vertex set Zd×{−1, 0, 1, 2, . . . },
and with a directed edge from (i, k) to (j, `) if and only if ‖i − j‖ ≤ 1 and
` = k+1. (Recall that the first condition means |i(s)−j(s)| ≤ 1 for 1 ≤ s ≤ d.)
We also need the graph L. It has vertex set Zd+1 and an edge between v and
w if and only if ‖v − w‖ = 1. Note that L strictly contains Zd+1 (viewed as
a graph); L also has “diagonal” edges. We shall call the edges of D and L,
D-edges and L-edges, respectively. We shall call (i, k) a parent of (j, k + 1) if
there is a D-edge from (i, k) to (j, k + 1).
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For any set A in the vertex set of L (i.e., A ⊂ Zd+1) we define the following
pieces of its boundary:

∂extA = {v ∈ Zd+1 : v is adjacent on L to some w ∈ A, v /∈ A, and there

exists a path on Zd+1 from v to ∞ which avoids A};
∂+
extA := {v ∈ ∂ext : there is some w ∈ A such that the edge

from w to v is a D-edge};
∂∗extA := {v ∈ ∂ext : v + ed+1 ∈ A}.

Note that ∂+
ext and ∂∗ext are not disjoint in general. If A,S ⊂ Zd+1, then we

say that S separates A from ∞ on Zd+1 if S ∩A = ∅ and every path on Zd+1

from A to ∞ contains a point of S.
The next lemma is of a topological nature only.

Lemma 5. Let A ⊂ Zd × {0, 1, 2 . . . } be a finite, non-empty, L-connected
set. Then

(3.3) ∂extA is Zd+1-connected and separates A from ∞ on Zd+1

and

(3.4) |∂extA| ≤ 6|∂+
extA|.

Proof. Relation (3.3) is just a special case of Lemma 2.23 in [Kb] (with d
replaced by d+ 1). [Kb] does not state the fact that ∂extA separates A from
∞ in the generality of the present lemma. However, the proof on the top of
p. 144 of [Kb] shows easily that the separation property in (3.3) holds.

To prove (3.4), assume that v ∈ ∂extA. Then v is adjacent on L to some
w ∈ A and there exists some path π from v to∞ on Zd+1 which is disjoint from
A. We distinguish three main cases according to the value of v(d+1)−w(d+1),
where v(d+ 1) is the last coordinate of v; the last two cases are split into two
subcases.

Case (a): v(d + 1) = w(d + 1) + 1. In this case the edge from v to w is a
D-edge, so that v ∈ ∂+

extA. Thus the number of vertices v ∈ ∂extA which are
in case (a) is at most |∂+

ext|.
Case (b): v(d+ 1) = w(d+ 1).

Subcase (bi): v + ed+1 /∈ A. Here we abuse notation somewhat. ej denotes
the j-th coordinate vector and the s-th component of v + ed+1 equals v(s) if
s ≤ d and equals v(d+ 1) + 1 if s = d+ 1. In this subcase, the path on Zd+1

consisting of the edge from v + ed+1 to v followed by π is a path on Zd+1

from v + ed+1 to ∞ which is disjoint from A. Moreover, (v + ed+1)(d+ 1) =
w(d+1)+1 and the edge from w to v+ed+1 is a D-edge. Thus v+ed+1 ∈ ∂+

extA
and again, the number of vertices v ∈ ∂extA which are in case (bi) is at most
|∂+
ext|.
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Subcase (bii): v + ed+1 ∈ A. Then the edge from v + ed+1 to v goes from
a point of A to a point of ∂extA, but the last coordinate decreases by one
along this edge. Thus, v ∈ ∂∗extA in this case. Thus the number of vertices
v ∈ ∂extA which are in case (bii) is at most |∂∗ext|. To complete the handling
of this subcase we prove that in general

(3.5) |∂∗extA| ≤ |∂+
extA|

for any finite A ⊂ Zd × {0, 1, . . . }. To see (3.5) consider any line parallel to
the last coordinate axis of the form {v0 + ned+1 : n ∈ Z}. The points of
this line are in the unbounded component of Zd+1 \ A for large n both in
the positive and negative direction. Therefore, as one lets n run from −∞ to
+∞, there are as many transitions from the unbounded component in Zd+1

of Zd+1 \A to A as there are transitions from A to the unbounded component
of Zd+1 \A. The former transitions go from a vertex v outside A to a vertex
in A by adding ed+1, and therefore occur for v ∈ ∂∗ext. The latter transitions
are along a D-edge from a vertex of A to a vertex v outside A and therefore
occur when v + ed+1 ∈ ∂+

ext. The numbers of the two types of transitions are
equal, and this holds for any choice of v0. (3.5) follows.

Case (c): v(d + 1) = w(d + 1) − 1. Again this has the subcases (ci) with
v+ed+1 /∈ A and (cii) with v+ed+1 ∈ A. In case (ci) one easily checks (by the
argument for case (bi)) that ṽ := v + ed+1 ∈ ∂extA, and that ṽ is in case (b).
Thus, by the results for case (b) the number of vertices v ∈ ∂extA which are
in case (ci) is at most 2|∂+

ext|. Finally, if v is in subcase (cii), then replace w
by w̃ = v+ ed+1. In this situation, v is adjacent on L to w̃ ∈ A and therefore
v lies in ∂∗ext. (3.5) therefore shows that also the number of vertices v ∈ ∂extA
which are in case (cii) is at most |∂+

ext|. The inequality (3.4) follows by adding
the contributions of the various cases. �

We can now set up our percolation problem on the graph D. We define
m(i) = mp(i) ∈ (Z+ 1

2 )d∆p as the point with components

m(i)(s) = (i(s) + 1/2)∆p, 1 ≤ s ≤ d.

m(i) is in some sense the midpoint of
∏d
s=1[(i(s)∆p, (i(s) + 1)∆p), which

constitutes the spatial part of B̂p(i, k). m(i)(s) is an integer because we took
C0 even. For purposes of the proof of survival of the infection, it turns out
to be convenient to change the initial conditions of the B-particles slightly.
For the rest of this section we will assume that we do not add a B-particle at
the origin at time 0, but instead add a B-particle at m(0). Thus we take the
state at time 0 to satisfy

(3.6) NA(x, 0) = NA(x, 0−) if x 6= m(0),

(3.7) NA(x, 0) +NB(x, 0) = NA(x, 0−) + 1 if x = m(0),
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(3.8) NB(x, 0) = 0 if x 6= m(0),

and

(3.9) 1 ≤ NB(x, 0) ≤ NA
(
m(0), 0−

)
+ 1 if x = m(0).

Clearly (1.2) holds with the original initial condition if and only if it holds in
this modified system. Thus it suffices for showing λc > 0 that

(3.10) P{there are B-particles at all times in the system

which starts with (3.6)–(3.9)} > 0.

It will be necessary in the proofs of Lemma 6 and 7 to consider initial con-
ditions in which a B-particle is added at time 0 at a finite number of sites
m(c1), . . . ,m(cr). In this situation m(0) in (3.6)–(3.9) has to be replaced
by m(c1), . . . ,m(cr). Till the end of Lemma 7 we shall allow this, but will
indicate the location of the initial particles in the notation only where it is
crucial.

We further define

(3.11) t(k) = tp(k) = kpq∆p,

and

(3.12) Zp(i) =
d∏
s=1

[(i(s)− 4d− 1)∆p, (i(s) + 4d+ 2)∆p) ⊂ Zd,

so that Zp(i, k) = Zp(i) × {t(k)}. We also define x(i, k) ∈ Zd as the nearest
(in the `∞ sense on Zd) site to m(i) which contains a B-particle at time
t(k) = kpq∆p in our infection process {Yt(λ)}. If there are several possible
choices for x(i, k), then we use some deterministic rule to break the tie. If
there are no B-particles in {Yt(λ)} at time tk, then we leave x(i, k) undefined.
If a B-particle is added at m(c) at time 0, then we take x(c, 0) = m(c). We
call the vertex (i, k) of D active (or more explicitly λ-active) if there is a
site x ∈ m(i) + C( 1

8∆p) which is occupied by at least one B-particle at time
t(k) in our infection process with recuperation {Yt(λ)} (see (1.13) for C). By
convention, if a B-particle is added at m(c) at time 0, the vertex (c, 0) is
active.

We now want to define when certain D-edges are open. To this end we
first define the Zp(i, k)-process started at

(
x, t(k)

)
for any x ∈ Zp(i). This

process is defined only from time t(k) on and it will use only particles which
are in Zp(i) at time t(k). Also, we only define this process if x is occupied
by some particle at time t(k). To define this process we first reset the types
of the particles in Zp(i) at time t(k). All particles in Zp(i) \ {x} are given
type A. One particle at x is given type B. Denote this particle by ρ(x, t(k)).
All other particles at x (if any) are given type A. If there are B-particles
at
(
x, t(k)

)
, then ρ(x, t(k)) is chosen from these B-particles, but apart from
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this restriction ρ(x, t(k)) can be selected from the particles at (x, t(k)) in any
way which does not depend on the future paths of the particles in Zp(i) at
time t(k). The Zp(i, k)-process started at

(
x, t(k)

)
is then the evolution of

the particles which are in Zp(i) at time {t(k)} with the reset types according
to the rules for {Yt(0)}, that is, there is no recuperation, but we still insist
that an A-particle turns into a B-particle only if it jumps onto a B-particle
or a B-particle jumps onto it. Note that in this process all particles outside
Zp(i) at time t(k) are ignored.

We now say that the D-edge from (i, k) to (j, k+ 1) is open if the following
three events (3.13)–(3.15) occur.

(3.13) (i, k) is active.

A(i, k, j) := {the Zp(i, k)-process started at
(
x(i, k), t(k)

)
(3.14)

has at least one B-particle in m(j) + C(1
8

∆p)

at time t(k + 1)}

(see Figure 1). If A(i, k, j) occurs, then there exists in {Yt(0)} a genealogical
path from some B-particle at

(
x(i, k), t(k)

)
to some particle in m(j)+C( 1

8∆p).
Among all such paths choose the first one in some deterministic ordering of
such paths. Let this be determined by the times si, 1 ≤ i ≤ `, and particles
ρ0, . . . , ρ`, in the sense that t(k) < s1 < · · · < s` < t(k + 1), ρ0 is some B-
particle at

(
x(i, k), t(k)

)
and ρ` is located in m(j) + C( 1

8∆p) at time t(k + 1);
moreover, at time si, 1 ≤ i ≤ `, one of ρi and ρi−1 jumps to the position of
the other. All the particles ρi, 0 ≤ i ≤ `, are in Zp(i) at time t(k). Note
that by our definition of the Zp(i, k)-process, the path here is chosen without
reference to the recuperation events. The last required event for the edge from
(i, k) to (j, k + 1) to be open is

B(i, k, j, λ) := {with si and ρi as in the preceding lines, the particle ρi
(3.15)

has no recuperation event in {Yt(λ)} during [si, si+1],

that is, r(h, ρi) /∈ [si, si+1] for all h and 0 ≤ i ≤ `
(with s`+1 = t(k + 1))}.

Note that this definition applies only if there exists a D-edge from (i, k) to
(j, k + 1), that is if j = i or j = i ± es for some s ∈ {1, . . . , d}. If any of the
three conditions (3.13)–(3.15) fails, then the D-edge from (i, k) to (j, k+ 1) is
called closed.

By definition of “active”, the infection survives if there are with positive
probability infinitely many active sites. The next lemma is a tool for finding
active sites.
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( i ,k)

( j ,k+1)

A

B

Figure 1. Relative location of the sets Zp(i, k),Zp(j, k + 1)
for d = 1, where (i, k) is a parent of (j, k + 1). The
points marked by a small vertical bar are

(
m(i), t(k)

)
and(

m(j), t(k + 1)
)
, respectively. The point A, marked by an x

is
(
x(i, k), t(k)

)
. B, also marked by an x, is the endpoint in(

m(j) + C( 1
8∆p), t(k + 1)

)
of the dashed curve. This curve

represents the genealogical path along which the infection
is transmitted in the Zp(i, k)-process started at A, so that
A(i, k, j) occurs.

Lemma 6. Start the infection process by adding a B-particle at m(c1),
. . . ,m(cr) at time 0. If some vertex (i, k) is active and the D-edge from (i, k)
to (j, k + 1) is open, then (j, k + 1) is also active.

Proof. By assumption (3.13),

x(i, k) ∈ m(i) + C(1
8

∆p) ⊂ Zp(i)

(this is even true for (i, k) = (cj , 0), since we interpret x(cj , 0) as m(cj)). Now
apply Lemma 4 with σ(2) the true state of the process {Yt(λ)} at time t(k) and
σ(1) the state obtained by resetting the type of the particles in Zp(i, k) and
ignoring the particles outside Zp(i, k) to form the Zp(i, k)-process started at(
x(i, k), t(k)

)
. This procedure only involves removing particles and changing

the type of some particles from B to A. Indeed, according to our construction,
the one particle at x(i, k) which is given type B at

(
x(i, k), t(k)

)
is chosen from

the particles which already had type B at time t(k) in {Yt(λ)}. Therefore,
(2.4) and (2.5) hold for these choices of σ(1) and σ(2). If we now let the
particles in the full system (i.e., the collection of all the particles, including
the ones outside Zp(i, k)) develop till time t(k + 1) according to the rules
for {Yt(0)}, then Lemma 4 tells us that at time t(k + 1) the Zp(i, k)-process
started at

(
x(i, k), t(k)

)
will still lie below the full process. Moreover, by

assumption (3.14), the Zp(i, k)-process started at
(
x(i, k), t(k)

)
has at least

one B-particle in m(j) + C( 1
8∆p) at time t(k + 1).
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The last few lines tell us that there will be some B-particles in m(j) +
C( 1

8∆p) at time t(k + 1) in the full process, if it develops according to the
rules for {Yt(0)} (i.e., without recuperation) during [t(k), t(k+ 1)]. In fact we
can choose times si and particles ρi as in the lines between (3.14) and (3.15).
Then ρi has type B during [si, si+1], 0 ≤ i ≤ `, and in particular ρ` will have
type B at t(k+ 1), if we suppress recuperation during [t(k), t(k+ 1)]. Finally
we note that by induction on i, the occurrence of B(i, k, j, λ) implies that ρi
still has type B during [si, si+1] even if recuperation is allowed. Indeed, if ρi
is of type B at time si in the process {Yt(λ)}, then it will keep type B during
[si, si+1], even when recuperation is suppressed, since it has no recuperation
during this interval anyway if B(i, k, j, λ) occurs. Then ρi and ρi+1 coincide
at time si+1, and therefore ρi+1 will be of type B at si+1 even in {Yt(λ)}. In
particular ρ`+1 has type B at time t(k + 1).

We conclude from the last two paragraphs that even in the process {Yt(λ)}
there is a B particle in m(j)+C( 1

8∆p) at time t(k+1). In particular, x
(
j, t(k+

1)
)
, the position of the nearest B-particle to m(j) at time t(k+ 1) in {Yt(λ)},

must lie in m(j) + C( 1
8∆p). �

Again assume that we add a B-particle at m(c1), . . . ,m(cr) at time 0. Now
define the open cluster of the set {(c1, 0), . . . , (cr, 0)} on D as

C = C(c1, . . . , cr) = {v ∈ D : ∃ path v0, v1, . . . , vn = v from some v0 = (cj , 0)
(3.16)

to v on D for some n such that each edge {vi, vi+1},
0 ≤ i ≤ n− 1, is open}.

We always include each (cj , 0) in C(c1, . . . , cr). From Lemma 6 it follows that
each vertex (i, k) in C must be active. Thus, if C is infinite with positive
probability, then the infection survives. If C is finite (and nonempty, since
it contains (cj , 0)), then ∂extC is Zd+1-connected and separates C from ∞
on Zd+1, by Lemma 5. Moreover, each D-edge from some vertex (i, k) ∈ C

to some vertex (j, k + 1) ∈ ∂+
extC must be closed. This is true by definition,

because if (i, k) ∈ C and the edge from (i, k) to (j, k + 1) were open, then
also (j, k + 1) would belong to C. These observations indicate that it will be
useful to have an upper bound for the probability that the edge from (i, k) to
(j, k+1) is closed. To derive such a bound we generalize the definitions of the
events A and B in (3.14) and (3.15). For x ∈ m(i) + C( 1

8∆p) we define

Ã
(
x, t(k), j

)
:=
{
x is not occupied at time t(k)

}
∪
{
x is occupied at t(k)

(3.17)

and the Zp(i, k)-process started at
(
x, t(k)

)
has at least

one B-particle in m(j) + C(1
8

∆p) at time t(k + 1)
}
.
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If Ã
(
x, t(k), j) occurs and x is occupied at time t(k), then we define

B̃(x, t(k), j, λ) as follows. First we reset the types of the particles in Zp(i, k)
to form the Zp(i, k)-process started at

(
x, t(k)

)
. We then pick a genealogical

path in this process from the unique B-particle (after resetting) at
(
x, t(k)

)
to a vertex in m(j) + C( 1

8∆p) at time t(k + 1). As in the lines between
(3.14) and (3.15) let this path be determined by times s1, . . . , s` and particles
ρ0, . . . , ρ`, which have to be in Zp(i) at time t(k). We then also define (with
s`+1 = t(k + 1))

B̃
(
x, t(k), j, λ) :=

{
x is not occupied at time t(k)

}
∪
{(
x, t(k)

)
is occupied,

(3.18)

and for 0 ≤ i ≤ ` the particle ρi has no recuperation

event in {Yt(λ)} during [si, si+1]
}
.

We note that many choices have to be specified before these definitions become
unambiguous. Ties may have to be broken in the choice of x(i, k), a particle
has to be singled out at (x(i, k), t(k)) to have type B in the Zp(i, k) process
started at (x(i, k), t(k)), and a genealogical path has to be chosen in the
definitions of B(i, k, j, λ) and B̃(x, t(k), j, λ). We shall not write out explicit
rules for making these choices, but merely repeat the general principle, that we
make such choices by ordering all possibilities for a particular choice before any
process {Yt(λ)} is started and then pick the first possibility in such an ordering
at the time when the choice has to be made. Making the list of possibilities
does not involve probability. We have to make sure that in ordering the
possibilities for x(i, k) and a B-particle at (x(i, k), t(k)) we do not use any
information about our process and its recuperation events in the future (i.e.,
after time t(k)), and that in the choice of a genealogical path for B(i, k, j, λ)
and B̃(x, t(k), j, λ) we use no information on the recuperation events during
(t(k),∞).

Once x(i, k) has been determined we make our choices for Ã(x, t(k), j) and
B̃(x, t(k), j, λ) at x = x(i, k) in such a way that, on the event {(i, k) is active},
A(i, k, j) = Ã

(
x(i, k), t(k), j

)
and B

(
i, k, j, λ) = B̃

(
x(i, k), t(k), j, λ). Finally,

if there exists a D-edge from (i, k) to (j, k + 1) and if (i, k) is active, we set

(3.19) C(i, k, j, λ) :=
⋃

x∈m(i)+C( 1
8 ∆p)

[
Ã
(
x, t(k), j

)
∩ B̃(x, t(k), j, λ)

]c
.

If there is no D-edge from (i, k) to (j, k+1), or (i, k) is not active, then we set

C(i, k, j, λ) := ∅.

Finally, let C0 be some finite subset of vertices of D. The vertices of D
can also be thought of as vertices of Zd+1, so that we can also think of C0

as a subset of Zd+1. We shall continue to denote generic vertices of Zd+1
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as (i, k) with i ∈ Zd and k ∈ Z, because the last coordinate always plays
the special role of time. We call a subset S of Zd+1 a C0-barrier if S is
Z
d+1-connected, separates C0 from ∞ on Z

d+1 and satisfies the following
condition:

S contains at least |S|/6 vertices (j, k + 1) (with k ∈ Z(3.20)

arbitrary) which have a parent (i, k) such that the edge from

(i, k) to (j, k + 1) is a D-edge for which C(i, k, j, λ) occurs.

For C0 as above we define the quantity

(3.21) Υ(p, λ,C0) =
∑
n≥1

P{there exists a C0-barrier S with |S| = n},

where the probability is calculated in the {Yt(λ)}-process which starts with
a B-particle added to each m(ci, 0) in C0. (Recall that p is the parameter
which appears in the size of the blocks B̂.)

Lemma 7. Assume that there is a D-edge from (i, k) to (j, k+ 1) and that
(i, k) is active. Then

(3.22) {the edge from (i, k) to (j, k + 1) is closed} ⊂ C(i, k, j, λ).

If there exist p0 ∈ {1, 2, . . . }, λ0 ∈ (0,∞) and a Zd-connected set {c1, . . . , cr} ⊂
Z
d such that, with C0 = {(c1, 0), . . . , (cr, 0)}, it holds

(3.23) Υ(p0, λ0,C0) < 1,

then

(3.24) P{infection survives in the process {Yt(λ0)} which starts

with a B-particle added at m(0)} > 0,

and consequently λc ≥ λ0.

Proof. Let there be a D-edge from (i, k) to (j, k+1) and let (i, k) be active.
By definition of an open edge, the edge from (i, k) to (j, k + 1) can be closed
only if A(i, k, j) ∩ B(i, k, j, λ) = Ã

(
x(i, k), t(k), j

)
∩ B̃

(
x(i, k), t(k), j, λ

)
fails.

In addition x(i, k) ∈ m(i) + C( 1
8∆p) if (3.13) holds. Thus the inclusion (3.22)

holds.
To prove (3.24), assume that (3.23) holds and fix p0, λ0 and c1, . . . , cr such

that {c1, . . . , cr} is a finite Zd-connected set and such that (3.23) holds. Now
consider the process {Yt(λ0)} which has recuperation rate λ0, but start it by
adding at time 0 a B-particle to each site m(cj), 1 ≤ j ≤ r. Then all (cj , 0)
are active. Let C be given by (3.16) and view it as a subset of Zd+1. This
cluster is the open cluster of C0. It contains C0 and is L-connected (see the
lines following (3.2) for L). Moreover, by Lemma 6, each vertex in C must
be λ0-active. Write S for ∂extC. If C is finite, then S is Zd+1-connected and
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separates C0 from infinity, by Lemma 5. Moreover, as observed after (3.16),
each D-edge from some vertex (i, k) ∈ C to some vertex (j, k + 1) ∈ ∂+

extC
must be closed. By virtue of (3.4), S then must contain at least |S|/6 vertices
(j, k + 1) which have a parent (i, k) ∈ C with a closed D-edge from (i, k) to
(j, k + 1), and therefore such that C(i, k, j, λ0) occurs (by (3.22) and the fact
that (i, k) is active). Thus S must have property (3.20). This implies that

P{C is finite in the process {Yt(λ0)} which starts with

a B-particle added to m(cj) for each 1 ≤ j ≤ r}
≤ Υ(p0, λ0,C0) < 1,

or equivalently,

P{the infection survives in {Yt(λ0)} if one adds at time 0 a(3.25)

B-particle at each m(cj), 1 ≤ j ≤ r}
≥ P{C is infinite in {Yt(λ0)} if one adds at time 0 a

B-particle at each m(cj), 1 ≤ j ≤ r} > 0.

