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ON THE UNIQUENESS PROBLEM FOR CATALYTIC
BRANCHING NETWORKS AND OTHER SINGULAR

DIFFUSIONS

D.A. DAWSON AND E.A. PERKINS

Dedicated to the memory of Joe Doob whose work and example inspired us both

Abstract. Weak uniqueness is established for the martingale problem
associated to a family of catalytic branching networks. This martingale

problem corresponds to a stochastic differential equation with a degen-
erate Hölder continuous diffusion matrix. Our approach uses the semi-
group perturbation method of Stroock and Varadhan and a modification

of a Banach space of weighted Hölder continuous functions introduced
by Bass and Perkins.

1. Introduction

1.1. Catalytic branching networks. Let bi, γi, i = 1, . . . , d, be Hölder
continuous functions on Rd+ with bi(x) ≥ 0 if xi = 0 and γi(x) ≥ 0 for all x,
i = 1, . . . , d. We consider the operator A(b,γ) on C2(Rd+) defined by

A(b,γ)f(x) =
d∑
i=1

(
bi(x)

∂f

∂xi
+ γi(x)xi

∂2f

∂x2
i

)
, x ∈ Rd+.

The objective of this paper is to prove the uniqueness of solutions to the
martingale problem for the operator A(b,γ) under some regularity conditions
on the coefficients. Uniqueness results of this type are proved in [ABBP]
and [BP1] but they require the γi(x) to be strictly positive in R

d
+. The

problem considered in this paper is the extension of these results to the case
in which the γi can degenerate on the boundary. Our work is largely motivated
by models of catalytic branching networks that include catalytic branching,
mutually catalytic branching and hypercyclic catalytic branching systems (see
[DF] for a survey on these systems). For example, the hypercyclic catalytic
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branching model is a diffusion on Rd+, d ≥ 2, solving the following system of
stochastic differential equations:

dx
(i)
t = (θi − x(i)

t )dt+
√

2γi(xt)x
(i+1)
t x

(i)
t dBit, i = 1, . . . , d.(1)

Here x(t) = (x(1)
t , . . . , x

(d)
t ), addition of the superscripts is done cyclically so

that x(d+1)
t = x

(1)
t , θi > 0, and γi > 0 satisfy some mild regularity conditions.

This is a stochastic analogue of a system of ode’s first proposed by Eigen
and Schuster [ES] as a self-organizing system which models a macromolecular
precursor to early forms of life. They noted that there is an apparent phase
transition in the equilibrium behaviour of the system as you pass from 4 to
5 types (see [HS]). In (1) one has d large populations in which the (i + 1)st
population catalyzes the branching of type i, that is, the branching rate of
type i is proportional to the mass of type i+ 1. Given that the original model
was a precursor to a biological system consisting of a large number of self-
replicating molecules, our use of Feller branching in place of an ode with the
analogous catalytic structure is not at all unreasonable. For a discussion of a
general class of catalytic networks based on directed graphs, see [JK].

For d = 2 spatially distributed systems of this type have been studied
(Mytnik [M], Dawson and Perkins [DP1]) and uniqueness in law for γi con-
stant, even in infinite dimensional spatial settings, follows by a self-duality
argument. Unfortunately this duality breaks down when there are d > 2
types and moment methods fail (cf. [DFX]) so that uniqueness was open even
for γi constant. Existence and some results on qualitative behaviour of solu-
tions with more than two types in an infinite-dimensional spatial setting were
derived by Fleischmann and Xiong [FX].

Even in the special case d = 2 mentioned above uniqueness remains open
for non-constant γi. These diffusions arise in the renormalization analysis of
Dawson, Greven, den Hollander, Sun and Swart [DGHSS] aimed at identi-
fying the universality classes of catalytic branching and mutually catalytic
branching.

In this work we consider a natural class of catalytic branching networks
that includes the above examples as special cases and establish the unique-
ness. To describe these networks we begin with a directed graph (V, E) with
vertices V = {1, . . . , d} and set of directed edges E = {e1, . . . , ek}. We assume
throughout:

Hypothesis 1. (i, i) /∈ E for all i ∈ V and each vertex is the second
element of at most one edge.

Vertices denote types and an edge (i, j) ∈ E indicates that type i catalyzes
the type j branching. Let C denote the set of vertices (catalysts) which appear
as the 1st element of an edge and R denote the set of vertices that appear as
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the 2nd element (reactants). Let c : R→ C be such that for j ∈ R, cj denotes
the unique i ∈ C such that (i, j) ∈ E and for i ∈ C, let Ri = {j : (i, j) ∈ E}.

We then consider the system of stochastic differential equations:

dx
(j)
t = (θj − x(j)

t )dt+
√

2γj(xt)x
(i)
t x

(j)
t dBjt , if j ∈ Ri,(2)

dx
(j)
t = (θj − x(j)

t )dt+
√

2γj(xt)x
(j)
t dBjt , if j 6∈ R.