It remains to show that the probability of survival of the infection remains
strictly positive if we add a B-particle at time 0 only at m(0). In fact, this
statement is still ambiguous, because, so far, we have only mentioned the
locations were we add a B-particle at time 0, but we haven’t specified how
many particles we turn into B-particles at these locations at time 0. To discuss
this we remind the reader that σ was defined before Lemma 2 as the state
obtained from σ by changing all A-particles which coincide with a B-particle
in the state σ to B-particles. Now if we start in a random state σ obtained
by choosing NA(x, 0−) A-particles at x for i.i.d. Poisson variables NA(x, 0−),
and adding finitely many B-particles to the system, then σ lies a.s. in Σ0 (by
Proposition 4 in [KSc]). Lemma 4 therefore shows that the more particles
we turn into B-particles at time 0, the more likely survival is. Therefore, the
strongest conclusion to prove is that

P{the infection survives if one adds at time 0 a B-particle(3.26)

at m(0) only, and turns no A-particles to type B} > 0.

And the weakest statement to start from is

P{the infection survives if one adds at time 0 a(3.27)

B-particle at each m(cj), 1 ≤ j ≤ r, and turns

all particles at these sites to B-particles} > 0.

We shall prove (3.26) from (3.27). Our argument for this is inspired by the
proof at the bottom of p. 79 in [D]. For simplicity we take the cj , 1 ≤ j ≤ r,
distinct. Only minor modifications are needed if some pairs of the cj can
be equal. Assume that we add a B-particle ζj at m(cj) for 1 ≤ j ≤ r and
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that we turn all A-particles at these sites to B-particles at time 0. Consider a
sample point in the process {Yt(λ0)} with these initial conditions in which the
infection survives. If v = (x, t) is a space-time point occupied by a B-particle
in this process, then it has a genealogical path starting at some B-particle
at one of the

(
m(cj), 0

)
. Thus, there exist times 0 < s1 < · · · < s` < t and

particles ρ0, ρ1, . . . , ρ` such that ρ0 is a B-particle at some (cj , 0), ρ` is at v
at time t, ρi has type B during [si, si+1] and has no recuperation during this
interval. Consider instead the process starting with a particle ζj added at each
(m(cj), 0), but now with only the particle ρ0 of type B and all other particles
of type A. As before, induction on i shows that ρi is of type B during [si, si+1].
In particular, there will be a B-particle at (x, t) in this process with modified
starting types. It follows from this same argument that for any choice of the
ak ≥ 0, bk ≥ 0, 1 ≤ k ≤ r, and with δ(k, j) = 1 or 0 according as k = j or
k 6= j,

P{infection survives
∣∣∣NA(m(ck), 0

)
= ak,(3.28)

NB
(
m(ck), 0

)
= bk, 1 ≤ k ≤ r}

≤
r∑
j=1

bjP{infection survives
∣∣∣NA(m(ck), 0

)
= ak + bk − δ(k, j),

NB
(
m(cj), 0

)
= δ(k, j), 1 ≤ k ≤ r},

If (3.27) holds, then the left hand side of (3.28) must be strictly positive for
some choice of ak ≥ 0, bk ≥ 1. Consequently for some j and choice of the
ak, bk,

P{infection survives if one adds a B-particle at
(
m(cj), 0

)
only,

but changes no A-particles to B-particles}

≥ P{infection survives
∣∣∣NA(m(ck), 0

)
= ak + bk − δ(k, j),

NB
(
m(ck, 0

)
= δ(k, j)}

× P{NA
(
m(ck), 0−

)
= ak + bk − δ(k, j), 1 ≤ k ≤ r}

> 0.

By translation invariance we may assume cj = 0, so that (3.26) follows. �

To conclude the proof of λc > 0 we shall now establish that (3.23) holds for
suitable p0, λ0,C0. Its proof has much in common with that of Proposition 3 in
[KSc]. First some more notation and definitions. For purposes of comparison
it is useful to couple our system with the system in which there are no B-
particles and in which all originalA-particles move forever without interaction.
In this system, which we shall denote by P∗, an A-particle ρ which starts at
z will have position z + πA(t, ρ) for all t. We write N∗(x, s) for the number
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of particles at the space-time point (x, s) in the system P∗. N∗(x, 0) is taken
equal to NA(x, 0−), the initial number of A-particles at x. No initial B-
particles are introduced in P∗ and all particles are of type A at all times in
P∗. Note that N∗(x, s) is independent of the recuperation rate λ, because it
depends only on the paths, and not the types, of the particles. It is easy to
see that

N∗(x, s) =NA(x, s) +NB(x, s)− [number of B-particles introduced(3.29)

(in {Yt(λ)}) at time 0 which are at x at time s].

In particular

(3.30) N∗(x, s) ≤ NA(x, s) +NB(x, s).

Next we define, for x = (x(1), . . . , x(d)) ∈ Zd and v ∈ [0,∞),

(3.31) Qp(x) =
d∏
s=1

[x(s), x(s) + Cp0 ),

and

(3.32) Up(x, v) =
∑

y∈Qp(x)

N∗(y, v) =
∑

y:x(s)≤y<x(s)+Cp0
1≤s≤d

N∗(y, v).

We call the bottom Zp(i, k) = Zp(i)× {tp(k)} good if

(3.33) Up
(
x, tp(k)

)
≥ γ0µAC

dp
0 for all x for which Qp(x) ⊂ Zp(i),

where γ0 is the constant introduced in (4.10), (4.16) and (4.17) of [KSc]. We
also need the following technical estimate of some random walk probabilities.

Lemma 8. There exists a p1 = p1(d,D) < ∞ such that for all p ≥ p1,
∆p ≤ u ≤ pq∆p, x ∈

∏d
s=1[(i(s)−4d)∆p, (i(s)+4d+1)∆p), the event {Zp(i, k)

is good} implies

(3.34)
∑

y∈Zp(i)

[NA
(
y, t(k)

)
+NB

(
y, t(k)

)
]P{y + Su = x} ≥ 3

4
γ0µA.

Proof. This is nearly a copy of the proof of Lemma 5 in [KSc]. We introduce
the blocks

M(`̀̀) :=
d∏
s=1

[`(s)Cp0 , (`(s) + 1)Cp0 ).

In our previous notation M(`̀̀) = Qp(z) with z(s) = `(s)Cp0 . These blocks
have edge length only Cp0 , and the set Zp(i) is a disjoint union of (8d+3)dC5dp

0

of these smaller blocks. Let

Λ = Λ(i, p) = {`̀̀ ∈ Zd :M(`̀̀) ⊂ Zp(i)}.
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Also, for each `̀̀ ∈ Λ, let y`̀̀ ∈M(`̀̀) be such that

P
{
y`̀̀ + Su = x

}
= min
y∈M(`̀̀)

P
{
y + Su ∈ x

}
.

Then the left hand side of (3.34) equals

(3.35)
∑
`̀̀∈Λ

∑
y∈M(`̀̀)

[NA
(
y, t(k)

)
+NB

(
y, t(k)

)
]P{y + Su = x}

≥
∑
`̀̀∈Λ

∑
y∈M(`̀̀)

N∗
(
y, t(k)

)
P{y`̀̀ + Su = x}.

Since Zp(i, k) is assumed to be good, we have∑
y∈M(`̀̀)

N∗
(
y, t(k)

)
= Up

(
`̀̀Cp0 , t(k)

)
≥ γ0µAC

dp
0 =

∑
y∈M(`̀̀)

γ0µA.

We can therefore continue (3.35) to obtain that the left hand side of (3.34) is
at least ∑

`̀̀∈Λ

∑
y∈M(`̀̀)

γ0µAP
{
y`̀̀ + Su = x}(3.36)

≥
∑
`̀̀∈Λ

∑
y∈M(`̀̀)

γ0µAP
{
y + Su = x}

−
∑
`̀̀∈Λ

∑
y∈M(`̀̀)

γ0µA

∣∣∣P{y`̀̀ + Su = x} − P
{
y + Su = x}

∣∣∣ .
Now, since x ∈

∏d
s=1[(i(s)− 4d)∆p, (i(s) + 4d+ 1)∆p), the first multiple sum

in the right hand side of (3.36) is at least∑
w∈[−∆p,∆p)d

γ0µAP{Su = w}(3.37)

= γ0µA
[
1− P{Su /∈ [−∆p,∆p)d}

]
≥ γ0µA

[
1−K2 exp[−K−1

3 p−q∆p]
]

for some constants K2(d,D),K3(d,D). In the last inequality we used simple
large deviation estimates for Su (see for instance (2.40) in [KSa]) and the fact
that u ≤ pq∆p.

The second multiple sum in the right hand side of (3.36) is at most

(3.38) γ0µA
∑
v∈Zd

sup
w:‖w−v‖≤dCp0

∣∣P{Su = v} − P{Su = w}
∣∣.

This sum has already been estimated in the proofs of Lemmas 6 and 12 of
[KSa] (see in particular (5.26) there). It is at most K4γ0µAC

p
0 [log u]du−1/2

for some constant K4(d,D).
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For some p1(d,D) and all p ≥ p1 we finally have from (3.37) and (3.38)
that the left hand side of (3.34) is at least

γ0µA

[
1−K2 exp[−K−1

3 p−q∆p]−K4C
p
0 [log ∆p]d∆−1/2

p

]]
≥ 3

4
γ0µA. �

We define the σ-fields

H(i, k) = Hp(i, k) = σ-field generated by the positions and types of

all particles at time 0, by all paths π(·, ρ) during [0, tp(k)]

and by the paths for all times of all particles outside Zp(i) at

time tp(k), and by all recuperation times r(i, ρ) during [0, tp(k)].

We note that all NA(x, 0), NB(x, 0) and the types of all particles at time
t(k) are H(i, k)-measurable. Also the event that a given x is occupied at
time t(k) belongs to H(i, k). The next lemma contains the crucial estimate
for establishing (3.23). It proves that in the reset processes Zp(i, k) with
sufficiently large p, the infection will with high probability be transmitted,
in a certain sense, along a given D-edge. Recall that recuperation is ignored
in the Zp(i, k)-process, so this is very similar to showing that the infection
spreads with a certain minimal speed if recuperation is not possible, as done
in [KSc]. For the infection to reach a certain cube C (of size ∆p/8) we define
(as in [KSc]) a random path along which a “distinguished” B-particle has
a “drift towards C.” We use a corresponding martingale to show that with
high probability the distinguished B-particle has to follow the drift and will
reach C.

Lemma 9. Assume that there is a D-edge from (i, k) to (j, k + 1). There
exists a constant p2 (independent of i, k, j, λ) such that on the event

(3.39) {Zp(i, k) is good},

it holds

(3.40)
∑

x∈m(i)+C( 1
8 ∆p)

P{Ã
(
x, t(k), j

)
fails | H(i, k)} ≤ ∆−1

p for p ≥ p2.

Proof. Note that {Zp(i, k) is good} ∈ H(i, k), because this event is defined
in terms of the initial conditions, and paths during [0, t(k)] only. We divide
the proof into 6 steps. A number of constants pi and Ki will appear in this
proof. These all depend only on d,D,C0 and γ0µA. We shall not make any
further mention of this.

Step (i). We begin with a lower bound for the number of particles in
certain intervals in the Zp(i, k)-process started at

(
x, t(k)

)
for some x ∈
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m(i) + C( 1
8∆p). To this end we define

K̃p(z, v) = K̃p

(
z, v;x, t(k)

)
=
[
total number of particles in

d∏
s=1

[z(s), z(s) +K5p)

at time v in the Zp(i, k)-process started at
(
x, t(k)

)]
,

for a constant K5 to be chosen soon. We are interested in space time points
(z, v) satisfying

z ∈
d∏
s=1

[(i(s)− 4d)∆p,(i(s) + 4d+ 1)∆p −K5p) and(3.41)

v ∈ [tp(k) + ∆p, tp(k + 1)], v ∈ Z.

In this step we shall prove that we can choose K5 and p3 such that on the
event (3.39) and for p ≥ p3

(3.42) P
{
K̃p(z, v) <

1
2
γ0µAbK5pcd for some (z, v)

satisfying (3.41) | H(i, k)
}
≤ ∆−d−1

p .

Note that we are only interested in numbers of particles in (3.42), irrespective
of their types. To see (3.42), fix some (z, v) in the set (3.41). Now note
that if the NA

(
y, tp(k)

)
+ NB

(
y, tp(k)

)
for y ∈ Zp(i) are given, then the

conditional distribution of K̃p(z, v) for any fixed (z, v), given H(i, k), equals
the distribution of

∑
y,nX(y, n), where the X(y, n) are independent binomial

variables with

P{X(y, n) = 1} = 1− P{X(y, n) = 0}

= P{y + Sv−t(k) ∈
d∏
s=1

[z(s), z(s) +K5p)}

=
∑

w∈
∏d
s=1[z(s),z(s)+K5p)

P{Sv−t(k) = w − y},

and
∑
y,n runs over y ∈ Zp(i) and, for given y, over 1 ≤ n ≤ NA

(
y, t(k)

)
+

NB
(
y, t(k)

)
. By Lemma 8, on (3.39),

∑
y,n

P{X(y, n) = 1} ≥ 3
4
γ0µA

∣∣∣ d∏
s=1

[z(s), z(s) +K5p)
∣∣∣ ≥ 3

4
γ0µAbK5pcd,

provided p ≥ p1. Standard large deviation arguments now give that

(3.43) P
{
K̃p(z, v) <

1
2
γ0µAbK5pcd | H(i, k)

}
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is at most

exp
[
− 1

8
θ0γ0µAbK5pcd

]
,

for any θ0 > 0 which satisfies (3/4)
(
1 − exp[−θ0]

)
≥ (5/8)θ0 (compare

(4.28) and the lines preceding it in [KSc]). Thus we can choose K5 =
K5(d,D,C0, γ0µA) and p3 ≥ p1 such that (3.43) is at most
(8d + 1)−dp−q∆−2d−3

p for p ≥ p3. Since (3.41) allows no more than (8d +
1)dpq∆d+1

p possible choices for (z, v), (3.42) then follows.

Step (ii). In this step we largely imitate Lemma 9 of [KSc]. We define a
path ϑ(·, j) and use it to construct a martingale which shows that ϑ(·, j) has a
drift towards m(j). ϑ(s, j) will be chosen for t(k) ≤ s ≤ t(k + 1) according to
the rules (i)–(v) below. In general, these rules do not determine ϑ uniquely.
Throughout this proof x ∈ m(i) + C( 1

8∆p) is a fixed vertex, occupied at
time t(k), and we are working in the Zp(i, k)-process started at

(
x, t(k)

)
. In

particular, we do not allow recuperation and only consider particles which are
in Zp(i) at time t(k), and the types of the particles refer to the types they
have in the Zp(i, k)-process started at

(
x, t(k)

)
. Here are rules (i)–(v):

(i) ϑ
(
t(k), j) = x;

(ii) for all s ∈ [t(k), t(k + 1)] there is a distinguished B-particle, ρ̂(s) say, at

ϑ(s, j); ρ̂(s) is a particle in the Zp(i, k)-process started at
(
x, t(k)

)
;

at time t(k), ρ̂
(
t(k)

)
is the unique B-particle at x in the

Zp(i, k)-process started at
(
x, t(k)

)
;

(iii) s 7→ ϑ(s, j) can jump only at times when ρ̂(s−) jumps away from ϑ(s, j)

and ϑ(·, j) is constant between such jumps;

(iv) if ρ̂(s−) jumps from ϑ(s−, j) = w to w′ at some time s,
and if this was the only B-particle at w at time s−,

then ϑ(·, j) also jumps to w′ at time s (so that ϑ(s, j) = w′),

and ρ̂(s) = ρ̂(s−), the particle which jumped at time s;

(v) if ρ̂(s−) jumps from ϑ(s−, j) = w to w′ at some time s such that there

is at least one other B-particle ρ′ at w at time s, then ϑ(·, j) jumps

to w′ at time s if and only if ‖w′ −m(j)‖2 < ‖w −m(j)‖2, and in this

case again ρ̂(s) = ρ̂(s−); if, however, ‖w′ −m(j)‖2 ≥ ‖w −m(j)‖2,

then ϑ(·, j) does not jump at time s and we take ρ̂(s) = ρ′.

Note that rules (iv) and (v) depend on whether there is another B-particle
than ρ̂ at ϑ(s−, j). In [KSc] any particle at the same space-time point as
ρ̂ automatically had type B, but this is not the case in the present setup,
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because a jump is required before an A-particle can turn into a B-particle.
This fact will necessitate a few extra remarks in the next step.

As in [KSc] (4.42), (4.43) we now define

I1(u) = I[NB
(
ϑ(u, j), u

)
= 1]

= I[ρ̂(u) is the only B-particle present at (ϑ(u, j), u)];

I≥2(u) = I[NB
(
ϑ(u, j), u

)
≥ 2];

and with ed+i = −ei for 1 ≤ i ≤ d,

Γ1(u) =
1
2d

2d∑
i=1

[
‖ϑ(u, j) + ei −m(j)‖2 − ‖ϑ(u, j)−m(j)‖2

]
;(3.44)

Γ≥2(u) =
1
2d

∑
∗[‖ϑ(u, j) + ei −m(j)‖2 − ‖ϑ(u, j)−m(j)‖2

]
,

where
∑ ∗ is the sum over those i ∈ {1, . . . , 2d} for which

‖ϑ(u, j) + ei −m(j)‖2 − ‖ϑ(u, j)−m(j)‖2 < 0.

Finally we define, for t ≥ t(k),

(3.45) M(t) = M(t, j) := ‖ϑ(t, j)−m(j)‖2

−D
∫ t

t(k)

[
I1(u)Γ1(u) + I≥2(u)Γ≥2(u)

]
du

(recall that D is the jump rate af all particles). The result of this step is that
M(t) is a right continuous martingale under the measure which governs the
Zp(i, k)-process started at

(
x, t(k)

)
, conditioned on H(i, k), or conditioned on

the

(3.46) NA
(
y, t(k)

)
+NB

(
y, t(k)

)
for y ∈ Zp(i).

The proof is essentially the same as that of Lemma 9 in [KSc], so we leave this
to the reader. We merely remark that the Zp(i, k)-process started at

(
x, t(k)

)
depends only on the variables in (3.46), the paths on [t(k),∞) of the particles
in Zp(i) at time t(k), and lastly, on the choice of which particle at

(
x, t(k)

)
is given type B. However, changing this choice from one particle to another
amounts to interchanging the roles of two particles at

(
x, t(k)

)
. Since all

particles move and recuperate in the same way, such an interchange does not
influence the distribution of M(t) for later t. Thus, conditioning on H(i, k) or
on the variables in (3.46) gives the same distribution for {M(s)}t(k)≤s≤t(k+1).

Step (iii). In this step we start on a lower bound for

(3.47) Z(t) = Z(t, k) :=
∫ t(k)+t

t(k)

I≥2(u)du
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and an upper bound for∫ t(k)+t

t(k)

[
I1(u)Γ1(u) + I≥2(u)Γ≥2(u)

]
du.

These bounds are essentially the same as in [KSc]. Following [KSc] we define
for an integer L ≥ 2

(3.48) β(L, d) =


1 if d = 1
[logL]−1 if d = 2
L2−d if d ≥ 3,

En =En(j, k) = {there is some particle ρ′ 6= ρ̂
(
t(k) + 3L2(n− 1)

)
(3.49)

of the Zp(i, k)-process started at (x, t(k)) in

ϑ
(
t(k) + 3L2(n− 1), j

)
+ [−L,L]d at time t(k) + 3L2(n− 1)},

and

Jn = I
[
at some time u ∈

(
t(k) + 3L2(n− 1), t(k) + L2(3n− 1)

]
,

ρ̂(u) coincides with another B-particle

in the Zp(i, k)-process started at
(
x, t(k)

)]
.

The only differences of any consequence with the definitions just before Lemma
11 of [KSc] is the insistence in the definition of Jn that ρ̂ coincide with an-
other B-particle, and that this be a particle in the Zp(i, k)-process started
at
(
x, t(k)

)
. A B-particle is necessary because it is also possible for an A

and B-particle to be at the same space-time point. The particle is required
to belong to the Zp(i, k)-process started at

(
x, t(k)

)
, because these are the

only particles under consideration at the moment. Despite these differences
we have just as in Lemma 11 of [KSc] that for all L ≥ 1

(3.50) E{Jn | F3L2(n−1)} ≥ K7β(L, d) on the event En,

where this time, for s ≥ t(k),

Fs = σ-field generated by H(i, k) and the paths of

all particles in Zp(i, k) on [t(k), s],

and the expectation is with respect to the Zp(i, k)-process started at
(
x, t(k)

)
;

K7 is some constant which depends on d,D only. To prove (3.50) we first
observe that there is no loss of generality to assume that ρ̂ and ρ′ are at
different locations at time 3L2(n− 1) + 1 on the event En. This is so because
there is a probability of at least e−D(1 − e−D) that ρ̂ does not jump, and
ρ′ has one jump in [3L2(n − 1), 3L2(n − 1) + 1). If ρ̂ and ρ′ are at distinct
sites, then ρ′ will have to have type B no later than the first time when these
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particles get together. With this obervation the proof of (3.50) is the same
as the proof of Lemma 11 in [KSc].

This time we take

(3.51) L = dK5pe and t = pq∆p = t(k + 1)− t(k).

These values for L and t will remain fixed for the rest of this proof. Without
loss of generality we take p3 so large that L ≥ 1 for p ≥ p3. Still following
[KSc] we define

V (t, L) = V (t, L, j, k) :=
∑

1+∆p/(3L2)≤n≤[t(k+1)−t(k)]/(3L2)

I[En(j, k)].

We further define the event

(3.52) D(x, t(k), j) :=
{
‖ϑ(u, j)−m(j)‖2 ≥

1
16

∆p for all u ∈ [t(k), t(k+1)]
}
.

This event was not used in [KSc]. Nevertheless, with Z given by (3.47), we
can essentially copy the proof of Lemma 12 in [KSc]. We use that

E{Jn | F3L2(n−1)} ≥ K7β(L, d)I[En(j, k)],

and consequently

E
{

min{1,
∫ 3L2n

3L2(n−1)

I≥2(u)du}
∣∣∣F3L2(n−1)

}
≥ e−2DK7β(L, d)I[En(j, k)],

as in [KSc]. This yields for p ≥ p3, 0 < ε ≤ 1 and K3 a universal constant

P{Z(t) ≤ εβ(L, d)L−2t and D(x, t(k), j) occurs | H(i, k)}

(3.53)

≤ P
{
V (t, L) ≤ 2ε

K7
e2DL−2t and D(x, t(k), j) occurs | H(i, k)}

+ 2 exp
[
− K3

3
ε2β2(L, d)L−2t

]
.