Again xt = (x(1)
t , . . . , x

(d)
t ) ∈ Rd+, θi > 0, and γi > 0 will satisfy some mild reg-

ularity. For {γi} constant, {x(j)
t : j 6∈ R} is a |Rc|-dimensional Feller branch-

ing immigration process and for i ∈ C, {x(j)
t : j ∈ Ri} is a catalytic branching

process with catalyst x(i)
t and with immigration. As for (1), uniqueness in (2)

remained open as the additional degeneracy in the diffusion coefficient pre-
vents one from applying the results of [ABBP] and [BP1]. Nonetheless we will
be using refinements and modifications of the basic ideas in [BP1] and [ABP]
in our proofs. Indeed a second motivation for this work came from wanting to
see if these techniques can be adapted to different sorts of degeneracies. Our
conclusion here is affirmative but not without some additional work which
will depend on the particular setting.

1.2. Statement of the main result. To complete the description of
the class of diffusions we consider we now state the main conditions on the
coefficients of our equations. This will be in force unless otherwise indicated.
|x| is the Euclidean length of x ∈ Rd.

Hypothesis 2. For i ∈ V ,

γi :Rd+ → (0,∞),

bi :Rd+ → R,

are Hölder continuous on compact subsets of Rd+ such that |bi(x)| ≤ c(1 + |x|)
on Rd+, and bi(x) ≥ 0 if xi = 0. In addition,

(3) bi(x) > 0 if i ∈ C ∪R and xi = 0.

For f ∈ C2
b (Rd+), let

Af(x) = A(b,γ)f(x)(4)

=
∑
j∈R

γj(x)xcjxjfjj(x) +
∑
j 6∈R

γj(x)xjfjj(x) +
∑
j∈V

bj(x)fj(x)

Here fij (or fi,j if there is any ambiguity) is the i, jth partial derivative of f .

Definition 3. If ν is a probability on Rd+, a probability P on C(R+,R
d
+)

solves the martingale problem MP (A, ν) if under P , the law of x0(ω) = ω0 is
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ν and for all f ∈ C2
b (Rd+) (xt(ω) = ω(t)),

Mf (t) = f(xt)− f(x0)−
∫ t

0

Af(xs) ds

is a local martingale under P with respect to the canonical right-continuous
filtration (Ft).

We will restrict the state space for our martingale problems. For A the
state space will be

S = {x ∈ Rd+ :
∏

(i,j)∈E

(xi + xj) > 0}.

We will see in Lemma 5 below that solutions to the martingale problem
necessarily take values in S at all positive times t a.s. and so S is a natural
state space for A.

Theorem 4. Assume Hypotheses 1 and 2 hold. Then for any probability,
ν, on S, there is exactly one solution to MP(A, ν).

1.3. Outline of the proof. The proof of Theorem 4 follows the Stroock-
Varadhan perturbation method ([SV]) and is broken into a number of steps.
Existence is proved as in Theorem 1.1 of [ABBP]. For existence, the non-
degeneracy of the γi assumed there is only used to ensure solutions remain in
the positive orthant and here we may argue as in Lemma 5 below. The main
issue is then uniqueness.

Step 1. A standard conditioning argument allows us to assume ν = δx.
By using Krylov’s Markov selection theorem (Theorem 12.2.4 of [SV]) and
the proof of Proposition 2.1 in [ABBP], it suffices to consider uniqueness for
families of strong Markov solutions.

We next observe that a solution never exits S.

Lemma 5. If P is a solution of MP (A, ν), where ν is a probability on
R
d
+, then xt ∈ S for all t > 0 P -a.s.

The proof is deferred to Section 4.

Step 2. Using the localization argument of [SV] (see, e.g., the argument
in [BP1]) it suffices to show that for each x ∈ S there exists r0 > 0 and
coefficients b̃i, γ̃i which agree with bi and γi, respectively, on B(x, r0) ∩ Rd+
and are such that there is at most one solution of MP (A(b̃,γ̃)).

In order to deal with the singular initial points, fix x0 ∈ S, let Z = Z(x0) =
{i ∈ V : x0

i = 0}. Note that if i 6∈ Z, then x0
i > 0 and so xis > 0 for small s

a.s.
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Given Z ⊂ V , set

N1 =
⋃

i∈C∩Z
Ri;

N̄1 = (Z ∩ C) ∪N1;

N2 = V \N̄1.

Note that if x0 ∈ S, then N1 ∩ Z = ∅.
We next recast MP (A, δx0) with x0 ∈ S as a perturbation of a well-behaved

diffusion on S(x0) = {x ∈ Rd : xi ≥ 0 for all i 6∈ N1} built from two indepen-
dent families of processes associated to N̄1, and N2, respectively.

First, for i ∈ C ∩ Z, we can view ({x(j)}j∈Ri , x(i)) near its initial point
({x0

j}j∈Ri , x0
i ) as a perturbation of the diffusion on R|Ri|×R+ which is given

by the unique solution to the system of sde:

dx
(j)
t = b0jdt+

√
2γ0
j x

(i)
t dB

(j)
t , x

(j)
0 = x0

j , for j ∈ Ri, and(5)

dx
(i)
t = b0i dt+

√
2γ0
i x

(i)
t dB

(i)
t , x

(i)
0 = x0

i ,

where b0j = bj(x0) ∈ R, γ0
j = γj(x0)x0

j > 0, and b0i = bi(x0) > 0, γ0
i =

γi(x0)x0
ci > 0 if i ∈ R ∩ Z, or b0i = bi(x0) > 0, γ0

i = γi(x0) > 0 if i 6∈ R.
Note that the non-negativity of b0i ensures that solutions starting in {x0

i ≥ 0}
remain there.