Next we recall for the reader the bounds (4.67) and (4.68) of [KSc]. These
bounds say that for ϑ, x ∈ Zd

(3.54)
1
2d

2d∑
i=1

[
‖ϑ+ ei − x‖2 − ‖ϑ− x‖2

]
≤ K12

‖ϑ− x‖2 + 1
,

and, with
∑ ∗ as in (3.44),

(3.55)
1
2d

∑
∗[‖ϑ+ ei − x‖2 − ‖ϑ− x‖2

]
≤ −K13 +

K12

‖ϑ− x‖2 + 1

for some constants K12,K13 which depend on d only. Moreover the left hand
sides of (3.54) and (3.55) are at most 1 in absolute value.
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It is immediate from (3.54), (3.55) and (3.44) that on D(x, t(k), j) it holds

∫ t(k)+t

t(k)

[
I1(u)Γ1(u) + I≥2(u)Γ≥2(u)

]
du(3.56)

≤ [t(k + 1)− t(k)]
16K12

∆p
−K13Z

(
t(k + 1)− t(k)

)
= 16K12p

q −K13Z
(
t(k + 1)− t(k)

)
.

Step (iv). Here we use the martingale M(·) to estimate P{D(x, t(k), j) |
H(i, k)} in terms of the distribution of V (t, L). To this end we note first that

M
(
t(k)

)
= ‖ϑ

(
t(k), j

)
−m(j)‖2 = ‖x−m(i) +m(i)−m(j)‖2(3.57)

≤
√
d

1
8

∆p + ‖i− j‖2∆p ≤
√
d

9
8

∆p,

where we used the fact that there is a D-edge from (i, k) to (j, k+ 1). On the
other hand, on the event D(x, t(k), j) we have from (3.56) that

M
(
t(k + 1)

)
≥ −D

∫ t(k)+t

t(k)

[
I1(u)Γ1(u) + I≥2(u)Γ≥2(u)

]
du(3.58)

≥ −16DK12p
q +K13DZ

(
t(k + 1)− t(k)

)
.

Further we have the martingale inequality (4.55) of [KSc]: for some constants
K14 −K16 which depend on D only, we have for all a ≥ 2 + 2D, 0 ≤ b ≤ 1
and T ≥ t(k),

P
{

sup
t(k)≤s≤T

∣∣M(s)−M
(
t(k)

)∣∣ ≥ a+ b
(
T − t(k)

)
| H(i, k)

}
(3.59)

≤ K14 exp
[
−K15

(
T − t(k)

)]
+ 2 exp[−K16ab].

For a = ∆p/2, b = ∆p/[2
(
t(k + 1)− t(k)

)
] and T = t(k + 1) this implies

(3.60) P
{∣∣M(t(k + 1)

)
−M

(
t(k)

)∣∣ ≥ ∆p | H(i, k)} ≤ 4 exp
[
− K16∆p

4pq
]
,
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provided p ≥ p4 for some constant p4 ≥ p3. Combined with (3.57) and (3.58)
this gives

P{D(x, t(k), j) | H(i, k)}

(3.61)

≤ P{M
(
t(k + 1)

)
−M

(
t(k)

)
≥ ∆p | H(i, k)}

+ P
{
− 16DK12p

q +K13DZ
(
t(k + 1)− t(k)

)
≤M

(
t(k)

)
+ ∆p

and D(x, t(k), j) occurs | H(i, k)
}

≤ 4 exp
[
− K16∆p

4pq
]

+ P
{
Z
(
t(k + 1)− t(k)

)
≤ 1
K13D

[(√
d

9
8

+ 1
)
∆p + 16DK12p

q
]

and D(x, t(k), j) occurs | H(i, k)
}

≤ 4 exp
[
− K16∆p

4pq
]

+ P
{
Z
(
t(k + 1)− t(k)

)
≤ 3

√
d

K13D
∆p

and D(x, t(k), j) occurs | H(i, k)
}
,

for p ≥ some p5. Finally we note that β(L, d) ≥ L1−d (see (3.48)), so that for

ε = ε(d,D) = min
[ K7

15e2D
, 1
]

and p ≥ a suitable constant p6,

ε
β(L, d)
L2

pq∆p ≥
3
√
d

K13D
∆p (recall that q = 2d+ 1 and L = dK5pe).

Thus, by (3.53), we can continue (3.61) to obtain

P{D(x, t(k), j) | H(i, k)}(3.62)

≤ 4 exp
[
− K16∆p

4pq
]

+ P
{
V (t, L) ≤ 2

15
L−2t and D(x, t(k), j) occurs | H(i, k)}

+ 2 exp
[
− K3

3
ε2β2(L, d)L−2t

]
.

Step (v). In this step we shall estimate the probability in the right hand
side of (3.62). This will be done by using the following direct consequence of
the definitions of K̃ and of En:

K̃p

(
ϑ(t(k) + 3L2(n− 1), j), t(k) + 3L2(n− 1)

)
≥ 2

implies that En occurs (recall that L = dK5pe). This will allow us to use the
bound (3.42) on the probability that K̃ is ‘small’. We turn to the details.
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Take p6 so large that for all p ≥ p6

1
2
γ0µA(K5p)d ≥ 2.

Assume now that the events

(3.63)
{
K̃p(z, v) ≥ 1

2
γ0µAbK5pcd for all (z, v) satisfying (3.41)

}
and

(3.64)
{
ϑ(u, j) ∈

d∏
s=1

[(i(s)− 4d)∆p, (i(s) + 4d+ 1)∆p −K5p)

for t(k) ≤ u < t(k + 1)
}

occur. Then for

(3.65) 1 + ∆p/(3L2) ≤ n ≤ [t(k + 1)− t(k)]/(3L2),

it holds

(3.66) K̃p

(
ϑ(t(k) + 3L2(n− 1), j), t(k) + 3L2(n− 1)

)
≥ 1

2
γ0µAbK5pcd ≥ 2.

As observed, this implies that En also occurs for the n in (3.65) and then also

(3.67) V (t, L) ≥ t(k + 1)− t(k)−∆p

3L2
− 2 >

2
15L2

pq∆p

for p ≥ some constant p7.
However, we know from (3.42) that on the event (3.39), (3.63) indeed holds

outside a set of conditional probability ∆−d−1
p . To estimate the probability

that (3.64) fails for a relevant value of u, we introduce the random time

(3.68) τ := inf{w ∈ [t(k), t(k + 1)] : ϑ(w, j)

/∈
d∏
s=1

[(i(s)− 4d)∆p, (i(s) + 4d+ 1)∆p −K5p)}.

This definition for τ holds if the set in the right hand side of (3.68) is not
empty; otherwise we set τ equal to t(k + 1). We shall prove in the remainder
of this step that

P{ϑ(u, j) /∈
d∏
s=1

[(i(s)− 4d)∆p, (i(s) + 4d+ 1)∆p −K5p)(3.69)

for some u ∈
[
t(k), t(k + 1)

)
and D(x, t(k), j) occurs | H(i, k)}

= P{τ < t(k + 1) and D(x, t(k), j) occurs | H(i, k)}

≤ 4 exp
[
− K16∆p

4pq
]
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for p ≥ some constant p8. As we observed above, this will imply

P{V (t, L) ≤ 2
15L2

pq∆p and D(x, t(k), j) occurs | H(i, k)}(3.70)

≤ P{(3.63) fails | H(i, k)}
+ P{(3.64) fails but D(x, t(k), j) occurs | H(i, k)}

≤ ∆−d−1
p + 4 exp

[
− K16∆p

4pq
]
,

for p ≥ p8 and on the event (3.39).
To prove (3.69) we note that on the event D(x, t(k), j) it holds∫ τ

t(k)

[
I1(u)Γ1(u) + I≥2(u)Γ≥2(u)

]
du ≤ 16K12p

q

(see (3.56)). Consequently, on {τ < t(k + 1)} ∩D(x, t(k), j) we also have

M(τ) ≥ ‖ϑ(τ, j)−m(j)‖2 − 16DK12p
q

≥ ‖ϑ(τ, j)−m(i)‖2 − ‖m(i)−m(j)‖2 − 16DK12p
q

≥ 4d∆p −K5p−
√
d∆p − 16DK12p

q ≥ ∆p +
√
d

9
8

∆p,

provided p ≥ some constant p9. In particular, on {τ < t(k+1)}∩D(x, t(k), j)

sup
t(k)≤s≤t(k+1)

|M(s)−M
(
t(k)

)
| ≥M(τ)−M

(
t(k)

)
≥ ∆p (see (3.57)).

We already proved in (3.59) and (3.60) that

P{ sup
t(k)≤s≤t(k+1)

|M(s)−M
(
t(k)

)
| ≥ ∆p | H(i, k)} ≤ 4 exp

[
− K16∆p

4pq
]
.

This implies the promised inequality (3.69).

Step (vi). We finally prove Lemma 9 in this step, by combining the pre-
ceding steps. It follows from the definition of Ã(x, t(k), j) that [Ã(x, t(k), j)]c

can occur only if
(
x, t(k)

)
is occupied, but

the Zp(i, k)-process started at
(
x, t(k)

)
does not have(3.71)

a B-particle in m(j) + C(1
8

∆p) at time t(k + 1).

In turn, this last event can occur only if D(x, t(k), j) occurs, or if

(3.72) ‖ϑ(u, j)−m(j)‖2 ≤
1
16

∆p for some u ∈ [t(k), t(k + 1)],

as well as (3.71) occur. However, the probability of the intersection of (3.72)
and (3.71) is small. Indeed, if

σ := inf{u ≥ t(k) : ‖ϑ(u, j)−m(j)‖2 ≤
1
16

∆p},
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then on the intersection of (3.72) and (3.71), the particle ρ̂(σ) is within dis-
tance ∆p/(16) of m(j) at time σ, but outside m(j) + C( 1

8∆p) at time t(k+ 1).
(Recall that we are working with the Zp(i, k)-process started at

(
x, t(k)

)
.

This has no recuperation, so the particle ρ̂(σ) will still be a B-particle in this
process at time t(k + 1).) In other words, the particle ρ̂(σ), which is the dis-
tinguished one at time σ, travels a distance at least ∆p/8 −∆p/16 = ∆p/16
during [σ, t(k + 1)]. Consequently,

P{(3.72) and (3.71) occur | H(i, k)}

≤ P{ sup
s≤t(k+1)−t(k)

‖St(k+1) − Ss‖2 ≥
1
16

∆p | H(i, k)}

≤ 8d exp
[
−K17

∆p

pq
]

(see (2.42) in [KSa])

for some constant K17 = K17(d,D). It follows that on the event (3.39)

P{(3.71) occurs | H(i, k)}

≤ P{D(x, t(k), j) | H(i, k)}+ 8d exp
[
−K17

∆p

pq
]

≤ 4 exp
[
− K16∆p

4pq
]

+ P
{
V (t, L) ≤ 2

15L2
t and D(x, t(k), j) occurs | H(i, k)}

+ 2 exp
[
− K3

3
ε2β2(L, d)L−2t

]
+ 8d exp

[
−K17

∆p

pq
]

(by (3.62))

≤ 4 exp
[
− K16∆p

4pq
]

+ 2 exp
[
− K3

3
ε2β2(L, d)L−2t

]
+ 8d exp

[
−K17

∆p

pq
]

+ ∆−d−1
p + 4 exp

[
− K16∆p

4pq
]

(see (3.70)) for p ≥ a suitable constant p2. Summation of this estimate over
the at most [1 + ∆p/4]d possible x ∈ m(i) + C( 1

8∆p) now proves (3.40). �

For the remainder of this section we shall only consider p ≥ p2.

Lemma 10. For p ≥ p2 we can choose λ0 = λ0(p) > 0 such that on the
event (3.39),

(3.73)
∑

x∈m(i)+C( 1
8 ∆p)

P{[Ã(x, t(k), j) ∩ B̃(x, t(k), j, λ0)]c

in {Yt(λ0)} | H(i, k)} ≤ 2∆−1
p ,

and
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(3.74) P
{
C(i, k, j, λ0) in {Yt(λ0)} | H(i, k)

}
≤ 2∆−1

p .

Proof. The left hand side of (3.73) equals∑
x∈m(i)+C( 1

8 ∆p)

P{[Ã(x, t(k), j)]c | H(i, k)}

+
∑

x∈m(i)+C( 1
8 ∆p)

P{Ã(x, t(k), j) ∩ [B̃(x, t(k), j, λ0)]c | H(i, k)}.

In view of Lemma 9 it therefore suffices for (3.73) to prove that on the event
{Zp(i, k) is good}
(3.75)∑
x∈m(i)+C( 1

8 ∆p)

P{Ã(x, t(k), j)∩[B̃(x, t(k), j, λ0)]c in {Yt(λ0)} | H(i, k)} ≤ ∆−1
p .

We claim that each summand in (3.75) is at most

1− exp
[
− λ0[t(k + 1)− t(k)]

]
≤ λ0[t(k + 1)− t(k)].

Indeed, by the definitions (3.17), (3.18) of Ã and B̃, once we know that
Ã(x, t(k), j) occurs, the event [B̃(x, t(k), j, λ0)]c can occur only if some particle
ρi has a recuperation event in {Yt(λ0)} during [si, si+1], for 0 ≤ i ≤ `. Here
ρi are certain particles and the si are increasing and such that s`+1 − s0 =
t(k+1)− t(k). These ρi and si are determined by the Zp(i, k)-process started
at
(
x, t(k)

)
, and therefore are independent of the recuperation events during

[t(k),∞). This proves our claim. (3.75) now follows for some small λ0(p),
since there are at most [1 + ∆p/4]d terms in the sum in (3.75).

The preceding paragraph proves (3.73). (3.74) is now an immediate conse-
quence of (3.19) and the fact that C(i, k, j, λ) = ∅ if (i, k) is not active. �

Lemma 10 will help us to bound the probability that there are many sites
(i, k) in an open cluster C with a good bottom and with a closed edge from
(i, k) to a site in ∂extC. In order to obtain (3.23) from such a bound we first
have to show that there is only a small probability that a C0-barrier S has of
order |S| sites with a parent (on D) with a bad bottom. (A bottom Zp(i, k)
is called bad if it is not good.) This will be the goal of Lemmas 11 and 12.
For a Zd+1-connected set S and integer p ≥ 2 we define

(3.76) S∗p =
⋃

(i′,k):‖i′−j‖≤4d−1
for some (j,k+1)∈S

B̂p(i′, k).

Recall that we used the vertex (i, k) as a kind of renormalized site to replace
the block B̂p(i, k). Forming S∗p from S is a construction going in the other
direction. From the collection S of renormalized sites we reconstruct the
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blocks which are near the ones represented by sites in S. We define further
for any positive integer ν and r ≥ p the blocks

Lr,ν(m, u) :=
d∏
s=1

[νm(s)∆r, ν(m(s) + 1)∆r)× [νu∆r, ν(u+ 1)∆r).

Note that the blocks Lr,ν(m, u) form a partition of Zd+1 into disjoint cubes.

Lemma 11. Let r ≥ p ≥ 2 and q = 2d + 1 (as before). There exists a
constant K18, depending on d only, such that for each Zd+1-connected set S
and each integer ν ≥ 1, there exists a Zd+1-connected set Λp,r(S, ν) ⊂ Zd+1

such that

(3.77) |Λp,r(S, ν)| ≤ K18

[ |S|∆p

ν∆r
+ 1
]
pq

and such that

(3.78)
⋃

(m,u)∈Λp,r(S,ν)

Lr,ν(m, u) ⊃ S∗p .

Proof. This lemma is essentially the same as Lemma 1 in [CGGK]. For
the convenience of the reader we repeat the main steps of the proof. Let
|S| = n. Since S is connected it has a spanning tree with n − 1 edges, and
then there exists a path (v0, v1, . . . , va) on Zd+1 of length a ≤ 2n − 2 whose
vertices are exactly the vertices of S (some vertices are repeated; the path is
not self-avoiding, in general).

For 0 ≤ u ≤ a let vu = (iu, ku). Now set

µ = ν
∆r

∆p
= ν∆r−p,

and consider the vertices vjµ for 0 ≤ j ≤ a/µ (note that µ is an integer, by
our choice of C0 and ∆r). For 0 ≤ j ≤ a/µ let (mj , uj) be the unique vertex
in Zd+1 such that

(3.79) (ijµ∆p, kjµp
q∆p) ∈ Lr,ν(mj , uj).

We now take

Λp,r(S, ν) =
⋃{

(m, u) : there exists a 0 ≤ j ≤ a/µ such that

‖m−mj‖ ≤ (4d+ 2) and |u− uj | ≤ 3pq
}
.

Then, since (mj , uj) takes at most (a/µ + 1) ≤ (2n∆p/ν∆r + 1) values, it
holds

|Λp,r(S, ν)| ≤
[2n∆p

ν∆r
+ 1
]
(8d+ 5)d(6pq + 1),

and (3.77) holds.
Next we verify (3.78). Assume that y is a vertex in S∗p . Then there is

some vu = (iu, ku) and some (i′, k′) with |i′ − iu| ≤ 4d − 1, k′ = ku − 1
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such that y ∈ B̂p(i′, k′). In particular, |y(s) − iu(s)∆p| ≤ 4d∆p, 1 ≤ s ≤ d,
and |y(d + 1) − kupq∆p| ≤ pq∆p. Also, there exists some j such that jµ ≤
u < (j + 1)µ, and 0 ≤ j ≤ a/µ, and consequently ‖(iu, ku) − (ijµ, kjµ)‖ ≤ µ.
Finally, by virtue of (3.79),

‖(ijµ∆p, kjµp
q∆p)− (µmj∆p, µuj∆p)‖

= ‖(ijµ∆p, kjµp
q∆p)− (νmj∆r, νuj∆r)‖ ≤ ∆r

and

|y(s)− νmj(s)∆r|
≤ |y(s)− iu(s)∆p|+ |iu(s)∆p − ijµ(s)∆p|+ |ijµ(s)∆p − νmj(s)∆r|
≤ 4d∆p + (ν + 1)∆r ≤ (4d+ 2)ν∆r, 1 ≤ s ≤ d,

and similarly
|y(d+ 1)− νuj∆r| ≤ 3pqν∆r.

The relation (3.78) now follows easily.
Finally, the connectedness of Λp,r(S, ν) follows from the fact that Λp,r(S, ν)

is the union of the rectangular boxes
d∏
s=1

[mj(s)− 4d− 2,mj(s) + 4d+ 2]× [uj − 3pq, uj + 3pq], 1 ≤ j ≤ a/µ.

Each of these boxes is clearly Zd+1-connected and the boxes corresponding
to the two successive values j and j + 1 intersect, because they have the
point (mj+1, uj+1) in common. Clearly, this point lies in the (j + 1)-th
box. It also lies in the j-th box, because mj(s) = bijµ(s)/µc and mj+1(s) =
bi(j+1)µ(s)/µc, 1 ≤ s ≤ d, (by (3.79)) and |i(j+1)µ(s) − ijµ(s)| ≤ ‖v(j+1)µ −
vjµ‖ ≤ µ. Similarly, uj = bkjµpq/µc and |k(j+1)µ − kjµ| ≤ µ. �

In the next lemma C0 always will be such that

C0 ⊂ D, 0 ∈ C0, and(3.80)

C0 is Zd+1-connected when viewed as a subset of Zd+1.

Lemma 12. We can choose λ0 > 0, p0 and C0 such that (3.80) and (3.23)
are satisfied.

Proof. The hard part of the work was done in [KSa] and [KSc]. It is too
long to repeat and we shall be content with reducing the lemma to some
results in those references.

Step (i). Basically we are going to show that there is only a small probability
that there exists a C0-barrier with ‘many’ vertices which are D-adjacent to a
vertex with a bad bottom (see (3.33) for the definition of a good bottom). In
this step we reduce the bounding of the number of barriers with a large number
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of vertices that have a parent (i, k) in D with a bad bottom to estimates in
[KSc].

Let C0 have the properties in (3.80). It is easy to see that then any C0-
barrier S must contain some vertices (k+, 0, . . . , 0) and (k−, 0, . . . , 0) on the
positive and negative first coordinate axes, respectively. Moreover, if |S| = n,
then

diameter(S) = max
x,y∈S

‖x− y‖ ≤ n.

It follows that we may take 1 ≤ k± ≤ n and that S ⊂ [−n, n]d+1. Since S
must be Zd+1 connected and must contain (k+, 0, . . . , 0) for some 1 ≤ k+ ≤ n,
there are at most n[K19]n possibilities for S, (with K19 depending on d only;
see for instance [Ka], formula (5.22)). We remind the reader that in [KSc] we
also defined bad r-blocks of the form

(3.81) Br(m, `) :=
d∏
s=1

[m(s)∆r, (m(s) + 1)∆r)× [`∆r, (`+ 1)∆r),

and their pedestals

(3.82) Vr(m, `) :=
d∏
s=1

[(m(s)− 3)∆r, (m(s) + 4)∆r)× {(`− 1)∆r}.

Note that Br(m, `rq) ⊂ B̂r(m, `). The block in (3.81) is called bad (in the
sense of [KSc]) if (see (3.31) and (3.32) for Qp and Up)

Ur(x, v) < γrµAC
dr
0 for some (x, v) with integer v for which

Qr(x)× {v} ⊂
d∏
s=1

[(m(s)− 3)∆r, (m(s) + 4)∆r)× [(`− 1)∆r, (`+ 1)∆r).

Similarly, the pedestal in (3.82) is called bad (in the sense of [KSc]) if

Ur(x, (`− 1)∆r) < γrµAC
dr
0 for some x for which

Qr(x) ⊂
d∏
s=1

[(m(s)− 3)∆r, (m(s) + 4)∆r).

Here the γr are increasing in r and satisfy

0 < γ0 ≤ γr ≤ γ∞ ≤
1
2
, r ≥ 0

for some γ0, γ∞. The precise form of the γr used in [KSc] is not important at
the moment. If B̂p(i, k) has a bad bottom as defined in (3.33), then

Up
(
x, tp(k)

)
< γ0µAC

dp
0 for some x for which Qp(x) ⊂ Zp(i).

In this case, Qp(x) ⊂
∏d
s=1[(i′(s)− 3)∆p, (i′(s) + 4)∆p) for some i′ with

(3.83) i(s)− 4d+ 2 ≤ i′(s) ≤ i(s) + 4d− 2, 1 ≤ s ≤ d.
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Therefore, Bp(i′, kpq) is bad in the sense of [KSc] for some i′ satisfying (3.83).
Now suppose B̂p(i, k) has a bad bottom and there exists a D-edge from

(i, k) to (j, k + 1) ∈ S. Then there is an i′ with ‖i′ − i‖ ≤ 4d − 2, and hence
‖i′ − j‖ ≤ 4d − 1, such that Bp(i′, kpq) is bad in the sense of [KSc]. By the
definition (3.76) B̂p(i′, k) ⊂ S∗p , and therefore, Bp(i′, kpq) ⊂ B̂p(i′, k) ⊂ S∗p .
Moreover, ‖i′ − j‖ ≤ 4d− 1, so that at most (8d− 1)d vertices (j, k + 1) ∈ S
can give rise to the same (i′, k). This shows that

[the number of (j, k + 1) ∈ S with a parent (i, k) for which(3.84)

B̂p(i, k) has a bad bottom]

≤ (8d− 1)d × [the number of bad p-blocks Bp(i′, kpq)
in the sense of [KSc] contained in S∗p ].

In the next step we apply [KSc] to estimate the right hand side of (3.84).

Step (ii). In analogy with [KSc] we now make the following definitions for
a barrier S. In these definitions, an r-block is of the form (3.81) and ‘good’
or ‘bad’ are meant in the sense of [KSc].

φ̂r(S∗p) = number of bad r-blocks which intersect S∗p ,(3.85)

ψ̂r(S∗p) = number of r-blocks which intersect S∗p and which have

a good pedestal, but contain a bad (r − 1)-block,

Φ̂r(n) = Φ̂r(n,C0) = sup{φ̂r(S∗p) : S a C0-barrier of cardinality n},(3.86)

and

Ψ̂r(n) = Ψ̂r(n,C0) = sup{ψ̂r(S∗p) : S a C0-barrier of cardinality n}.(3.87)

(The quantities in (3.85)–(3.87) also depend on p, but we do not explicitly
indicate this in our notation.) In this step we shall prove that for every choice
of K and ε0, there exist constants p0, n0 such that for all p ≥ p0, n ≥ n0,

(3.88) P{Φ̂r(n,C0) ≥ ε0n for some r ≥ p} ≤ 2
nK

.

It is crucial that this estimate is uniform in C0 satisfying (3.80). In fact, p0, n0

depend only on d, γ0, µA, ε0,K, but not on C0.
We saw in step (i) that all C0-barriers S of cardinality n have to satisfy

(3.89) S ⊂ [−n, n]d+1,

so that we may restrict the sup in (3.86) to S which satisfy the condition
(3.89). The quantities φ̂r and Φ̂r are analogues of the following quantities
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introduced in [KSc]

φr(π̂) := number of bad (in the sense of [KSc]) r-blocks which

intersect the space-time path π̂

and

(3.90) Φr(`) = sup
π̂∈Ξ(`,t)

φr(π̂),

with

Ξ(`, t) = {π̂ : π̂ is a space-time path over the time interval [0, t] and(3.91)

located in C(t log t), with exactly ` jumps during [0, t]}

(C(·) is defined in (1.13)). We showed in [KSc], Proposition 8, that for any
choice of K and ε0 > 0, there exist constants r0, t1, such that for all t ≥ t1

(3.92) P{Φr(`) ≥ ε0C
−6r
0 (t+ `) for some r ≥ r0, ` ≥ 0} ≤ 2

tK
.

One can check that the lengthy proof of (3.92) uses the restriction that π̂ ∈
Ξ(`, t) in the sup in (3.90) only for the bound in (4.32) in [KSc]. This bound
says (after a small change to the present notation) that for integers ν ≥ 1 and
r ≥ p, the number of blocks Lr,ν(m, u) which intersect any given π̂ ∈ Ξ(`, t)
is at most

(3.93) λ(`) := 3d
( t+ `

ν∆r
+ 2
)
.

In the present case we can replace this estimate by (3.77). This tells us that
for r ≥ p, any set S∗p defined by (3.76) for S a C0-barrier of cardinality n,
intersects at most

(3.94) K18

[n∆p

ν∆r
+ 1
]
pq

blocks Lr,ν(m, u). Apart from an insignificant change from the factor 3d to
K18 this takes the place of the bound (3.93), provided we replace (t + `) by
n∆pp

q. We further have to replace R(t) of (4.16) in [KSc] by R̂(n), which we
take to be the unique integer R for which

CR0 ≥ [K4 log n]1/d > CR−1
0 .

If diameter (S) = n, then by (3.89) and (3.76)

S∗p ⊂ [−(n+ 4d)∆p, (n+ 4d)∆p)d × [−pq∆p, np
q∆p).

Simple estimates for the Poisson distribution (compare Lemmas 5 and 9 in
[KSa]) show then that we can take K4 = K4(d, µA,K) so large that

P{Φ̂r(n) > 0 for some r ≥ R̂(n) ∨ log p} ≤ 1
nK

, n ≥ 1.
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This estimate takes the place of (4.17) in [KSc]. We can then follow the
proof of Lemma 7 in [KSc] with only trivial changes to show that there exist
constants C5, κ0, n0 which depend on d, γ0, µA,K (but not on p, r, n or C0),
such that for all n ≥ n0, κ ≥ κ0, p ≤ r ≤ R̂(n)− 1,

P
{

Ψ̂r+1(n) ≥ κn

∆r+1
pq∆p[ρr+1]1/(d+1)

}
≤ exp

[
− nC5κp

q∆p exp
[
− γ0µA

2(d+ 1)
C

(d−3/4)r
0

]]
,

where
ρr+1 = 3d+1C

6(d+1)(r+1)
0 exp[−1

2
γrµAC

(d−3/4)r
0 ].

With this estimate in hand one can copy the proof of Proposition 8 in [KSc]
with the simple replacement of κ0(t+`)/∆r+1 by κ0np

q∆p/∆r+1. This yields
that

Φ̂r(n) ≤ n6κ0C
6(d+1)
0 ∆pp

q exp
[
− γ0µA

2(d+ 1)
C

(d−3/4)r
0

]
< ε0n

outside a set of probability 2n−K , for n ≥ n0 and r0(d, γ0, µA, ε0) ∨ p ≤ r ≤
R̂(n)− 1. By taking p0 ≥ r0 and r ≥ p ≥ p0 one obtains (3.88).

Step (iii). Without loss of generality we take p0 ≥ p2 (which was determined
in Lemma 10). For p ≥ p0,K = 2 and r = p, (3.84) and (3.88), imply that
for any n1 ≥ n0 and any C0 satisfying (3.80)∑

n≥n1

P{there exists a C0-barrier S with |S| = n and at least

(8d− 1)dε0n vertices which have a parent (i, k)

such that B̂p(i, k) has a bad bottom}

≤
∑
n≥n1

2
n2
.

We shall take ε0 = ε0(d) such that (8d− 1)dε0 = 1/(12). We further take n1

so large that
∑
n≥n1

2n−2 ≤ 1/3. Finally, we fix

C0 = {(k, 0, . . . , 0) : 0 ≤ k ≤ n1}.
It is clear that there do not exist any sets S of fewer than n1 elements which
separate this segment of the first coordinate axis from ∞ in Zd+1. Thus∑

n≥1

P{there exists a C0-barrier S with |S| = n and

at least n/12 vertices which have a parent

(i, k) such that B̂p(i, k) has a bad bottom}

≤ 1
3
.
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Now, for S to be a C0-barrier, it must contain a subset of at least n/6 vertices
(j, k+ 1) which have a parent (i, k) such that C(i, k, j, λ0) occurs (see (3.20)).
In view of our last estimate, it suffices for (3.23) to prove that∑

n≥n1

P{there exists a Zd+1-connected set S with |S| = n,(3.95)

which separates C0 from ∞ on Zd+1

and which contains at least n/12 vertices (j, k + 1)

with a parent (i, k) such that B̂p(i, k)

has a good bottom and C(i, k, j, λ) occurs}

<
2
3
.

In this step will shall prove (3.95).
Now suppose we are given any set of vertices (i1, k1), . . . , (im, km) and fur-

ther jr, 1 ≤ r ≤ m, such that (ir, kr) is a parent of (jr, kr + 1). Assume
that

(3.96) ‖ir − is‖ ≥ 8d+ 7 for all r, s with kr = ks.

We claim that then for p ≥ p0 and λ = λ0(p)

P{B̂p(ir, kr) has a good bottom, but C(ir, kr, jr, λ0) occurs(3.97)

in {Yt(λ0)} for all 1 ≤ r ≤ m} ≤ [2∆−1
p ]m.

Recall that λ is the recuperation rate and p is the parameter determining the
block sizes used to define Ã and B̃; λ0 was determined in Lemma 10. (3.97)
is immediate from (3.74). To see this, assume without loss of generality that
kr ≤ ks for all 1 ≤ r ≤ s ≤ m. Then for r < s,

(3.98) C(ir, kr, jr, λ) ∈ H(is, ks).

Indeed, for kr < ks this follows from the fact that C(ir, kr, j, λ) depends
on information during [0, tp(kr + 1)] ⊂ [0, tp(ks)] only. For kr = ks but
r < s (3.98) follows from the fact that C(ir, kr, jr, λ) depends only on infor-
mation during [0, tp(kr)] and on particles in Zp(ir) at time tp(kr) = tp(ks),
and Zp(ir) ∩ Zp(is) = ∅ by virtue of (3.96). Thus (3.98) holds. We already
remarked that also {Zp(ir, kr) is good} ∈ H(ir, kr). Therefore,

P
{
Zp(is, ks) is good and C(is, ks, js, λ0) in {Yt(λ0)}

∣∣∣Zp(ir, kr) is

good and C(ir, kr, jr, λ0) for r < s} ≤ 2[∆p]−1,

by (3.74). (3.97) follows.
The rest of the proof is routine. We already saw in Step (i) that there are

at most n[K19]n possible C0-barriers S of size n. For such a set S to have the
property in (3.95), it must have a subset of at least n/12 vertices (j, k + 1)
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with a parent (i, k) such that C(i, k, j, λ) occurs. There are at most 2n choices
for the set of (j, k + 1), since S has only 2n subsets. When these (j, k + 1)
have been chosen, they have at most 3dn parents (i, k), because any vertex
has at most 3d parents. A subset of these parents must have good bottoms.
Thus the total number of choices for the set {(i1, k1), . . . , (im, km)} of pairs
(i, k) for which B̂p(i, k) has a good bottom, while also C(i, k, j, λ0) occurs, is
at most

n[K192 · 23d ]n.
The number of parents (i, k) needed so that each of n/12 vertices has at least
one parent among these (i, k) is at least 3−d(n/12). And for at least one choice
of a =

(
a(1), . . . , a(d)

)
, the residue class {ir(s) ≡ a(s) (mod 8d+ 7), 1 ≤ s ≤

d} has at least (8d + 7)−d3−dn/12 members. By (3.97), the probability that
for all these (i, k) B̂p(i, k) has a good bottom, while C(i, k, j, λ0) occurs, is at
most [

2∆−1
p

](8d+7)−d3−d(n/12)
.

Thus, the n-th summand in (3.95) is at most

n[K192 · 23d ]n
[
2∆−1

p

](24d+21)−d(n/12) ≤ n
[
K20[∆p]−1/(12·(24d+21)d)

]n
,

for some constant K20(d). This shows that (3.95) holds for large enough p
and completes the proof of Lemma 12. �

As pointed out in Lemma 7, (3.23) implies that λc > 0.

4. The maximal number of jumps in a path

We need a few definitions to state the purpose of this section. In this section
we consider only the system of A-particles and there is no interaction between
any particles. Accordingly, recuperation plays no role in this section. We start
as usual with the NA(x, 0−) as i.i.d. mean µA Poisson variables. Sometimes
we will add one A-particle at the origin at time 0. Thus NA(x, 0) = NA(x, 0−)
or NA(x, 0) = NA(x, 0−)+δ(x,0). A J-path is a space-time path π̂ : [0,∞)→
Z
d × R+ such that at all times t ≥ 0, π̂(t) is the space-time position of some

A-particle and such that each jump in π̂ coincides with a jump of some A-
particle. Thus, such a path at all times follows an A-particle. It may switch
from following one particle to following another particle ρ at any time when
it is at the same space-time point as ρ. (B. Tóth suggested that one should
think of the A-particles as horses; the path always rides some horse, but may
change from one horse to another when the two horses are at the same place
at the same time.) The ‘J ’ in the designation of these paths is to indicate the
importance of the jumps. In fact, we are interested in the following random
variables:

(4.1) j(t, π̂) := number of jumps of π̂ during [0, t],
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and

(4.2) J(t, x) := sup{j(t, π̂) : π̂ is a J-path with π̂(0) = (x, 0)}.

If x is unoccupied at time 0 (i.e., NA(x, 0) = 0), then we take J(t, x) ≡ 0. In
this section we shall show that J(t, x) is O(t) a.s. We note that this is obvious
in the discrete time setting. The problem only arises in continuous time and
we have only found a quite elaborate proof of this result.

Proposition 13. There exists a constant C12 < ∞ such that, for each
fixed x,

(4.3) lim sup
t→∞

1
t
J(t, x) ≤ C12 a.s.

We present the proof in Lemmas 14–23. First we recall some notation and
results of [KSa]. C0 is a large integer chosen as in [KSa] (6.3)–(6.5) and, as
before, ∆r = C6r

0 . As in (3.81) and (3.82) we define the r-block

Br(i, k) :=
d∏
s=1

[i(s)∆r, (i(s) + 1)∆r)× [k∆r, (k + 1)∆r).

We further define

Vr(i) :=
d∏
s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r),

and the pedestal of Br(i, k) is then

Vr(i, k) = Vr(i)× {(k − 1)∆r}.

Qr(x) and Ur(x, v) are as defined in (3.31) and (3.32). For want of a better
term, we shall talk about good blocks and good pedestals. However, the term
‘good’ here does not have the same meaning as in the good bottoms, good
blocks and good pedestals used in Section 3. In Section 3 a good object
contained ‘many’ particles, whereas here a good object will be one containing
‘few’ particles. Since the definitions of Section 3 will not be used further in
this paper we hope that this does not lead to confusion. Also the constants
C0, γi will be as in (6.2)–(6.5) and (5.10) of [KSa] (rather than as in [KSc]).
The only property of them which is important here is that the γr now are
decreasing in r and that

(4.4) 0 < γ∞ ≤ γr ≤ γ0.

The r-block Br(i, k) is called good if

Ur(x, v) ≤ γrµACdr0 for all (x, v) for which

Qr(x) ⊂ Vr(i) and v ∈ [(k − 1)∆r, (k + 1)∆r).
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Similarly, the pedestal Vr(i, k) is called good, if

Ur(x, (k − 1)∆r) ≤ γrµACdr0 for all x for which Qr(x) ⊂ Vr(i).

A bad block or pedestal is one which is not good. Finally,

φr(π̂) = φr,t(π̂) := number of bad r-blocks which intersect π̂|[0,t],
the restriction of π̂ to [0, t].

For simplicity we shall think of t as fixed and abbreviate π̂|[0,t] to π̂ if it is
clear that only the restriction of π̂ to [0, t] plays a role. Also, we shall write
φr(π̂) instead of φr,t(π̂). Φr(`) and Ξ(`, t) are defined exactly as in (3.90)–
(3.91). These definitions and notations all agree with [KSa]. (i, k) ≡ (a, b) for
a ∈ {0, 1, . . . , 11}d and b = 0 or 1 will mean that i(s) ≡ a(s) (mod 12) and
k ≡ b (mod 2).

We shall bound j(t, π̂) by a number of sums of the form

(4.5)
∑
r≥1

∑
(i,k)

(π̂,r)M(r, i, k)I(π̂, r, i, k),

where
∑(π̂,r)

(i,k) is a sum over all (i, k) for which Br(i, k) is a good r-block which
intersects π̂|[0,t]; I(π̂, r, i, k) is the indicator function of some event, and several
different choices for M and I will be made below. Let C1 be the constant in
Theorem 1 in [KSc] and let H1,H2 be the events

H1(t) := {all J-paths starting at (0, 0) stay in C(C1t) during [0, t]}

and, for π̂ ∈ Ξ(`, t),

(4.6) H2(π̂, r) :=
{∑

(i,k)

(π̂,r)I(π̂, r, i, k) ≤ εr(t+ `)
}

for some small εr. As we shall see, we shall be able to get a bound on
P{[H1 ∩H2]c} in several cases. Finally, it will be the case in our applications
that for fixed r ≥ 1 we can define nonrandom collections S(a, b) of (i, k) with
(i, k) ≡ (a, b) and a collection of random variables {M̃(r, i, k) : (i, k) ∈ S(a, b)}
with the following properties (with Θ as in (4.15) below):

for π̂ ∈ Ξ(`, t), on the event Θ(t) ∩H2(π̂, r),(4.7)

any
(π̂,r)∑
(i,k)

|M(r, i, k)|I(π̂, r, i, k) is bounded by

2 · (12)d
∑

(i,k)∈S(a,b)

M̃(r, i, k)

for one of the possible S(a, b),
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and

the {M̃(r, i, k) : (i, k) ∈ S(a, b)} are independent, and(4.8)

satisfy M̃(r, i, k) ≥ |M(r, i, k)| and E exp[θrM̃(r, i, k)] ≤ Γr
for some constants θr > 0 and 1 ≤ Γr <∞.

Lemma 15 shows how to estimate the double sum (4.5) in such a situation,
but first we need some information on the location of J-paths starting at the
origin.

Even though J(t, x) does not involve B-particles, we shall make use of B-
particles in the proof of Lemma 20. Also in the proof of that lemma, we shall
need to consider initial conditions which are not of the form of i.i.d. Poisson
variables NA(x, 0−) plus some extra particles at time 0. We therefore do
not make this assumption in the next lemma. In particular, we only assume
that the {Yt}-process (which has no recuperation) is formed by adding one
B-particle at the origin at time 0, and that this process is coupled with the
A-system by giving the same path to each A-particle present at time 0− in
this process as in the A-system. (This is exactly as in Section 2.) In addition,
the initial NA(x, 0−) have to be such that Y0 ∈ Σ0 a.s. Σ0 is the state space
introduced in [KSc], [KSb]. All particles still perform independent continuous
time simple random walks.

Lemma 14. Under the conditions just described we have for x ∈ Zd and
s ≥ 0

(4.9) {there is a J-path from (0, 0) through (x, s)}
⊂ {there is a B-particle at (x, s) in the {Yt}-process}.

In particular,

P{[H1(s)]c} = P{some J-path starting at (0, 0)(4.10)

leaves C(C1s) during [0, s]}
≤ 2P{some J-path which started at (0, 0)

is outside C(C1s) at time s}
≤ 2E{(number of B-particles outside C(C1s)

at time s, in the {Yt}-process)}.

Proof. Clearly adding an A-particle to the A-system can only increase the
collection of J-paths, so that we may assume that we start the A-system with
NA(x, 0) = NA(x, 0−) + δ(x,0). (We repeat that the NA(x, 0−) do not have
to be i.i.d. Poisson variables in this lemma.) We can then couple the A-system
and the {Yt}-process so that they have the same particles and so that each
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particle follows the same path in both processes. The only difference between
the processes is that in the A-system all particles have type A, while in {Yt}
there are particles of both types.

Now assume that there is a J-path π̂ in the A-system from (0, 0) to (x, s).
Then there exists some sequence of times s0 = 0 < s1 < · · · < s` < s and
particles ρi such that π̂ agrees with the path of ρi during [si, si+1], 0 ≤ i ≤ `
(with s`+1 = s). In addition ρi+1 and ρi are at the same position at time si,
while ρ0 starts at (0, 0) and ρ` is at x at time s. Now in the {Yt}-process all
particles at 0 are given type B at time s0 = 0. But then ρ0 has type B for
all t ≥ 0. Then ρ1 will have type B at least from time s1 on. One then sees
by induction on i that ρi+1 has type B on [si,∞). In particular, ρ` has type
B at the time s > s`, at which time it is at x. This implies (4.9).

Next, we have in the A-system

P{some J-path starting at (0, 0) leaves C(C1s) during [0, s]}
(4.11)

≤ 2P{some J-path starting at (0, 0) is outside C(C1s) at time s}.

This follows from a reflection argument, as in the proof of Proposition 3 in
[KSc]. The last inequality in (4.10) then follows from (4.9). �

We now return to the usual initial conditions, that is we take the
{NA(x, 0−) : x ∈ Zd} as i.i.d., mean µA Poisson variables. We also add
an extra particle to the system at the origin at time 0. We note that Propo-
sition 5 and Remark 2 after it in [KSc] show that in this case Y0 ∈ Σ0 a.s., so
that we can apply Lemma 14 in this case. If the NA(x, 0−) are i.i.d. Poisson
variables, then (4.10), together with (1.3) in [KSc], shows that for all large t

(4.12) P{some J-path starting at (0, 0) leaves C(C1t) during [0, t]} ≤ 2e−t.

This will allow us to restrict our further estimates to J-paths π̂ which stay in
C(C1t) during [0, t]. If we take t so large that C1t ≤ t log t, then these paths
also stay in C(t log t) and therefore belong to

⋃
`≥0 Ξ(`, t) (see (3.91) for Ξ).

This explains why the next few lemmas speak about such paths only. In fact,
it is useful to make a further reduction. To this end, we define, as in (6.10)
of [KSa], R = R(t) as the integer for which

(4.13) CR0 ≥ [log t]1/d > CR−1
0 .

We then have just as in Lemma 9 of [KSa] that

(4.14) P{for some r ≥ R there exists a bad r-block

which intersects C(t log t)} ≤ 1
t2
.

Accordingly we define the event

(4.15) Θ(t) = {for all r ≥ R(t) no bad r-block intersects C(t log t)}.
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We then have

(4.16) P{[Θ(t)]c} ≤ 1
t2
,

so that we can restrict most estimates to subevents of Θ(t). Since we are only
concerned with the existence of certain J-paths it is convenient to define

(4.17) Ξ(J, `, t) := the collection of J-paths in Ξ(`, t).

Many constants Ki, Ri and ti appear in the remainder of this section. It is
crucial that these do not depend on t or `, even though we usually do not
state this explicitly.

Lemma 15. Let M and I be such that (4.7) and (4.8) hold. Then, there
exist constants 0 < K1 −K3 < ∞, all depending on d only, such that for all
t ≥ 2 and for each ` ≥ 0, r ≥ 1

P{Θ(t) and for some π̂ ∈ Ξ(J, `, t),
∑
(i,k)

(π̂,r)M(r, i, k)I(π̂, r, i, k) ≥ x}

(4.18)

≤ P{for some π̂ ∈ Ξ(J, `, t), Θ(t) ∩ [H2(π̂, r)]c occurs}

+K1[t log t]d exp [K2(t+ `)/∆r] exp
[
− xθr

2(12)d
+ εr(t+ `) log Γr

]
.

For

(4.19) x ≥ 4(12)d

θr

[
εr log Γr +

K2

∆r

]
(t+ `)

this yields

P{Θ(t) and for some π̂ ∈ Ξ(J, `, t),
∑
(i,k)

(π̂,r)M(r, i, k)I(π̂, r, i, k) ≥ x}
(4.20)

≤ P{for some π̂ ∈ Ξ(J, `, t), Θ(t) ∩ [H2(π̂, r)]c occurs}

+K1[t log t]d exp[−K3xθr].

Proof. The first term in the right hand side of (4.18) takes care of the event
that H2(π̂, r) fails for any π̂. It therefore suffices for (4.18) to estimate

P{for some π̂ ∈ Ξ(J, `, t), H2(π̂, r) occurs and(4.21) ∑
(i,k)

(π̂,r)M(r, i, k)I(π̂, r, i, k) ≥ x}.

If the event here occurs, then there is a π̂ ∈ Ξ(`, t) and a subset, S say, of
the points (i, k) for which Br(i, k) intersects π̂, such that I(π̂, r, i, k) = 1 for



A PHASE TRANSITION FOR THE SPREAD OF AN INFECTION 597

(i, k) ∈ S and ∑
(i,k)∈S

|M(r, i, k)| ≥ x.

Moreover, S contains at most εr(t+ `) points (because H2(π̂, r) occurs). We
can split S into the 2(12)d subsets

S(a, b) = collection of (i, k) in S with (i, k) ≡ (a, b),

with a ∈ {0, 1, . . . , 11}d, b = 0 or 1. Then (4.21) is bounded by the sum of

(4.22) P
{ ∑

(i,k)∈S(a,b)

M(r, i, k) ≥ x

2(12)d
}

over all possible S(a, b) corresponding to some π̂ ∈ Ξ(`, t).
We know that any π̂ ∈ Ξ(`, t) intersects at most

(4.23) λr(`) := 3d
( t+ `

∆r
+ 2
)

r-blocks (see (6.30) in [KSa] for ν = 1 and with r + 1 replaced by r). The
set of (i, k) for which Br(i, k) intersects π̂ has to be L-connected (see the lines
following (3.2) for L). Thus, as π̂ varies over Ξ(`, t), and the starting point of
π̂ varies over C(t log t), there are at most [2t log t + 1]d exp[K9λr(`)] different
possibilities for the collections {(i, k) : Br(i, k) intersects π̂}. Here K9 is some
constant which depends on d only. Each S has to be a subset of this collection,
and once S is given there are 2 · 12d possibilities for (a, b). Thus, there are at
most

(4.24) 2(12)d2λr(`)[2t log t+ 1]d exp[K9λr(`)]

possibilities for S(a, b).
Finally, for a fixed choice of S(a, b) we have by (4.8) that the probability

in (4.22) is bounded by

P
{ ∑

(i,k)∈S(a,b)

M̃(r, i, k) ≥ x

2(12)d
}

(4.25)

≤ exp
[
− xθr

2(12)d
]
E
{

exp
[
θr

∑
(i,k)∈S(a,b)

M̃(r, i, k)
]

≤ exp
[
− xθr

2(12)d
]
Γεr(t+`)
r ,

where, for the last inequality, we used that S(a, b) has at most εr(t + `) ele-
ments on H2(π̂, r) and (4.8). This implies (4.18) for suitable K1,K2, because
(4.21) is bounded by a sum of at most (4.24) terms, each of which is bounded
by (4.25).
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The inequality (4.20) now follows from (4.18) and (4.19), because the latter
implies that

xθr
2(12)d

≥ xθr
4(12)d

+
[
εr log Γr +

K2

∆r

]
(t+ `). �

Our first task is now to establish a representation for j(t, π̂) of the form
(4.5), at least outside an event of small probability. Fix some R1 ≥ 1 and
consider a sample point for which Θ(t) occurs. If π̂ is a J-path which stays
in C(t log t) during [0, t], then all r-blocks with r ≥ R which intersect π̂|[0,t]
must be good. Here R = R(t) as defined in (4.13). Now recall that for each
r, each point of space-time belongs to a unique r-block Br(i, k). We shall say
that a jump in π̂ from x to y at time s is located at (x, s). For such a jump,
either (x, s) belongs to a good r-block for all r ≥ R1, or there is a unique
r(x, s) ∈ (R1, R] such that (x, s) belongs to a good r-block for r ≥ r(x, s), but
belongs to a bad [r(x, s) − 1]-block. In the former case we set r(x, s) = R1.
Note that for any jump (x, s), r(x, s) is defined and the jump lies in some
r(x, s)-block. Moreover, this is a good block, by the choice of r(x, s).

We have for t ≥ some t1 that outside the event in (4.12) but in Θ(t), it
holds

(4.26) J(t,0) = sup
π̂(0)=0

R(t)∑
r=R1

[number of jumps (x, s) of π̂ with

(x, s) ∈ C(t log t)× [0, t] and r(x, s) = r]

(the sup here is over the same set as in (4.2)). The union of the exceptional
event in (4.12) and [Θ(t)]c has probability at most 2/t2. We can ignore these
exceptional events here. We now concentrate on estimating the summands
appearing in the right hand side in (4.26). Let (x, s) ∈ Br(i, k) be a jump of
π̂. This jump is the jump of some particle ρ at time s. We distinguish two
kinds of jumps, according as ρ was outside or inside the pedestal Vr(i, k) at
time (k − 1)∆r. We define the corresponding quantity

Mout(r, i, k) = [number of jumps located inside Br(i, k) by any particle ρ

that was outside Vr(i, k) at time (k − 1)∆r],

and its analogue Min(r, i, k) with “outside” replaced by “inside”. We further
say that the block Br(i, k) is contaminated if it contains a jump of a particle
which was outside Vr(i, k) at time (k − 1)∆r and take

I1(r, i, k) := I[Br(i, k) is contaminated].

We point out that this definition of contaminated is somewhat stricter than
the one used in [KSa] (just after (6.9)).
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We now start with a bound for

(4.27)
∑
(i,k)

(π̂,r)Mout(r, i, k)I1(r, i, k).

Lemma 16. There exist constants Ki, t2 and R2 such that for t ≥ t2, R2 ≤
r ≤ R(t) and ` ≥ 0,

P
{

Θ(t) and there exists a π̂ ∈ Ξ(J, `, t) such that(4.28) ∑
(i,k)

(π̂,r)Mout(r, i, k)I1(r, i, k) ≥ K4(t+ `)
∆r

}
≤ K5 exp

[
−K6(t+ `)/[log t]6

]
.

Proof. We break the proof up into two steps.

Step (i). In this step we reduce the calculations to some calculations for
discrete time random walks. This first step is standard weak convergence
theory and we leave many details to the reader. We approximate the paths
of the various particles by some random walk paths which can jump only
at times j/n for some integer n ≥ 1 and j = 0, 1, 2, . . . Specifically, we let
{S(n)

u }u≥0 be a random walk starting at 0 which can jump only at times j/n,
with the jump distribution

q(n)(y) = P{S(n)
(j+1)/n − S

(n)
j/n = y} =

{
1− D

n if y = 0
D

2dn if y = ±ei, 1 ≤ i ≤ d,

(ei is the i-th coordinate vector). For each particle ρ we take {S(n)
u (ρ)}u≥0 as

a copy of {S(n)
u }u≥0, and we take the walks for the different ρ as completely

independent. We then form what we shall call the (n)-system by letting
ρ move along the path t 7→ π(n)(t, ρ) := π(0, ρ) + S

(n)
btnc/n(ρ) for each of

the particles ρ. Now it easy to see that for any finite collection of particles(
ρi1 , . . . ρiK

)
, the K dimensional process t 7→

(
π(n)(t, ρi1), . . . , π(n)(t, ρiK )

)
converges weakly (in the Skorokhod topology on the space D

(
[0,∞), (Zd)K

)
to the process t 7→

(
π(t, ρi1), . . . , π(t, ρiK )

)
. This last process is the process of

the true paths of (ρi1 , . . . , ρiK ). A simple way to prove this weak convergence
is to apply Theorem 15.6 in [B] (or rather the line following it before the proof
of Theorem 15.6). We then define the obvious analogue of N∗ (see (3.29) and
preceding lines for N∗), namely

N (n)(x, t) = (number of particles at (x, t) in the (n)-system)

= (number of ρ with π(n)(t, ρ) = x).

Here we do not include the extra particle added at the origin at time 0; we
only include the particles which were among the NA(x, 0−) at some x, just
before the start of our system. We also need an approximation to N (n) which
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only counts particles which started in some finite cube. For this we fix some
numbering of the particles ρ1, ρ2, . . . . Again, this excludes the extra particle
added at (0, 0) if there is such a particle. We then set

N (n,L)(x, t) := (number of i ≤ L with π(n)(t, ρi) = x).

It is convenient to set N (∞)(x, t) = N∗(x, t) and similarly

N (∞,L)(x, t) = (number of ρ among the first L particles with π(t, ρ) = x).

Particles which start far out only have a small probability of reaching C(2t log t)
during [0, 2t]. In fact, estimates like the ones for (2.29)–(2.32) in [KSc] prove
that for all t > 0 and η > 0 there exists an L0 = L0(t, η) such that

(4.29) P{N (n,L)(x, s) 6= N (n)(x, s) for some (x, s) ∈ C(2t log t)× [0, 2t]}
≤ η, for all L ≥ L0, 1 ≤ n ≤ ∞.

Note the uniformity in n here as well as the fact that n =∞ is permitted in
(4.29). We can now replace N∗ by N (n) or N (n,L) in many of the definitions.
We indicate such a replacement by decorating the appropriate quantity with
a superscript (n) or (n,L) in a self explanatory fashion, or by adding the
qualification “in the (n) system or (n,L)-system.” For instance,

U (n,L)
r (x, v) :=

∑
y∈Qr(x)

N (n,L)(y, v)

and the block Br(i, k) is good in the (n,L)-system if

U (n,L)
r (x, v) ≤ γrµACdr0 for all (x, v) for which

Qr(x) ⊂ Vr(i) and v ∈ [(k − 1)∆r, (k + 1)∆r).

(4.29) immediately implies that uniformly in 1 ≤ n ≤ ∞

(4.30) P
{∑

(i,k)

(π̂,r)M
(n,L)
out (r, i, k)I(n,L)

1 (r, i, k)

6=
∑
(i,k)

(π̂,r)M
(n)
out (r, i, k)I(n)

1 (r, i, k)
}
≤ η

for L ≥ L0(t, η), provided t is so large that any r-block which intersects
C(t log t) × [0, t] is contained in C(2t log t) × [0, 2t]. (It suffices for this last
proviso that 3∆r = 3C6r

0 ≤ t.) Note that the sum over (i, k) runs over those
(i, k) for which Br(i, k) is a good r-block in the full system (and not in the
(∞, L)-system) which intersect π̂

∣∣
[0,t]

; cf. (4.5).
Next we claim that for each fixed finite L, r and fixed finite set S of pairs

(i, k), as n→∞,

(4.31) M
(n,L)
out (r, i, k) converges weakly to M (∞,L)

out (r, i, k)
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and ∑
(i,k)∈S

M
(n,L)
out (r, i, k)I(n,L)

1 (r, i, k) converges weakly(4.32)

to
∑

(i,k)∈S

M
(∞,L)
out (r, i, k)I(∞,L)

1 (r, i, k).

This is an immediate application of the continuous mapping theorem (Theo-
rem 5.1 or 5.2) in [B]). Indeed, in any system of L moving particles with joint
paths s 7→ (π1(s), . . . , πL(s)) ∈ (Zd)L we can define Ur(x, v) for v ≤ t as a
functional of these paths by

Ur(x, v) = (number of i ∈ [1, L] with πi(v) ∈ Qr(x)).

We restrict ourselves to paths πi which are right continuous with left limits, so
that we view Ur(x, v) as a functional on the Skorokhod space D([0, t], (Zd)L),
and we put the Skorokhod topology on this space. Then U

(n,L)
r (x, v) is just

the value of Ur(x, v) at the point with πi(·) = π(n,L)(·, ρi). In a similar way
we can view I[Br(i, k) is good], Mout(r, i, k) and I1(r, i, k) as the value at
πi(·) = π(n,L)(·, ρi) of suitable functionals on D([0, t], (Zd)L). We indicate
these functionals on D([0, t], (Zd)L) by a bar over the appropriate symbol.
Now it is not hard to see that

I[Br(i, k) is good]

= I
[

sup{Ur(x, v) : Qr(x) ⊂ Vr(i), (k − 1)∆r ≤ v < (k + 1)∆r} ≤ γrµACdr0

]
are continuous functionals on D([0, t], (Zd)L) at all points

(
π1(·), . . . , πL(·)

)
for which each πi is continuous at each {j∆r : j ∈ Z}. In particular, this
holds almost surely at the points with πi(·) = π(·, ρi). Similarly Mout(r, i, k)
is continuous at these same points. Therefore, (4.31) and (4.32) indeed follow
from the continuous mapping theorem.

Finally we note that the event in the left hand side of (4.28) occurs if and
only if

(4.33)
∑

(i,k)∈S

Mout(r, i, k)I1(r, i, k) ≥ K4(t+ `)
∆r

,

for one of a number of possible collections S of pairs (i, k). The possible
collections S are the collections of the form {(i, k) : Br(i, k) is good and
intersects π̂}, for some π̂ ∈ Ξ(J, `, t). The number of possibilities for S is
finite, and whether S is a possible collection depends on the class Ξ(J, `, t)
and on which blocks Br(i, k) are good. The indicator function of {S is possible
collection} for a fixed collection S is also a.s. a continuous functional on
D([0, t], (Zd)L). We can now combine this observation with (4.30) and (4.32)
to obtain the conclusion of this step that the left hand side of (4.28) is bounded
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by

lim sup
L→∞

lim
n→∞

P{there exists a π̂ ∈ Ξ(J, `, t) such that∑
(i,k)

(π̂,r)M
(n,L)
out (r, i, k)I(n,L)

1 (r, i, k) ≥ K4(t+ `)
∆r

− 1
}
.

In fact, since the collection of particles present in the (n,L)-system increases
to the collection of particles in the (n)-system as L → ∞, this expression is
bounded by

(4.34) lim
n→∞

P{there exists a π̂ ∈ Ξ(J, `, t) such that∑
(i,k)

(π̂,r)M
(n)
out (r, i, k)I(n)

1 (r, i, k) ≥ K4(t+ `)
∆r

− 1
}
.

Note that by the weak convergence arguments just after (4.32), the sum
∑(π̂,r)

(i,k)

here may be taken over the (i, k) for which Br(i, k) is a good r-block in the
(n)-system which intersects π̂|[0,t]. At a few places we shall write

∑(π̂,r,n)
(i,k) to

indicate that we are summing over the good blocks in the (n)-system.

Step (ii). In this step we derive a bound for (4.34) in terms of a large
number of independent copies of the random walk {S(n)

u }u≥0. We follow the
proof of Lemmas 10 and 11 in [KSa] closely.

We take for {S(n)
u (x, s, q)}u≥0 a copy of {S(n)

u }u≥0 and take all these copies
for different x ∈ Zd, s of the form k/n and q ≥ 1, completely independent.
We further associate to each particle ρ a uniform random variable on [0, 1],
U(ρ) say, and all U(ρ) and {S(n)

u (x, s, q)} are independent. Finally

(4.35) Wr(i) := ∂
d∏
s=1

[(i(s)− 3)∆r, (i(s) + 4)∆r − 1] = ∂Vr(i),

where ∂ denotes the topological boundary. We now fix some a ∈ {1, 2, . . . , 11}d
and b = 0 or 1, and we want to look at the contribution to the sum (4.27)
from the (i, k) ≡ (a, b). For the sake of argument let b = 0. Assume that
the paths of all A-particles till time (k− 1)∆r with k even have already been
constructed in some way. In the case k = 0 this simply means that we be-
gin with a mean µA Poisson system of A-particles at time −∆r. (The only
change which is needed for the case b = 1 is that we work with odd k’s
and start with a Poisson system at time −2∆r in that case.) At each point
(x, (k−1)∆r) (in space-time) order all particles ρ present so that their associ-
ated uniform variables U(ρ) are increasing. To the q-th particle in this order
associate the path {x+S

(n)
u (x, (k−1)∆r, q)}u≥0. This particle then moves to

x+ S
(n)
1/n(x, (k − 1)∆r, q) at time (k − 1)∆r + 1/n. We also associate to each
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particle at each time an index (y′, v′, q′, g′). A particle has index (y′, v′, q′, g′)
at a certain time if its last associated random walk is S(n)(y′, v′, q′) and if the
particle has moved g′ steps (or g′/n time units) according to S(n)(y′, v′, q′)
since this random walk was associated to the particle. Accordingly, the index
associated to the q′-th particle at (x, (k − 1)∆r) at time (k − 1)∆r + 1/n is
(x, (k− 1)∆r, q

′, 1). Assume we have constructed the paths of all particles up
to and including time v ∈ [(k − 1)∆r, (k + 1)∆r) (with v a multiple of 1/n)
and that each particle has an index. To construct the paths 1/n time units
further, we look for each y ∈ Zd at all particles at (y, v). If y does not belong
to

(4.36)
⋃
j≡a

Wr(j),

and a particle at (y, v) has index (z, v′, q, g), then this particle moves to y +
S

(n)
(g+1)/n(z, v′, q) − S(n)

g/n(z, v′, q) = z + S
(n)
(g+1)/n(z, v′, q) and its new index is

(z, v′, q, g+1). In other words it moves one step further in the random walk it
is presently associated with, and the last component of its index increases by
1. If, on the other hand, y lies in the union (4.36), then all particles at y are
again ranked according to increasing values of their uniform random variables
and a new random walk is associated to these particles. The particle with
rank q′ will move to y + S

(n)
1/n(y, v, q′) at time v + 1/n. Its index will then

be (y, v, q′, 1). We continue this procedure till all positions at time (k+ 1)∆r

have been determined. We then start anew with k replaced by k+ 1. That is,
we order all particles at one site (x, (k + 1)∆r) and move the q-th particle at
that site to x+S

(n)
1/n(x, (k+ 1)∆r, q) and give it the index (x, (k+ 1)∆r, q, 1),

and so on.
Basically, the above procedure switches each particle to a new random

walk every time the particle visits the set (4.36). It is clear that in the
above construction all the A-particles perform independent random walks with
transition probability qnA. Now, a particle ρ whose jumps contribute to one
of the sums (4.33) has to lie outside Vr(i, k) at time (k − 1)∆r, but has some
jump in Br(i, k) during [k∆r, (k + 1)∆r). Its space-time path in the discrete
time system must contain a piece (xξ, v), (xξ+1, v+1/n), . . . , (xζ , v+(ζ−ξ)/n)
with v a multiple of 1/n, which satisfies

xξ ∈ Wr(i), xζ ∈ ∂
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1](4.37)

and xκ lies strictly between Wr(i) and

∂
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1] for ξ < κ < ζ,
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and which is traversed during [(k−1)∆r, (k+1)∆r) (compare (6.17) in [KSa]).
At the times v + j/n, 1 ≤ j ≤ (ζ − ξ), ρ is at a position in the open cube∏d
s=1

(
(i(s)− 3)∆r, (i(s) + 4)∆r

)
and hence does not visit (4.36). Therefore,

the random walk associated to ρ remains the same at the times v+j/n, 0 ≤ j ≤
(ζ−ξ). It follows that for (xξ, v) to be the first point of such an excursion from
Wr(i) to ∂

∏d
s=1[(i(s)−1)∆r, (i(s)+2)∆r−1] it is necessary that for an appro-

priate q, S(n)
1/n(xξ, v, q) 6= 0 and supu≤2∆rn ‖S

(n)
u/n(xξ, v, q) − S(n)

1/n(xξ, v, q)‖ ≥
2∆r − 1. The last condition has to be satisfied because the minimal distance
between Wr(i) and ∂

∏d
s=1[(i(s) − 1)∆r, (i(s) + 2)∆r − 1] is 2∆r,and we are

counting jumps in Br(i, k) after time (k − 1)∆r. These jumps must occur
in the time interval [(k − 1)∆r, (k + 1)∆r], i.e., in at most 2∆rn steps of
S(n)(xξ, v, q). (Note our terminology here: S(n)

u/n takes a step each time u in-

creases by 1, but it has a jump only if S(n)
(u+1)/n 6= S

(n)
u/n.) Suppose S(n)(xξ, v, q)

indeed leaves Wr(i) and reaches ∂
∏d
s=1[(i(s)− 1)∆r, (i(s) + 2)∆r − 1] before

it returns to Wr(i). In this case, let m = m(xξ, v, q) be the smallest integer
for which S

(n)
m/n(xξ, v, q) ∈ ∂

∏d
s=1[(i(s) − 1)∆r, (i(s) + 2)∆r − 1]. In the no-

tation of (4.37), this is the number of steps it takes S(n)(xξ, v, q) to reach xζ .
The number of jumps of ρ in Br(i, k) between time v and the next return to
Wr(i) is then bounded by the number of jumps of {S(n)

u/n(x, v, q)} for m ≤ u ≤
m+2∆rn. This number is independent of all random walks S(n)(y, w, s) with
(y, w, s) 6= (xξ, v, q) and of the S(n)

u/n(xξ, v, q) for u ≤ m. Moreover, if Br(i, k)
is good (in the (n)-system), then there are at most γrµACdr0 + 1 particles at
the space-time point (xξ, v). Indeed N (n)(xξ, v) ≤ U

(n)
r (xξ, v) ≤ γ0µAC

dr
0 by

the definition of a good block, and the only possible particle at (xξ, v) possibly
not counted by N (n)(xξ, v) is an extra particle which was added at time 0 at
the origin (see (3.29)). Therefore, in

∑(π̂,r,n)
(i,k)∈S(a,b)M

(n)
out (r, i, k)I(n)

1 (r, i, k) we

only need to count jumps of some {S(n)
u (x, v, q)} with q ≤ γ0µAC

dr
0 + 1. It

follows that the total number of jumps in [(k − 1)∆r, (k + 1)∆r) in the good
block Br(i, k) of particles outside Vr(i) at time (k − 1)∆r is stochastically
bounded by∑

x∈Wr(i)

∑
v∈[(k−1)∆r,(k+1)∆r)

∑
q≤γ0µACdr0 +1

I
[
S

(n)
1/n(x, v, q) 6= 0,(4.38)

sup
u≤2∆rn

‖S(n)
u/n(x, v, q)− S(n)

1/n(x, v, q)‖ ≥ 2∆r − 1
]

× [number of jumps of S(n)
u/n(x, v, q),m ≤ u ≤ m+ 2∆rn]

(v is restricted to the multiples of 1/n in the second sum; the bound here
is valid in each (n)-system with n < ∞). Each of the random variables
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[number of jumps of S(n)
u/n(x, v, q),m ≤ u ≤ m + 2∆rn] converges (as n →

∞) in distribution to a Poisson variable, X(x, v, q) say, with mean 2∆rD.
Furthermore ∑

x∈Wr(i)

∑
v∈[(k−1)∆r,(k+1)∆r)

∑
q≤γ0µACdr0 +1

I
[
S

(n)
1/n(x, v, q) 6= 0,(4.39)

sup
u≤2∆rn

‖S(n)
u/n(x, v, q)− S(n)

1/n(x, v, q)‖ ≥ 2∆r − 1
]

converges (as n → ∞) in distribution to a Poisson random variable, T =
T (i, k) say, of mean

K7∆d
rC

dr
0 D lim

n→∞
P{ sup

u≤2∆rn
‖S(n)

u (x, v, q)− S(n)
1 (x, v, q)‖ ≥ 2∆r − 1]}(4.40)

≤ K8C
7dr
0 exp[−K10∆r]

for some constants K7−K10 which depend on d,D and γ0µA only. Moreover,
T and all X(x, v, q) are independent. Thus (see (4.31)) P{Mout(r, i, k) > x} ≤
P{M̃(r, i, k) ≥ x} for M̃(r, i, k) =

∑T
j=1Xj with Poisson variables Xj with

mean 2∆rD, independent of each other and of T .
We finally show that (4.7) and (4.8) hold for the Mout(r, i, k), (i, k) ∈

S(a, b), for fixed (a, b), and with the M̃(r, i, k) as above and S(a, b) any
collection of pairs (i, k) ≡ (a, b). Firstly, the sums in (4.38) for different
(i, k) ≡ (a, b) use different random walks {S(n)

u } and therefore are indepen-
dent. From the argument in the last paragraph it then follows that the
Mout(r, i, k), (i, k) ∈ S(a, b), are dominated by an independent family of ran-
dom variables M̃(r, i, k), each of which has the distribution of

∑T
j=1Xj . A

straightforward calculation gives

(4.41) E{eθM̃(r,i,k)} ≤ exp
[
K8C

7dr
0 exp

[
−K10∆r + 2∆rD(eθ − 1)

]]
.

Thus (4.8) holds for any r ≥ 1 with θr = θ and log Γr = K11 for any θ > 0
for which 2D(eθ − 1) < K10/2 and for a constant K11 = K11(d,D, γ0µA) ≥
supr≥1

{
K8C

7dr
0 exp[−K10∆r + 2∆rD(eθ − 1)

]}
.

In order to apply Lemma 15, we have to have an estimate for

(4.42) P{for some π̂ ∈ Ξ(`, t), [H2(π̂, r)]c occurs},

when r ≤ R(t). But this is trivial for r ≤ R(t), if we take εr = 3d+1/∆r.
Indeed, with this εr and r ≤ R(t), H2(π̂, r) never fails, because the total
number of r-blocks intersecting a given π̂ ∈ Ξ(`, t) is at most λr(`) ≤ εr(t+ `)
(see (4.23) and recall that ∆r = C6r

0 ≤ C6
0 [log t]6/d by (4.13), and finally that

we can take t2 so that C6
0 [log t]6/d) ≤ t for t ≥ t2).

Lemma 16 now follows from (4.20) with x equal to the right hand side of
(4.19) with θr, εr and Γr as above. �
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Lemma 16 takes care of all contributions to (4.26) from jumps at some
(x, s) in some good Br(i, k) with r(x, s) = r ∈ [R1, R(t)], and such that the
particle which jumps at (x, s) was outside Vr(i, k) at time (k − 1)∆r. Next
we consider the jumps at some (x, s) in some good Br(i, k) with r(x, s) = r ∈
[R1 + 1, R(t)], and such that the particle which jumps at (x, s) was inside
Vr(i, k) at time (k − 1)∆r. Note that r(x, s) = r > R1 implies that these
jumps lie in addition in a bad (r − 1)-block. We shall therefore estimate∑(π̂,r)

(i,k) Min(r, i, k)I2(π̂, r, i, k) where

I2(π̂, r, i, k) := I[Br(i, k) contains a bad (r − 1)-block which intersects π̂].

Lemma 17. There exist constants R3 and t3 such that for t ≥ t3, R3 ≤
r ≤ R(t) and ` ≥ 0,

P
{

Θ(t) and there exists a π̂ ∈ Ξ(J, `, t) such that(4.43) ∑
(i,k)

(π̂,r)Min(r, i, k)I2(π̂, r, i, k) ≥ 8(12)dK2(t+ `)
∆r

}
≤ 2 exp

[
−
√

(t+ `)
]
.

Proof. Again this proof relies on [KSa]. First we modify the Min somewhat,
so that we can verify (4.7) and (4.8). If Br(i, k) is good, then Vr(i, k) contains
at most [7∆r]dγ0µAC

dr
0 +1 particles, so that Min(r, i, k) counts the number of

jumps in Br(i, k) during [k∆r, (k+1)∆r) of at most [7∆r]dγ0µAC
dr
0 +1 parti-

cles. (Again the one is added to the number of particles to take into account
the extra particle added at time 0.) Min(r, i, k) is therefore bounded by the
total number of jumps during [k∆r, (k+ 1)∆r) of the first [7∆r]dγ0µAC

dr
0 + 1

particles in Vr(i, k) in some arbitrary ordering of particles; if there are fewer
than [7∆r]dγ0µAC

dr
0 + 1 particles in Vr(i, k) we add artificial particles to

raise the number to [7∆r]dγ0µAC
dr
0 + 1 and count the jumps of the artifi-

cial particles as well. Denote the resulting number of jumps by M̃in(r, i, k).
By construction, each of the M̃in(r, i, k) is a Poisson variable with mean
D∆r{[7∆r]dγ0µAC

dr
0 + 1}. Moreover, if Br(i, k) and Br(i′, k′) have disjoint

pedestals, then their corresponding M̃in are independent since they count
jumps of disjoint sets of particles, and the cardinalities of the sets are non
random. Thus (4.7) and (4.8) hold for M̃(r, i, k) Poisson variables with mean
D∆r{[7∆r]dγ0µAC

dr
0 + 1}, and correspondingly

(4.44) θr = 1, log Γr = D∆r{[7∆r]dγ0µAC
dr
0 + 1}(e− 1).

Next we check (4.6). By definition of I2,
∑

(i,k)
(π̂,r)I2(π̂, r, i, k) is bounded

by φr−1(π̂), the number of bad (r − 1)-blocks which intersect π̂. However,
φr−1 is already estimated in Lemma 15 of [KSa]. The proof of Lemma 15
there (especially the one but last member of (6.47)) tells us that for suitable
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constants Ki, Ci, t ≥ some t3 and r − 1 ≥ d

P
{

Θ(t) and there exists a π̂ ∈ Ξ(`, t) such that∑
(i,k)

(π̂,r)I2(π̂, r, i, k) ≥ K13κ0(t+ `) exp
[
−K12C

(r−1)/4
0

]}

≤
R(t)−1∑
q=r−1

exp
[
− C7κ0(t+ `) exp[−Cq/20 ]

]
+
R(t)−1∑
q=r−1

exp
[
− C10κ0(t+ `) exp

[
− 1

2(d+ 1)
γ0µAC

(d− 3
4 )q

0

]
≤ exp

[
−
√

(t+ `)
]
.

Thus, if we take
εr = K13κ0 exp

[
−K12C

(r−1)/4
0

]
then

P{Θ(t) and there exists a π̂ ∈ Ξ(`, t) such that∑
(i,k)

(π̂,r)I2(π̂, r, i, k) ≥ εr(t+ `)}

≤ exp
[
−
√

(t+ `)
]
.

Finally, we apply (4.20) with x = 8(12)dK2(t + `)/∆r to obtain (4.43) for
R3 ≤ r ≤ R(t), t ≥ t3, with suitable R3, t3. �

We go back to (4.26). Each jump at (x, s) on some J-path is counted in
some Mout(r, i, k) or some Min(r, i, k). Lemma 16 takes care of all jumps of
the former kind with R2 ≤ r(x, s) ≤ R(t), whereas Lemma 17 takes care of
the jumps of the latter kind, but only if (R1 + 1) ∨ R3 ≤ r(x, s) ≤ R(t). On
Θ(t) there are no jumps with r > R(t) to consider. Without loss of generality
we can take R1 ≥ R2 ∨ R3. The only contributions to J(t,0) which we still
must estimate are then counted in

(4.45)
∑
(i,k)

(π̂,R1)Min(R1, i, k).

This sum will be broken up into several subsums. But we must first introduce
a certain constant C̃1. Let

(4.46) µ̃ = 2γ0µA.

In Theorem 1 of [KSc] we defined a constant C1. This constant depends only
on µA, d and D, since these are the only parameters appearing in the model
(now that the A and B-particles have the same jumprate D). Therefore, if
µA is replaced by µ̃, then Theorem 1 of [KSc] again holds, but now with C1



608 HARRY KESTEN AND VLADAS SIDORAVICIUS

replaced by some constant C̃1. Without loss of generality we take C̃1 to be
an integer greater than or equal to 1.

We now break the sum (4.45) up into the two sums:∑
(i,k)

(π̂,R1)Min(R1, i, k)I3(R1, i, k) and
∑
(i,k)

(π̂,R1)Min(R1, i, k)I4(R1, i, k),

where

I3(r, i, k) := I
[
Br(i, k) is good and there exists a J-path from

some point (x′, s′) ∈ Br(i, k), to a point (x′′, s′′) ∈(
∂

d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]
)

×
[
s′,
(
s′ +

∆r

2C̃1

)
∧ (k + 1)∆r

)]
and

I4(r, i, k) = 1− I3(r, i, k).

It will turn out that the sum with I4 can easily be reduced to the sum with
I3 (see Lemma 23). However, the latter sum will have to be split up further.
We define

I3,1(r, i, k) = I
[
Br(i, k) is a good r-block, but some particle

which is outside Vr(i) at time (k − 1)∆r enters
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]

during [(k − 1)∆r, (k + 1)∆r)
]
;

I3,2(r, i, k) = I
[
there exists a J-path using only particles

in Vr(i) at time (k − 1)∆r and running from

some point (x′, s′) ∈ Br(i, k) to a point (x′′, s′′) ∈(
∂

d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]
)

×
[
s′,
(
s′ +

∆r

2C̃1

)
∧ (k + 1)∆r

)]
.

If I3,1(r, i, k) = 0, i.e., if no particles from the outside of Vr(i) enter
∏d
s=1[(i(s)−

1)∆r, (i(s)+2)∆r−1] during [(k−1)∆r, (k+1)∆r), but there is a J-path from
Br(i, k) to

(
∂
∏d
s=1[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]

)
× [(k − 1)∆r, (k + 1)∆r),
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then this J-path cannot use any particles which come from outside Vr(i).
Consequently

(4.47) I3(r, i, k) ≤ I3,1(r, i, k) + I3,2(r, i, k).

Lemma 18. There exist constants K4, R4 and t4 such that for t ≥ t4, R4 ≤
r ≤ R(t) and ` ≥ 0,

P
{

Θ(t) and there exists a π̂ ∈ Ξ(J, `, t) such that(4.48) ∑
(i,k)

(π̂,r)Min(r, i, k)I3,1(r, i, k) ≥ K4(t+ `)
∆r

}
≤ 2 exp

[
−
√
t+ `

]
.

Proof. The sum
∑(π̂,r,n)

(i,k) I3,1(r, i, k) has already been estimated (in part)
on the event Θ(t) in the proof of Lemma 16 (or alternatively in Lemmas 10
and 11 of [KSa]). However, an extra percolation argument is needed to get
a bound which is sharp enough for our purposes. It is useful to summarize a
few of the steps of the proof of Lemma 16. Define

I5(r, i, k) := I
[
Br(i, k) is good, but there is a particle which is in Wr(i)

at some time u ∈ [(k − 1)∆r, (k + 1)∆r)

and which visits
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]

at some later time in [u, (k + 1)∆r)
]
.

Clearly I3,1(r, i, k) ≤ I5(r, i, k). One now uses the construction by means of
the discrete time random walks {S(n)

u (x, s, q)} as in the proof of Lemma 16.
The discrete time analogue of

∑(π̂,r)
(i,k) I5(r, i, k) is then the number of good

r-blocks Br(i, k) (in the (n)-system) which intersect π̂ and for which there
exists a particle whose path contains a piece with the properties in (4.37).
The discrete time analogue of I5(r, i, k) itself is stochastically bounded by the
triple sum in (4.39). As we saw, the weak limit of (4.39) is a Poisson variable
T (i, k) with mean bounded by (4.40). Since I5 can take only the values 0 and
1, this means that

P{I5(r, i, k) = 1} ≤ K8C
7dr
0 exp[−K10∆r].

We define

p(r) = exp[−∆κ
r ] with some fixed 0 < κ < (d/6) ∧ 1,

and without loss of generality take R4 so large that p(r) ≥
K8C

7dr
0 exp[−K10∆r] for r ≥ R4, so that

P{I5(r, i, k) = 1} ≤ p(r)
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for the values of r of interest in this lemma.
Next, the triple sums in (4.39) for different (i, k) ≡ (a, b) are independent,

as observed just before (4.41). Thus, for any (a, b), the family {I5(r, i, k) :
(i, k) ≡ (a, b)} lies stochastically below a family of independent binomial
random variables, {Z(r, i, k) : (i, k) ≡ (a, b)} say, which satisfy

P{Z(r, i, k) = 1} = 1− P{Z(r, i, k) = 0} = p(r).

Therefore,

P{Θ(t) and for some π̂ ∈ Ξ(J, `, t),
∑
(i,k)

(π̂,r)I5(r, i, k) ≥ x}(4.49)

≤
∑
(a,b)

P
{

there exists a path π̂ ∈ Ξ(J, `, t) such that

∑
(i,k)

(i,k)≡(a,b)

(π̂,r) Z(r, i, k) ≥ x

2(12)d
}
.

The following argument appears already in the proof of Lemma 8, as well
as Lemmas 10, 11, in [KSa]; see also the proof of Theorem 9 in [L]. For
convenience we repeat it here, because it will also be used in the proofs of
Lemmas 21, 27 and at the end of the next section. We choose an integer
ν = νr such that

[p(r)]−1/(d+1) ≤ ν ≤ 2[p(r)]−1/(d+1),

and form the blocks

D(m, q) :=
( d∏
s=1

[νm(s)∆r, ν(m(s) + 1)∆r

)
× [qν∆r, (q + 1)∆r).

Each of these blocks is a disjoint union of νd+1 r-blocks. Any space-time path
π̂ ∈ Ξ(`, t) intersects at most

λ̃r(`) := 3d
( t+ `

ν∆r
+ 2
)

blocks D(m, q) (see (6.30) in [KSa]). It follows that any space-time path
π̂ ∈ Ξ(`, t) is contained in a union of at most λ̃r(`) blocks D(m, q). Moreover,
if

(4.50) S(m0, . . . ,mλ−1) :=
λ−1⋃
q=0

D(mq, q)

for some λ ≤ λ̃r(`) is the union of all such blocks which intersect some path
π̂ ∈ Ξ(`, t), then

(
m0, 0), (m1, 1), . . . , (mλ−1, λ − 1)

)
, viewed as a subset

of Zd+1 has to be L-connected and has to be contained in C(2t log t) (see
(3.2) for L). There are therefore at most exp[K14λ̃r(`)] possible choices for
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m0, 0), (m1, 1), . . . , (mλ−1, λ − 1)

)
, where K14 is some constant which de-

pends on d only. For each such choice the union (4.50) contains λνd+1 ≤
λ̃r(`)νd+1 r-blocks Br(i, k). Therefore

P{the sum of the Z(r, i, k) for which Br(i, k) is(4.51)

contained in (4.50) is ≥ x

2(12)d
}

≤ P{T̃ ≥ x

2(12)d
},

where T̃ has a binomial distribution corresponding to λ̃r(`)νd+1 trials with a
success probability p(r). Thus E{T̃} = λ̃r(`)νd+1p(r) ≤ 2d+1λ̃r(`) and simple
large deviation estimates for the binomial distribution show that there exists
a universal constant K15 > 0 such that

P{T̃ ≥ y} ≤ exp[−K15y] for all y ≥ 2d+2λ̃r(`) ≥ 2E{T̃}.

We now choose

(4.52) x =
(2K14

K15
+ 2d+2

)
2(12)dλ̃r(`).

Then the probability in (4.51) is at most

exp[−K15
x

2(12)d
] ≤ exp[−2K14λ̃r(`)].

Now

P
{

Θ(t) and
∑
(i,k)

(π̂,r)I3,1(r, i, k) ≥ x for some π̂ ∈ Ξ(J, `, t)
}

(4.53)

≤ P
{

Θ(t) and
∑
(i,k)

(π̂,r)I5(r, i, k) ≥ x for some π̂ ∈ Ξ(J, `, t)
}

≤
∑

m0,...,mλ−1

∑
(a,b)

P
{ ∑

(i,k)≡(a,b)
Br(i,k)⊂S(m0,...,mλ−1)

Z(r, i, k) ≥ x

2(12)d
}

≤
∑

m0,...,mλ−1

2(12)d exp[−2K14λ̃r(`)].

Since there are only exp[K14λ̃r(`)] possible choices for the union (4.50), it
follows that the right, and hence also the left hand side of (4.53) is, for t ≥ a
suitable t4 and R4 ≤ r ≤ R(t), at most

2(12)d exp[−K14λ̃r(`)](4.54)

≤ 2(12)d exp
[
−K143d

(t+ `) exp[−∆κ
r/(d+ 1)]

2∆r

]
≤ exp[−

√
t+ `]
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where we used the value of κ and (4.13) for the last inequality. Thus for some
constant K16 which depends on d only, and

εr ≥
K16

∆r
exp[−∆κ

r/(d+ 1)] ≥ x

t+ `

and t4 sufficiently large, we have for t ≥ t4, R4 ≤ r ≤ R(t),

P
{

Θ(t) and for some π̂ ∈ Ξ(J, `, t),
∑
(i,k)

(π̂,r)I3,1(r, i, k) ≥ εr(t+ `)
}

(4.55)

≤ exp[−
√
t+ `]

For the sake of definiteness we shall take εr = 2[∆r]−2d−3. This bounds the
first term in the right hand side of (4.18)

In addition we have already seen in the proof of Lemma 17 that (4.7) and
(4.8) for the Min(r, i, k) hold with M̃(r, i, k) a Poisson variable and θr, log Γr
given in (4.44). Finally we apply Lemma 15 once more, this time with x =
8(12)dK2(t + `)/∆r, to obtain Lemma 18, but possibly with different values
for K4 than in (4.28). �

We now start on some technical preparations for estimating
∑
I3,2. For

q = 1, 2, . . . and a ∈ R we define

[a]q = a(a− 1) . . . (a− q + 1).

We also need the following σ-fields and random variables.

Jr
(
i, (k − 1)∆r

)
:= σ-field generated by the NA(x, 0−), x ∈ Zd,(4.56)

and all paths during [0, (k − 1)∆r], as well as

the paths on [(k − 1)∆r,∞) of all particles

outside Vr(i) at time (k − 1)∆r,

J̃r
(
i, (k − 1)∆r

)
:= σ-field generated by the locations and(4.57)

numbers of particles in Vr(i)

at time (k − 1)∆r,

L(x, u) = Lr(x, i, k − 1, u)

=
[
number of particles at x at time (k − 1)∆r + u

which were in Vr(i) at time (k − 1)∆r

]
.

Lemma 19. There exists an R5, such that if r ≥ R5 and ∆r/2 ≤ u ≤ 3∆r,
then for distinct a1, . . . , a` ∈ Zd and q1, . . . , q` ∈ {1, 2, . . . } it holds on the
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event {Vr(i, k) is good},

E
{∏̀
i=1

[L(ai, u)]qi
∣∣∣Jr(i, (k − 1)∆r

)}
(4.58)

= E
{∏̀
i=1

[L(ai, u)]qi
∣∣∣ J̃r(i, (k − 1)∆r

)}
≤ [2γ0µA]

∑`
i=1 qi .

Proof. Once we know the numbers and locations of the particles in Vr(i, k),
the L(x, u) are determined by the increments after (k−1)∆r in the paths of the
particles in Vr(i, k). These increments are independent of Jr

(
i, (k − 1)∆r

)
.

The conditioning on Jr
(
i, (k − 1)∆r

)
only effects the L(x, u) through the

determination of which particles are in Vr(i, k), because these are the only
particles to be counted in L(x, u). The equality in (4.58) is immediate from
this.

We now first prove (4.58) in the special case ` = 1, q1 = 1. For brevity we
write a instead of a1. The conditional expectations in (4.58) are now at most

(4.59)
∑

y∈Vr(i)

N∗(y, (k − 1)∆r)P{y + Su = a}+ sup
y
P{y + Su = a}.

The last term has to be included because the extra particle added at time 0
is not counted in the N∗, even though it may be in Vr(i) at time (k − 1)∆r.
We have to show that (4.59) is at most 2γ0µA. This part of the proof is very
similar to the proof of Lemma 8, with p replaced by r. In fact it is somewhat
easier. We take M(`̀̀) as in Lemma 8 (with p replaced by r) but this time
define Λ by

Λ = Λ(i, r) = {`̀̀ ∈ Zd :M(`̀̀) ⊂ Vr(i)},

and for each `̀̀ ∈ Λ we take y`̀̀ ∈M(`̀̀) such that

P{y`̀̀ + Su = a} = max
y∈M(`̀̀)

P{y + Su = a}.

From here on one can follow the proof of Lemma 8, merely reversing some
inequality signs and making use of∑

y∈M(`̀̀)

N∗(y, (k − 1)∆r) ≤ γ0µAC
dr
0
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for all `̀̀ ∈ Λ(i, p), which holds because Vr(i, k) is good. Note that the analogue
of (3.36) now becomes∑

`̀̀∈Λ

∑
y∈M(`̀̀)

γ0µAP
{
y`̀̀ + Su = a}(4.60)

≤
∑
`̀̀∈Λ

∑
y∈M(`̀̀)

γ0µAP
{
y + Su = a}

+
∑
`̀̀∈Λ

∑
y∈M(`̀̀)

γ0µA
∣∣P{y`̀̀ + Su = a} − P

{
y + Su = a}

∣∣.
Clearly the first double sum in the right hand side here is at most γ0µA for
all a. Moreover, the last double sum is at most K2γ0µAC

r
0 [log u]du−1/2 by

(5.26) and (6.37) in [KSa]. Also, supy P{y+Su = a} = O(u−1/2) by the local
central limit theorem. The desired bound 2γ0µA for (4.59) for r ≥ some R5

now follows.
We now turn to the general case of (4.58). Write Q for

∑`
i=1 qi and let

Ii(ρ) = I[ρ moves from Vr(i, k) to ai at time u].

Note that
∏`
i=1[L(ai, u)]qi equals the number of distinct ordered Q-tuples of

particles, with qi of these particles located at ai at time u, and which were in
Vr(i) at time (k − 1)∆r. Set Q0 = 0 and for j ≥ 1 set Qj =

∑j
i=1 qi. Then

this number of Q-tuples can be written as

(4.61)
∑

(Q)
∏̀
j=1

Qj+1∏
i=Qj+1

Ij(ρi),

where
∑

(Q) denotes the sum over all ordered Q-tuples of distinct particles
ρ1, . . . , ρQ which are in Vr(i) at time (k−1)∆r. Let us write yi for the position
of ρi at time (k−1)∆r. If we take the conditional expectation of (4.61), given
J̃r
(
i, (k − 1)∆r

)
, we find that the middle member of (4.58) equals

E
{∑

(Q)
∏̀
j=1

Qj+1∏
i=Qj+1

Ij(ρi)
∣∣J̃r(i, (k − 1)∆r

)}
=
∑

(Q)
∏̀
j=1

Qj+1∏
i=Qj+1

P{Su = aj − yi}

≤
∏̀
j=1

Qj+1∏
i=Qj+1

[ ∑
ρi∈Vr(i)

P{Su = aj − yi}
]

≤
∏̀
j=1

Qj+1∏
i=Qj+1

[2γ0µA] = [2γ0µa]Q.
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The first equality here holds because the ρi are distinct, and their paths are
therefore independent. The first inequality holds, because all products which
appear in the left hand side also appear in the right hand side after expanding
the right hand side. The second inequality is true by virtue of the bound 2γ0µA
for (4.59). �

Lemma 20. Without loss of generality we can take R5 so large that for
r ≥ R5

(4.62) P{I3,2(r, i, k) = 1 | Jr
(
i, (k − 1)∆r

)
} ≤ ∆−2(d+1)2

r

on the event

(4.63) {Vr(i, k) is good}.

Proof. The event {I3,2(r, i, k) = 1} is determined by the location of the
particles in Vr(i, k) and by the paths of these particles during [(k−1)∆r, (k+
1)∆r). From this one easily sees that the conditional probability in the left
hand side of (4.62) equals

(4.64) P{I3,2(r, i, k) = 1 | J̃r
(
i, (k − 1)∆r

)
}.

To estimate this probability on the event (4.63), we note that on this event
there are at most γ0µA7d∆d

r + 1 particles in Vr(i) at time (k − 1)∆r. The
probability that any given one of these particles, ρ say, has two jumps within
1/n time units from each other during [(k − 1)∆r, (k + 1)∆r) is at most∑

j≥1

P{j-th jump of ρ after (k − 1)∆r occurs before (k + 1)∆r and the

next jump occurs ≤ 1/n time units later
∣∣∣ J̃r(i, (k − 1)∆r

)
}

≤ D

n

∑
j≥1

P{j-th jump of ρ after (k − 1)∆r occurs before

(k + 1)∆r

∣∣∣ J̃r(i, (k − 1)∆r)}

≤ 2∆rD
2

n
.

Therefore, on the event (4.63),

P{some particle in Vr(i, k) has two jumps within 1/n time units

(4.65)

of each other during [(k − 1)∆r, (k + 1)∆r)
∣∣∣ J̃r(i, (k − 1)∆r

)
}

≤ (γ0µA7d∆d
r + 1)

2∆rD
2

n
.
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For the remainder of this proof we take n = ∆3(d+1)2

r . Assume that the event
in the left hand side of (4.65) does not occur. Now if {I3,2(r, i, k) = 1} occurs,
and the J-path in this event starts at (x′, s′) and j/n ≤ s′ < (j + 1)/n,
then each particle at x′ at time s′ is also at x′ at one or both of the times
j/n, (j + 1)/n. We can therefore let the J-path begin at (x′, j/n) or (x′, (j +
1)/n). Consequently, after raising R5, if necessary, to make ∆r/(2C̃1)+1/n ≤
(∆r − 1)/C̃1, the left hand side of (4.62) is at most

(γ0µA7d∆d
r + 1)2∆rD

2

∆3(d+2)2

r

(4.66)

+
∑

∆r−1/n≤j/n<2∆r+1/n

∑
i(s)∆r≤x(s)<(i(s)+1)∆r

1≤s≤d

P
{

there exists a J-path

from
(
x, (k − 1)∆r + j/n

)
to ∂

d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]

of time duration ≤ ∆r/(2C̃1) + 1/n ≤ (∆r − 1)/C̃1 and which uses

only particles which are in Vr(i) at time (k − 1)∆r

∣∣∣Jr(i, (k − 1)∆r

)
}.

We next prepare for the estimation of the probability in the right hand side
here. Fix j/n and x for the time being. We shall condition on the numbers
and locations of the particles at time (k − 1)∆r + j/n which were in Vr(i)
at time (k − 1)∆r. Recall that the number of such particles at x is denoted
by L(x, j/n) = Lr(x, i, k − 1, j/n). We are going to apply Proposition 4 and
Remark 2 after it and (the proof of) Theorem 1 in [KSc]. To this end we
bring in the following process. First we start the A-system by choosing the
NA(x, 0−) as i.i.d. mean µA Poisson variables and add an extra A-particle at
(0, 0). We let this A-system run till time (k − 1)∆r. We then continue from
time (k− 1)∆r with only the A-particles in Vr(i, k). At time (k− 1)∆r + j/n
we add one further B-particle at x. We then let this process with the extra
B-particle continue from time (k − 1)∆r + j/n, using the same rules as for
the {Yt} process, that is, A-particles turn into B-particles when they coincide
with a B-particle, but particles cannot recuperate from type B to type A.
Let ν(x, j/n) denote the number of B-particles outside x+ C(∆r − 1) at time
(k − 1)∆r + j/n+ (∆r − 1)/C̃1 in the resulting process. Then

E{ν(x, j/n) | Jr
(
i, (k − 1)∆r

)
} = E{ν(x, j/n) | J̃r

(
i, (k − 1)∆r

)
}(4.67)

= E
{
E
{
ν(x, j/n)

∣∣L(z, j/n), z ∈ Zd
}∣∣J̃ (i, (k − 1)∆r

)}
.
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(4.58) says that the conditional distribution of the L(z, j/n), z ∈ Zd, given
J̃
(
i, (k − 1)∆r

)
satisfies condition (2.51) of [KSc] with µA replaced by

µ̃ := 2γ0µA.

We think of the L(·, j/n) as the random initial condition for the process from
time (k−1)∆r+j/n on of the particles in Vr(i, k) plus the one extra B-particle
inserted at x at time (k − 1)∆r + j/n. Proposition 4 and Remark 2 after it
and Theorem 1 in [KSc] then show that on the event (4.63) the right hand
side of (4.67) is at most equal to the

E{number of B-particles outside C(∆r − 1) at time (∆r − 1)/C̃1(4.68)

in the {Yt}-process with the initial number of

A-particles distributed as i.i.d., mean µ̃ Poisson

variables plus one B-particle at 0}

≤ 2e−(∆r−1)/C̃1 (see (1.3) in [KSc]) ≤ 2e−∆r/(2C̃1).

We now return to the estimation of (4.66). By virtue of Lemma 14, the
probability in (4.66) is at most

P{some J-path starting at
(
x, (k − 1)∆r + j/n

)
and using only

particles from Vr(i, k) leaves x+ C(∆r − 1)

during [0, (∆r − 1)/C̃1]
∣∣∣Jr(i, (k − 1)∆r

)
}

≤ 2E{number of B-particles outside C(∆r − 1) at time (∆r − 1)/C̃1,

in the process using only particles from Vr(i, k)

plus one B-particle at (x, (k − 1)∆r + j/n),

as described above
∣∣∣Jr(i, (k − 1)∆r

)
}

≤ 4e−∆r/(2C̃1) (by (4.67) and (4.68)).

To conclude we substitute the last estimate into (4.66) to obtain

P{I3,2(r, i, k) = 1 | Jr
(
i, (k − 1)∆r

)
}

≤ (γ0µA7d∆d
r + 1)2∆rD

2

∆3(d+1)2

r

+
∑

∆r−1/n≤j/n
<2∆r+1/n

∑
i(s)∆r≤x(s)<(i(s)+1)∆r

1≤s≤d

4e−∆r/(2C̃1)

≤ ∆−2(d+1)2

r ,

on the event (4.63), provided R5 is taken large enough. �
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Lemma 21. Take R1 = max{R2, R3, R4, R5}. Then there exist constants
K17-K19, depending on d only, and t5 such that for t ≥ t5 and R1 ≤ r ≤ R(t)

P
{

sup
π̂∈Ξ(J,`,t)

∑
(i,k)

(π̂,r)I3,2(r, i, k) ≥ K17∆−2d−3
r (t+ `)

}
(4.69)

≤ K18 exp
[
−K19∆−2d−3

r (t+ `)
]
.

Proof. The argument for this proof has already been used in the proof of
Lemma 18. Define

Y (i, k) = I[Vr(i, k) is good, but I3,2(r, i, k) = 1].

Also, let {Z(i, k)} be a system of independent random variables with

P{Z(i, k) = 1} = 1− P{Z(i, k) = 0} = ∆−2(d+1)2

r .

We claim that for fixed a ∈ {0, . . . , 11}d, b = 0 or 1

{Y (i, k) : (i, k) such that (i, k) ≡ (a, b) and Br(i, k)

intersects C(t log t)}
lies stochastically below the collection

{Z(i, k) : (i, k) such that (i, k) ≡ (a, b) and Br(i, k)

intersects C(t log t)}.

This claim follows immediately from (4.62). Indeed, the event {Vr(i, k) is
good} lies in Jr

(
i, (k − 1)∆r

)
. Also the events {Y (i′, k′) = 1} for k′ ≤

k, (i′, k′) 6= (i, k), (i′, k′) ≡ (a, b), belong to Jr
(
i, (k−1)∆r

)
. Finally, P{Y (i, k)

= 1 | Jr
(
i, (k−1)∆r

)
} ≤ ∆−2(d+1)2

r , by Lemma 20. (Note that Y (i, k) = 0 on
the complement of the event (4.63).) With our claim established, it follows
that the left hand side of (4.69) is at most

(4.70)
∑
(a,b)

P
{

sup
π̂∈Ξ(`,t)

∑
(i,k)≡(a,b)

(π̂,r)Z(i, k) ≥ [2 · 12d]−1K17∆−2d−3
r (t+ `)

}
.

We shall not give further steps in the proof of (4.69), because from (4.70) on
it is the same as for Lemma 11 in [KSa], with χr+1 and r+1 there replaced by
∆−2(d+1)2

r and r, respectively, or the proof following (4.49) in Lemma 18. �

Lemma 22. There exist a constant t6 such that for t ≥ t6 and R(t) ≥ r ≥
max{R2, R3, R4, R5},

P
{

for some π̂ ∈ Ξ(J, `, t),(4.71) ∑
(i,k)

(π̂,r)Min(r, i, k)I3,2(r, i, k) ≥ K4(t+ `)
∆r

}
≤ K5 exp

[
−K6(t+ `)/[log t]12d+18

]
.
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Proof. This is now a familiar application of Lemma 15. We use that
(4.7) and (4.8) for the Min(r, i, k) hold with M̃(r, i, k) a Poisson variable and
θr, log Γr as in (4.44). Further, (4.69) gives us an estimate for the first term
in the right hand side of (4.20), with I replaced by I3,2 and

εr = K17∆−2d−3
r

in the definition of H2(π̂, r). The lemma follows from Lemma 15 with x =
8(12)dK2 (t+ `)/∆r. �

The next lemma will deal with
∑π̂,r)

(i,k)MinI4, but only for r = R1.

Lemma 23. There exist some constants C13, R6 and t7 (all independent
of `) such that for t ≥ t7, R1 ≥ max{Rj : 2 ≤ j ≤ 6} and ` ≥ C13t it holds

P{Θ(t) and for some π̂ ∈ Ξ(J, `, t),(4.72) ∑
(i,k)

(π̂,R1)Min(R1, i, k)I4(R1, i, k) ≥ `/4}

≤ 2 exp[−
√
t+ `] +K1[t log t]d exp[−K3`/4].

Proof. We begin with proving the deterministic inequality

(4.73)
∑
(i,k)

(π̂,r)I4(r, i, k) ≤ 2 · 3dC̃1

∑
(i,k)

(π̂,r)I3(r, i, k) + 4 · 3dC̃1t/∆r.

This inequality holds for each r and each J-path π̂. To see this, fix π̂ and
consider the time intervals χj :=

[
j∆r/(2C̃1), (j + 1)∆r/(2C̃1)

)
. An r-block

Br(i, k) can intersect π̂|[0,t] only during a χj with 0 ≤ j < 2C̃1t/∆r. Fix
such a j and assume that for this j, π̂|χj intersects exactly σj distinct good
r-blocks. There is then a subcollection of at least αj := d3−dσje of these
blocks such that no two of them have spatial parts which are adjacent on L.
Denote this subcollection of good r-blocks by Br(i1, k), . . . ,Br(iαj , k), where
k is such that χj ⊂ [k∆r, (k + 1)∆r) (only r-blocks with this value of k can
intersect π̂ during χj). Without loss of generality assume these blocks are
ordered in the order in which π̂|χj first visits them. Then, for each u < αj
let (x′, s′) be the earliest point in Br(iu, k) ∩ π̂|χj , and (x′′, s′′) the earliest
point in Br(iu+1, k) ∩ π̂|χj . By our choice of the blocks Br(i`, k) we then
have that ‖iu+1 − iu‖ > 1 and (x′′, s′′) ∈ Br(iu+1, k). Hence x′′ lies outside∏d
s=1

[
(iu(s)−1)∆r, (iu+2)∆r

)
, so that the piece of π̂ from (x′, s′) to (x′′, s′′)

is a J-path from (x′, s′) ∈ Br(iu, k) to (x′′, s′′) with s′, s′′ ∈ χj and x′′ outside
of
∏d
s=1

[
(iu(s)−1)∆r, (iu+ 2)∆r

)
and s′′ ∈

[
s′,
(
s′+ ∆r/(2C̃1)

)
. Thus there

have to be at least αj−1 ≥ 3−dσj−1 good r-blocks Br(i, k) which are counted
in
∑

(i,k)
(π̂,r)I3(r, i, k). The blocks so obtained for one given value of j are

distinct by construction. However, we may obtain the same block Br(i, k)
a number of times for different values of j. We already saw that this can
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happen only for χj ⊂ [k∆r, (k + 1)∆r), and hence only for 2C̃1 values of j.
Consequently,∑

(i,k)

(π̂,r)[I3(r, i, k) + I4(r, i, k)]

= [number of good r-blocks which intersect π̂]

≤
∑

0≤j<2C̃1t/∆r

σj ,

and ∑
(i,k)

(π̂,r)I3(r, i, k) ≥ 1

2C̃1

∑
0≤j<2C̃1t/∆r

[αj − 1]

≥ 1

2C̃1

∑
0≤j<2C̃1t/∆r

[3−dσj − 1]

≥ 1

2 · 3dC̃1

∑
(i,k)

(π̂,r)[I3(r, i, k) + I4(r, i, k)]− 2t/∆r.

(4.73) is now immediate.
Now, by virtue of (4.47), (4.55) and (4.69) it holds for t ≥ some t7 and for

r ≤ R(t), but large enough,

P
{

Θ(t) and
∑
(i,k)

(π̂,r)I3(r, i, k) ≥ 2 +K17

[∆r]2d+3
(t+ `) for some π̂ ∈ Ξ(J, `, t)

}
≤ 2 exp[−

√
t+ `].

Combined with (4.73) this shows that also

P
{

Θ(t) and
∑
(i,k)

(π̂,r)I4(r, i, k) ≥ 2 · 3dC̃1
2 +K17

[∆r]2d+3
(t+ `) +

4 · 3dC̃1

∆r
t(4.74)

for some π̂ ∈ Ξ(J, `, t)
}
≤ 2 exp[−

√
t+ `].

We now take R6 so large that for R6 ≤ r ≤ R(t), (4.74) holds as well as

(4.75) 2 · 3dC̃1
2 +K17

[∆r]2d+3
log Γr ≤

K2

4∆r

(with log Γr given by (4.44)) and

(4.76) 4(12)d
4K2

∆r
≤ 1

8
.
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Finally we take for given R1, C13 = C13(R1) ≥ 1 so large that

(4.77)
4 · 3dC̃1

1 + C13
log ΓR1 ≤

K2

4
.

With R1 ≥ max{R2, . . . , R6} we then set

εR1 = 2 · 3dC̃1
2 +K17

[∆R1 ]2d+3
+

4 · 3dC̃1

(1 + C13)∆R1

.

For ` ≥ C13t, (4.74) (with r = R1) then gives the following bound for the first
term in the right hand side of (4.20):

P
{

Θ(t) and for some π̂ ∈ Ξ(J, `, t),(4.78) ∑
(i,k)

(π̂,R1)I4(π̂, R1, k) ≥ εR1(t+ `)
}

≤ 2 exp[−
√
t+ `].

To prove (4.72) we shall apply Lemma 15 once more. As in Lemma 17 we have
(4.7) and (4.8) for Min(R1, i, k) ≤ M̃(R1, i, k) with the M̃(R1, i, k) Poisson
variables with θR1 , log ΓR1 as in (4.44) with r replaced by R1. Moreover, for
` ≥ C13t ≥ t,

x =
`

4
≥ 4(12)d

4K2

∆R1

(t+ `)

satisfies condition (4.19) by virtue of our choices (4.75)–(4.77). Thus (4.72)
follows from (4.20) and (4.78). �

Proof of Proposition 13. The definitions of Mout and Min, and the lines
just before (4.45) show that for π̂ ∈ Ξ(J, `, t), on the event Θ(t),

j(t, π̂) ≤
R(t)∑
r=R1

∑
(i,k)

(π̂,r)Mout(r, i, k)I1(r, i, k)(4.79)

+
R(t)∑

r=R1+1

∑
(i,k)

(π̂,r)Min(r, i, k)I2(r, i, k)

+
∑
(i,k)

(π̂,R1)Min(R1, i, k)I3(R1, i, k)

+
∑
(i,k)

(π̂,R1)Min(R1, i, k)I4(R1, i, k).

Now any π̂ ∈ Ξ(`, t) has ` jumps during [0, t] and therefore, if Ξ(J, `, t) is
nonempty, then for some π̂ one of the four sums in the right hand side here
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must be at least `/4. Consequently,

P{Θ(t) and Ξ(J, `, t) 6= ∅}

(4.80)

≤ P{Θ(t) and sup
π̂∈Ξ(J,`,t)

R(t)∑
r=R1

∑
(i,k)

(π̂,r)Mout(r, i, k)I1(r, i, k) ≥ `/4}

+ P{Θ(t) and sup
π̂∈Ξ(J,`,t)

R(t)∑
r=R1+1

∑
(i,k)

(π̂,r)Min(r, i, k)I2(r, i, k) ≥ `/4}

+ P{Θ(t) and sup
π̂∈Ξ(J,`,t)

∑
(i,k)

(π̂,R1)Min(R1, i, k)I3(R1, i, k) ≥ `/4}

+ P{Θ(t) and sup
π̂∈Ξ(J,`,t)

∑
(i,k)

(π̂,R1)Min(R1, i, k)I4(R1, i, k) ≥ `/4}.

We now restrict ourselves to ` ≥ C13t and take R1 ≥ max{Rj : 2 ≤ j ≤ 6}
such that also

(4.81) ∆R1 >
C6

0

C6
0 − 1

[
16K4 ∨ 64(12)dK2

]
.

Finally we take t ≥ max{tj : 1 ≤ j ≤ 7} and large enough for some further
inequalities below. We stress that all these requirements do not depend on
the value of `.

Now, to estimate the first term in the right hand side of (4.80), assume
that ∑

(i,k)

(π̂,r)Mout(r, i, k)I1(r, i, k) ≤ K4(t+ `)
∆r

for all π̂ ∈ Ξ(J, `, t) and all R1 ≤ r ≤ R(t). Then also for all such π̂ and
` ≥ C13t ≥ t,

R(t)∑
r=R1

∑
(i,k)

(π̂,r)Mout(r, i, k)I1(r, i, k)

<
∞∑

r=R1

K4(t+ `)
∆r

=
K4(t+ `)

∆R1

C6
0

C6
0 − 1

(since ∆r = C6r
0 )

≤ `

4
(by (4.81).

It therefore follows from (4.28), and the fact that R(t) ∼ [d logC0]−1 log log t
(see (4.13)), that the first term in the right hand side of (4.80) is at most∑
R1≤r≤R(t)

K5 exp
[
−K6(t+`)/[log t]6

]
≤ K20(log log t) exp

[
−K6(t+`)/[log t]6

]
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for some constant K20.
In the same way, but using (4.43) instead of (4.28), we obtain that the

second term in the right hand side of (4.80) is at most

K20(log log t) exp
[
−
√

(t+ `)
]
.

The third term in the right hand side also contributes at most

K20(log log t) exp[−
√
t+ `],

by virtue of (4.48) and (4.71). Finally, if ` ≥ C13t, then by (4.72) the fourth
term in the right hand side is at most

2 exp[−
√
t+ `] +K1[t log t]d exp[−K3`/4].

We now substitute these estimates in the right hand side of (4.80) and sum
over ` ≥ C13t. This yields

(4.82) P{Θ(t) and Ξ(J, `, t) 6= ∅ for some ` ≥ C13t} ≤ K21 exp[−K22

√
t]

for suitable constants K21,K22 and all large t. We add P{[Θ(t)]c} (see (4.16))
to obtain that P{Ξ(J, `, t) 6= ∅ for some ` ≥ C13t} ≤ 2t−2 for large t. Hence,
by Borel-Cantelli, a.s.

⋃
`≥C13t

Ξ(J, `, t) = ∅ for all large integers t. In view
of (4.12) and the lines following it, this implies that a.s. J(t,0) ≤ C13t for all
large integers t. Since J(t,0) is nondecreasing in t this implies Proposition 13
with C12 = 2C13. �

Remark 6. Note that (4.82) proves the explicit estimate

(4.83) P{Θ(t) and J(t, x) ≥ C13t} ≤ K21 exp[−K22

√
t]

for each fixed x ∈ Zd, for all large t.

5. Extinction for large λ

In this section we show that λc < ∞. We shall use the r-blocks Br(i, k)
and their pedestals Vr(i, k) = V (i, k) × {(k − 1)∆r} as defined in Section 4.
C̃1 is defined just after (4.45). We shall work with the {Yt(λ)}-process in
this section. This process starts with independent mean µA Poisson variables
NA(x, 0−) for the number of A-particles “just before time 0” and one addi-
tional B-particle at 0 at time 0, as explained in the abstract. The B-particles
turn back into A-particles at rate λ, independently of everything else; λ is
called the recuperation rate. A particle ρ′ which recuperated at time s′ turns
into a B-particle again at time s′′ := inf{s > s′ : ρ′ jumps onto another
B-particle ρ′′ or vice versa at time s}.

If there is a B-particle at the space-time point (x, t), then there is a ge-
nealogical path which starts at (0, 0) and reaches (x, t). In particular, this
means that, for some `, there exist times s0 = 0 < s1 < · · · < s` < s`+1 = t
and particles ρ0, ρ1, · · · , ρ` such that ρ0 is a B-particle at (0, 0), ρ` is the given
B-particle at (x, t), and ρi jumps onto the position of ρi−1 or vice versa at
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time si, 1 ≤ i ≤ `; moreover, ρi is of type B during [si, si+1], 0 ≤ i ≤ `. (See
the construction in the proof of Proposition 5 in [KSa] as well as the comments
in the paragraph following (2.1) above.) Note that it is not necessary that all
particles ρi, 0 ≤ i ≤ `, are distinct; it is possible that ρi = ρj if |i − j| > 1.
This is due to the possibility of recuperation, and cannot be ruled out, as
was done in the case without recuperation studied in [KSc]. We shall extend
our definition of J-path somewhat, so that a genealogical path such as just
discussed is also a J-path. In Section 4 we considered only A-particles. But
the paths of the particles are not influenced at all by the types under our basic
assumption that the A and B-particles perform the same random walk. We
can therefore define a J-path to be any path which coincides at all times with
some particle, irrespective of type. Otherwise these paths are exactly as dis-
cussed in the beginning of Section 4. All arguments of the preceding section,
and in particular, its principal result, Proposition 13, remain valid. To see
this, one simply has to ignore the types of all particles. A genealogical path
for a particle at time t coincides at each time in [0, t] with some B-particle.
Moreover, each jump of a genealogical path coincides with the jump of some
particle, and a genealogical path is therefore a J-path on [0, t]. Moreover, in
our model, it has to start at 0, because that is the only site with B-particles
at time 0.

In this section we want to prove the following result:

Proposition 24. For sufficiently large λ there a.s. exists a (random)
time τ <∞ such that there are no B-particles in {Yt(λ)} after τ .

The idea of the proof is as follows. Assume that there is a B-particle at
(x, t) and let π̂ : [0, t]→ Z

d× [0, t] be its genealogical path. For a fixed large r
we consider all r-blocks which intersect π̂. Of course there are at least bt/∆rc
such blocks, since each r-block only extends over an interval of length ∆r

in the time direction. The next lemma is the principal one. It states that
for each of these r-blocks at least one of four events G(j) has to occur. We
shall then show in a series of lemmas that there are (with high probability
for large t) for each j at most t/(10∆r) r-blocks which intersect π̂ and have
G(j) occurring. Actually the next lemma leaves one exceptional case. At
the end of the section we show that with high probability this exceptional
case contributes at most a bounded number of r-blocks which intersect π̂. In
total that gives at most 5t/(10∆r) < bt/∆rc r-blocks which intersect π̂. This
contradiction shows that with high probability there are for large t no points
(x, t) with a B-particle.

For integral z ≥ −1 we shall use the abbreviation

vr(k, z) := [k + z/(4C̃1)]∆r.
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Lemma 25. Let there be a B-particle at (x, t) in the {Yt(λ)}-process and
let π̂ : [0, t] → Z

d × [0, t] be a genealogical path from (0, 0) to (x, t) and let
Br(i, k) be an r-block which intersects π̂ in a point (y′′, s′′) with k ≥ 1 and
vr(k, z) ≤ s′′ < vr(k, z + 1) ≤ t for some integer z ∈ [0, 4C̃1). Then one of
the following four events must occur:

G(1) = Gr(1, i, k) := {Br(i, k) is bad};
G(2, z) = Gr(2, z, i, k)

:= {Br(i, k) is good, and in the {Yt(λ)}-process

which continues from time vr(k, z − 1) with the particles

in Vr(i) only, there are still some B-particles at time vr(k, z)};
G(3, z) = Gr(3, z, i, k)

:= {Br(i, k) is good, but there is a particle which is

outside Vr(i) at some time u ∈ [vr(k, z − 1), (k + 1)∆r)

and which visits
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1]

at some later time in [u, (k + 1)∆r)};
G(4, z) = Gr(4, z, i, k)

:= {Br(i, k) is good, but there is a J-path from

some (y′, s′) to (y′′, s′′) with

y′ ∈ ∂
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1],

y′′ ∈
d∏
s=1

[i(s)∆r, (i(s) + 1)∆r) and

vr(k, z − 1) ≤ s′ ≤ s′′ ≤ vr(k, z + 1),
and this J-path uses only particles

which were in Vr(i) at time vr(k, z − 1)}.

Proof. If Br(i, k) intersects π̂, then they must have some point (y′′, s′′) with
y′′ ∈

∏d
s=1[(i(s)∆r, (i(s) + 1)∆r) and s′′ ∈ [k∆r, (k + 1)∆r) in common (by

the definition of Br(i, k)). Clearly there must then exist an integer z ∈ [0, 4C̃1)
such that vr(k, z) ≤ s′′ < vr(k, z+1). We fix such a (y′′, s′′) for the remainder
of this proof, and remind the reader that we assume k ≥ 1 in this lemma. Since
(y′′, s′′) is on the genealogical path for (x, t) there must be a B-particle present
at (y′′, s′′), as we already pointed out. Let ρ∗ be such a B-particle.
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If G(1) fails, then Br(i, k) is good, so that this may be assumed to be the
case in G(2, z)-G(4, z). Now assume that none of G(1), G(2, z) or G(3, z) oc-
cur. Since G(3, z) fails, any particle at (y′′, s′′) is one of the particles which
was in Vr(i) at time vr(k, z− 1). In particular, this must be true for ρ∗. Con-
sider the genealogical path for ρ∗. Let π̂0 be the piece of this last genealogical
path over the time interval [vr(k, z − 1), s′′]. This is a genealogical path for
ρ∗ in a system which starts with all the particles at time vr(k, z−1). Assume
π̂0 arises from particles ρi, such that ρi jumps to the position of ρi−1 or vice
versa at time si, 1 ≤ i ≤ `, and that ρi has type B during [si, si+1], 0 ≤ i ≤ `,
with s0 = vr(k, z − 1), s`+1 = s′′, and ρ` = ρ∗, as explained in the second
paragraph of this section. Let si0 ≤ vr(k, z) ≤ si0+1. We claim that one of
the ρi with i ≤ i0 must have been outside Vr(i) at time vr(k, z − 1). Indeed,
if this is not the case, then the system starting with only the particles in
Vr(i) at time vr(k, z − 1) has at least one B-particle at the time vr(k, z). To
see this, observe that if ρ0. . . . , ρi0 all came from Vr(i) at time vr(k, z − 1),
then, by induction on i, each of these ρi would be a particle of type B during
[si, si+1] in the system of particles which were in Vr(i) at time vr(k, z− 1). In
particular ρi0 would be of type B at time vr(k, z) in this sytem. This would
contradict the assumption that G(2, z) does not occur. Our claim follows.

In particular, there is a maximal indexm ≤ ` for which ρm was outside Vr(i)
at some time in [vr(k, z−1), sm+1] ⊂ [vr(k, z−1), s′′]. In fact this maximalm is
less than `, since ρ` = ρ∗ is a particle in

∏d
s=1[(i(s)∆r, (i(s)+1)∆r) at time s′′,

and G(3, z) fails. Since ρm is outside Vr(i) at some time u ∈ [vr(k, z−1), s′′], it
does not enter

∏d
s=1[(i(s)−1)∆r, (i(s)+2)∆r−1] during [u, (k+1)∆r) (because

G(3, z) fails). This means that at time sm+1, ρm and hence also ρm+1, are
outside

∏d
s=1[(i(s) − 1)∆r, (i(s) + 2)∆r − 1]. The path π̂0 therefore must

intersect ∂
∏d
s=1[(i(s)− 1)∆r, (i(s) + 2)∆r − 1] sometime during [sm+1, s

′′] ⊂
[vr(k, z − 1), vr(k, z + 1)], because its endpoint at time s′′ lies in Br(i, k). Let
the latest intersection of π̂0 with ∂

∏d
s=1[(i(s)− 1)∆r, (i(s) + 2)∆r − 1] occur

at time s′ ∈ [sm+1, s
′′) and position y′. Then the piece of π̂0 over the time

interval [s′, s′′] is a J-path which uses at most the particles ρm+1, · · · , ρ`,
all of which were in Vr(i) at time vr(k, z − 1) (by our choice of m). Thus
G(4, z) occurs with this J-path, while (y′, s′) and (y′′, s′′) have all the required
properties. �

We now start on showing that each G(j) occurs on relatively few blocks.
Here G(j) is short for

⋃
0≤z<4C̃1

G(j, z) in case j = 2, 3, 4. We remind the
reader of the definitions of Φr(`) and Ξ(J, `, t) in (3.90), (3.91), (4.17) (see
also (6.1), (6.8) and (6.9) in [KSa]; note that “good” is now defined as in
[KSa] and not as in [KSc]). In (4.12) and the lines following it we showed that

P{there exists a J-path starting at 0 which is not in
⋃
`≥0

Ξ(J, `, t)} ≤ 2e−t
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for large t. In addition, Proposition 13 (or rather (4.82)) says that for suitable
constants C13,K21,K22

P{Θ(t) and
⋃

`≥C13t

Ξ(J, `, t) 6= ∅} ≤ K21 exp[−K22

√
t].

Finally, (4.16) says that P{[Θ(t)]c} ≤ t−2 for large t. It follows from these
that for all r

P{there is a B-particle at time t in the {Y.(λ)}-process}
≤ P{there exists some genealogical path π̂

leading to a B-particle at time t}

≤ 2e−t + t−2 +K21 exp[−K22

√
t]

+ P{Θ(t) and there exists a path in
⋃

`<C13t

Ξ(J, `, t)

which starts at 0}

≤ 2e−t + t−2 +K21 exp[−K22

√
t]

+
4∑
j=1

P{Θ(t) and there exists a path in
⋃

`<C13t

Ξ(J, `, t)

which starts at 0 and intersects

more than t/(10∆r) r-blocks Br(i, k)

with k ≥ 1 for which G(j) occurs}

+ P{Θ(t) and there exists a path in
⋃

`<C13t

Ξ(J, `, t)

which starts at 0 and which intersects

more than t/(10∆r) r-blocks Br(i, 0)}.

It therefore suffices for Proposition 24 to prove for some fixed r, λ and 1 ≤
j ≤ 4

P{Θ(t) and there exists a path in
⋃

`<C13t

Ξ(J, `, t) which(5.1)

starts at 0 and intersects more than t/(10∆r) r-blocks

Br(i, k) with k ≥ 1 for which G(j) occurs} → 0,
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as well as

P{Θ(t) and there exists a path in
⋃

`<C13t

Ξ(J, `, t) which starts at 0(5.2)

and which intersects more than t/(10∆r) r-blocks Br(i, 0)} → 0,

as t→∞.
For G(1) (5.1) is contained in Lemma 15 of [KSa]. Indeed, Lemma 15 in

[KSa] proves that for suitable constants K12,K13, κ0

P{there exists some path in Ξ(`, t) which intersects more than(5.3)

K13κ0(t+ `) exp[−K12C
r/4
0 ] bad r-blocks for some r ≥ d, ` ≥ 0}

≤ 2
t2

for all large t. We merely have to take r1 ≥ d so large that

K13κ0(1 + C13) exp[−K12C
r1/4
0 ] ≤ 1

10∆r1

to obtain for any r ≥ r1

P{there exists some path in
⋃

`<C13t

Ξ(`, t) which intersects(5.4)

more than t/(10∆r) bad blocks}

≤ 2
t2
,

which gives (5.1) for j = 1.
The next two lemmas will imply (5.1) for j = 2. It is the only place where

the recuperation rate λ plays a role. For simplicity we formulate this lemma
only in the form in which we use it, even though there is a more general
version. We generalize the definition (4.56) to

Jr(i, u) := σ-field generated by the NA(x, 0−), x ∈ Zd, and(5.5)

all paths during [0, u], as well as the paths

on [u,∞) of all particles outside Vr(i) at time u,

Similarly we generalize the definition of a good pedestal. Specifically, we say
that Vr(i)× {u} is good, if

Ur(x, u) ≤ γrµACdr0 for all x for which Qr(x) ⊂ Vr(i).

The γr are introduced just before (4.4); their only property important to us
here is (4.4). The definition of a good r-block then shows that if Br(i, k) is
good, then so is Vr(i)× {u} for any u ∈ [(k − 1)∆r, (k + 1)∆r).
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Lemma 26. For each r ≥ 1, T ≥ 0 and 0 < ε ≤ 1 there exists a λ1(r, T, ε)
such that for all λ ≥ λ1, all (i, k) with k ≥ 1 and all u ∈ [(k−1)∆r, (k+1)∆r)

P
{
Vr(i)× {u} is good and the system which consists at time(5.6)

u ∈ [(k − 1)∆r, (k + 1)∆r) of the particles in Vr(i) only, and
which develops from time u on according to the rules for

{Yt(λ)}, has some B-particles at time u+ T
∣∣∣Jr(i, u)

}
≤ ε.

Proof. Let ρ1, ρ2, . . . , ρf be all the particles in Vr(i) at time u. If Vr(i)×{u}
is good, then there are at most ν = νr := [7∆r]dγ0µAC

dr
0 +1 particles in Vr(i)

at time u, so that f ≤ ν (see the beginning of the proof of Lemma 17 for
an explanation of the extra term 1 here). Let N be a large integer and set
um = u + mT/N, 0 ≤ k ≤ N . It suffices to show that with probability
at least 1 − ε all particles ρ1, . . . , ρf have type A at some um, 0 ≤ m ≤
N . Indeed if this happens at time um, then the particles ρ1, . . . , ρf will all
have type A at all times after um (since we are ignoring interactions with
all other particles in the system of this lemma). But whatever types and
locations ρ1, . . . ρf have at time um, there is a conditional probability of at
least exp[−fDT/N ][1 − e−λT/N ]f that none of the particles ρi, 1 ≤ i ≤ f ,
has a jump during [um, um+1], but that all of them have a recuperation event
during [um, um+1]. If this happens, then all ρi will be of type A at time um+1.
(Note that here we use our rule that a jump is needed before a recuperated
particle can become reinfected.) It follows from this that the left hand side of
(5.6) is at most

[
1− exp[−fDT/N ][1− e−λT/N ]f

]N
.

Now take N0(νr, T, ε) such that

[
1− 1

2
exp[−fDT/N0]

]N0

≤ ε for all f ≤ νr,

and then λ1 = λ1(r, T, ε) such that [1 − e−λ1T/N0 ]νr ≥ 1/2. (5.6) holds for
this value of λ1. �

Lemma 27. For each r ≥ 1 there exists a λ0(r) such that for λ ≥ λ0,
(5.1) with G(j) replaced by

⋃
0≤z<4C̃1

Gr(2, z, i, k) holds.
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Proof. Fix r ≥ 1, z ∈ {0, 1, . . . , 4C̃1 − 1} and ε > 0. Define Y (z, i, k) =
I[Gr(2, z, i, k)] and let Ỹ (z, i, k) be the indicator function of{

Vr(i)× {vr(k, z − 1)} is good and the system which consists

only of the particles in Vr(i) at time vr(k, z − 1) and which

develops from time vr(k, z − 1) on according to the rules

for {Yt(λ)} has some B-particles at time vr(k, z)
}
.

It is immediate from the definitions that Y (z, i, k) ≤ Ỹ (z, i, k). Moreover, by
applying the preceding lemma with u = vr(k − 1, z) and T = ∆r/(4C̃1), we
see that we can find a λ0 = λ0(ε) such that for all λ ≥ λ0, 0 ≤ z < 4C̃1,

(5.7) P{Ỹ (z, i, k) = 1 | Jr(i, vr(k, z − 1))} ≤ ε.

A fortiori, the same inequality holds if Ỹ is replaced by Y . In fact we have
more. Let a ∈ {0, 1, · · · , 11}d and b = 0 or 1. Let further Z(z, i, k) be a family
of independent random variables with

P{Z(z, i, k) = 1} = 1− P{Z(z, i, k) = 0} = ε.

(5.7) shows that the conditional probability of {Ỹ (z, i, k) = 1}, given all the
Ỹ (z, j, `) with j ≡ i mod (a), ` ≡ k mod (b) and (j, `) preceding (i, k) in the
lexicographic order, is at most ε. Just as in the proof of Lemma 21, this shows
that for fixed z, the family {Ỹ (z, i, k) : (i, k) ≡ (a, b)} lies stochastically below
the family {Z(i, k) : (i, k) ≡ (a, b)}. Again this statement remains true if Ỹ
is replaced by the smaller Y .

We can now continue exactly as in Lemma 11 of [KSa] or the proof follow-
ing (4.49) in Section 4. Note that if there exists a π̂ ∈ Ξ(J, `, t) which intersects
more thanK1ε

1/(d+1)(t+`)/∆r blocks Br(i, k) for which
⋃

0≤z<4C̃1
Gr(2, z, i, k)

occurs, then there exists a 0 ≤ z < 4C̃1 such that π̂ intersects more than
K1ε

1/(d+1)(t + `)/[4C̃1∆r] blocks Br(i, k) for which Gr(2, z, i, k) occurs. We
therefore have for t ≥ 1 and for some constants K1-K3, which do not depend
on ε, ` or r,

P{there exists an ` < C13t and a path π̂ ∈ Ξ(J, `, t)

such that π̂ intersects more than

K1ε
1/(d+1)(t+ `)/∆r blocks Br(i, k)

with k ≥ 1 for which
⋃

0≤z<4C̃1

Gr(2, z, i, k) occurs}
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≤
∑

0≤z<4̃C1

P{there exists an ` < C13t and a path π̂ ∈ Ξ(J, `, t)

such that π̂ intersects more than

K1ε
1/(d+1)(t+ `)/[4C̃1∆r] blocks

Br(i, k) with k ≥ 1 for which Gr(2, z, i, k) occurs}

≤
∑

0≤z<4̃C1

∑
(a,b)

∑
0≤`<C13t

P{there exists a path π̂ ∈ Ξ(J, `, t)

such that π̂ intersects more than

K1ε
1/(d+1)(t+ `)/[8(12)dC̃1∆r] blocks Br(i, k)

with (i, k) ≡ (a, b), k ≥ 1 for which Gr(2, z, i, k) occurs}

≤
∑
(a,b)

∑
0≤`<C13t

K2 exp
[
−K3

(t+ `)
∆r

ε1/(d+1)
]
.

For ε so small that K1(1 + C13)ε1/(d+1) < 1/10, this gives (5.1) for G(2) =⋃
0≤z<4C̃1

G(2, z). �

The case j = 3 of (5.1) has already been handled in the proof of Lemma
18, where we introduced I5. Indeed, since simple random walk cannot jump
acrossWr(i), I[

⋃
0≤z<4C̃1

G(3, z, i, k)] ≤ I5(r, i, k). Thus, the number of good
blocks Br(i, k) which intersect any given J-path π̂|[0,t] ∈ Ξ(`, t) and for which
the event

⋃
0≤z<4C̃1

G(3, z, i, k) occurs is bounded by
∑(π̂,r)

(i,k) I5(r, i, k). The
inequalities (4.53) and (4.54) therefore apply. Moreover, the x in (4.52) is less
than (t + `)/(10∆r) for ` < C13t and r large enough, say for r ≥ r2. Thus
(5.1) with

⋃
0≤z<4̃C1

G(3, z) in the place of G(j) holds for r ≥ r2.
Finally we turn to (5.1) with j = 4. As we shall show now, all the steps

for this estimate are already given in the estimates for
∑

(i,k)
(π̂r)I3,2(r, i, k)

in the preceding section. Define

G̃(4, z) = G̃r(4, z, i, k)

=
{
Vr(i, k) is good, but there is a J-path from some

(y′, s′) to (y′′, s′′) with y′ ∈ ∂
d∏
s=1

[(i(s)− 1)∆r, (i(s) + 2)∆r − 1],

y′′ ∈
d∏
s=1

[i(s)∆r, (i(s) + 1)∆r)

and vr(k, z − 1) ≤ s′ ≤ s′′ ≤ vr(k, z + 1),

and this J-path uses only particles which were in Vr(i)

at time vr(k, z − 1)
}
.
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Then, by the definition of a good block Br(i, k) and its pedestal Vr(i, k) =
Vr(i)×{(k−1)∆r}, we haveG(4, z) ⊂ G̃(4, z). Moreover, we have the following
analogue of (4.66) for n = ∆3(d+1)2

r :

P{G̃r(4, z, i, k) occurs
∣∣∣Jr(i, (k − 1)∆r

)
}(5.8)

≤ (γ0µA7d∆d
r + 1)2∆rD

2

∆3(d+2)2

r

+
∑

vr(k,z−1)−1/n≤j/n
≤vr(k,z+1)+1/n

∑
x∈∂

∏d
s=1[(i(s)−1)∆r,(i(s)+2)∆r−1]

P
{
Vr(i, k) is good and there exists

a J-path from
(
x, j/n) to

d∏
s=1

[i(s)∆r, (i(s) + 1)∆r)

of time duration ≤ ∆r/(2C̃1) + 1/n ≤ (∆r − 1)/C̃1

and which uses only particles which are in Vr(i)

at time vr(k, z − 1)
∣∣∣Jr(i, (k − 1)∆r

)}
.

We can then follow the proof of Lemma 20 from (4.66) on to obtain that the
left hand side of (5.8) is at most

(γ0µA7d∆d
r + 1)2∆rD

2

∆3(d+1)2

r

(5.9)

+
∑

vr(k,z−1)−1/n≤j/n
≤vr(k,z+1)+1/n

∑
x∈∂

∏d
s=1[(i(s)−1)∆r,(i(s)+2)∆r−1]

4e−∆r/C̃1 .

In turn, it is easy to see that there exists an r3 such that for r ≥ r3 the
expression (5.9) is for each k ≥ 1, 0 ≤ z < 4C̃1 at most ∆−2(d+1)2

r (as in
Lemma 20). We then also obtain for r ≥ r3

P
{
Br(i, k) is good and Gr(4, z, i, k) occurs

for some 0 ≤ z < 4C̃1

∣∣∣Jr(i, (k − 1)∆r

)
}

≤
∑

0≤z<4C̃1

P
{
G̃r(4, z, i, k)

∣∣∣Jr(i, (k − 1)∆r

)
} ≤ 4C̃1∆−(2(d+1)2

r .

As in the last lemma the collection of random variables

Ỹr(i, k) := I[G̃r(4, z, i, k) occurs for some 0 ≤ z < 4C̃1]
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with (i, k) ≡ (a, b) lies stochastically below a family of independent random
variables Zr(i, k) satisfying

P{Zr(i, k) = 1} = 1− P{Zr(i, k) = 0} = 4C̃1∆−2(d+1)2

r .

Again we can now follow the proof of Lemma 11 or (5.43) in [KSa] (or the
proof of (4.55) above) to conclude that (for r ≥ r3)

P
{

sup
π̂∈Ξ(`,t)

∑
(i,k)

(π̂,r)Ỹr(i, k) ≥ K23
(t+ `)
∆2d+3
r

}
≤ K24 exp

[
−K25

(t+ `)
∆2d+3
r

]
(
∑(π̂,r)

(i,k) is as in (4.5)). If we take r4 ≥ r3 such that K23(1 +C13)[∆r4 ]−2d+3 ≤
[10∆r4 ]−1, then (5.1) for any r ≥ r4 and with G(j) replaced by⋃
0≤z<4C̃1

Gr(4, z, i, k)) is an immediate consequence.

Because the case k = 0 was excluded in Lemma 25 we still need an estimate
for the sup over {π̂ ∈ Ξ(J, `, t) : π̂(0) = 0} of the number of blocks Br(i, 0)
which intersect π̂. There are at most t/(10∆r) blocks Br(i, 0) with ‖i‖ ≤
K26t

1/d, with K26 some constant which depends on d and ∆r only. If there is
a block Br(i, 0) with ‖i‖ > K26t

1/d which intersects π̂, then some initial piece
of π̂ forms a J-path from 0 to the outside of C(K26t

1/d). Since all points in
blocks Br(i, 0) have time coordinate less than ∆r ≤ [2C1]−1K26t

1/d (for large
t), we obtain by means of (4.11),(4.12)

P{there exists some π̂ ∈ Ξ(J, `, t) with π̂(0) = 0(5.10)

such that π̂ intersects more than t/(10∆r) r-blocks Br(i, 0)}
≤ P{there exists a J-path from 0 to the outside of

C(K26t
1/d) of time duration less than [2C1]−1K26t

1/d}

≤ 4 exp
[
− [2C1]−1K26t

1/d
]
.

Thus, also (5.2) holds.
We now take r = max{ri : 1 ≤ i ≤ 4} and λ ≥ λ0(r). Then (5.1) holds

for 1 ≤ j ≤ 4 and also (5.2) holds. As discussed right after the statement of
Proposition 24, these properties imply Proposition 24.
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