Secondly, for j ∈ N2 we view this coordinate as a perturbation of the Feller
branching process (with immigration)

(6) dx
(j)
t = b0jdt+

√
2γ0
j x

(j)
t dB

(j)
t , x

(j)
0 = x0

j ,

where b0j = (bj(x0) ∨ 0), γ0
j = γj(x0)x0

cj > 0 if j ∈ R or γ0
j = γj(x0) > 0 if

j 6∈ R.
We then view A as a perturbation of the generator

(7) A0 =
∑

i∈Z∩C
A1
i +

∑
j∈N2

A2
j ,

where

A1
i =

∑
j∈Ri

{
b0j

∂

∂xj
+ γ0

j xi
∂2

∂x2
j

}
+ b0i

∂

∂xi
+ γ0

i xi
∂2

∂x2
i

,

A2
j = b0j

∂

∂xj
+ γ0

j xj
∂2

∂x2
j

.

One easily checks that the coefficients b0i , γ
0
i given above from an x0 ∈ S

satisfy

(8) γ0
j > 0 all j, b0j ≥ 0 if j /∈ N1 =

⋃
i∈Z∩C

Ri, b
0
j > 0 if j ∈ Z ∩ (R ∪ C),
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where Z ⊂ V satisfies

(9) N1 ∩ Z = ∅.

In general we will always assume the above conditions when dealing with A0

whether or not it arises from a particular x0 ∈ S as above. The A0 martingale
problem is then well-posed and the solution is a diffusion on

(10) S0 ≡ S(x0) = {x ∈ Rd : xi ≥ 0 for all i ∈ V \N1}

with semigroup Pt and resolvent

(11) Rλf =
∫ ∞

0

e−λsPsfds.

The law of this diffusion is a product of independent catalytic processes
and Feller branching processes (with immigration). More precisely we may
write

Pt =
∏

i∈Z∩C
P it

∏
j∈N2

P jt ,(12)

where for i ∈ Z ∩ C, P it is the semigroup of solutions to (5) on bounded
measurable functions on R|Ri| × R+—we refer to this as the m = (|Ri| + 1)-
dimensional catalytic semigroup. For j ∈ N2, P jt is the one-dimensional Feller
branching semigroup of solutions to (6) on bounded measurable functions on
R
{j}
+ .

Step 3: A Key Estimate. Set

Bf := (A−A0)f(13)

=
∑
j∈V

(b̃j(x)− b0j )
∂f

∂xj

+
∑

i∈Z∩C

{∑
j∈Ri

[
(γ̃j(x)− γ0

j )xi
∂2f

∂x2
j

]
+ (γ̃i(x)− γ0

i )xi
∂2f

∂x2
i

}

+
∑
i∈N2

{
(γ̃i(x)− γ0

i )xi
∂2f

∂x2
i

}
,

where for j ∈ V , b̃j(x) = bj(x) for j ∈ N1, γ̃j(x) = γj(x)xj , and for i ∈
(Z ∩ C) ∪N2, γ̃i(x) = 1i∈Rγi(x)xci + 1i 6∈Rγi(x).

By localization and continuity of the above coefficients we may assume that
the coefficients preceding the derivatives of f in the above operator are small,
say less than η in absolute value. The key step (see Proposition 36) will be
to find a Banach space of continuous functions, depending on A0, with norm
‖ ‖ so that for η small enough and λ0 > 0 large enough,

(14) ‖BRλf‖ ≤
1
2
‖f‖ ∀ λ > λ0.
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Once this inequality is established the uniqueness of the resolvent of our
strong Markov solution will follow as in [SV] and [BP1]. In the next section
we describe the Banach space which will be used in (14).

1.4. Weighted Hölder norms and semigroup norms. In this subsec-
tion we introduce the basic Banach spaces of functions. Given the subsets
Z,C and {Ri, i ∈ Z ∩ C} of V we define N1, N2 as above and the gener-
ator A0 as in (7). The state space for the diffusion with generator A0 is
S0 := {x ∈ Rd : xi ≥ 0 for all i 6∈ N1} and the corresponding semigroup is
defined on Cb(S0). We next define the Banach subspace Cαw(S0) of Cb(S0)
and some related norms. Note that in the localization argument used in the
proof in Section 4 of Theorem 4, the set Z = Z(x0) will depend on a point
x0 ∈ S and S0 = S(x0).

Let f : S0 → R be bounded and measurable and α ∈ (0, 1). For i ∈ V let
ěi denote the unit vector in the ith direction, and

|f |Cα,i = sup
{
|f(x+ hěi)− f(x)||h|−α : h 6= 0, x ∈ S0

}
,

and for i ∈ Z ∩ C, let

|f |α,i = sup{|f(x+h)− f(x)|(|h|−αxα/2i ∨ |h|−α/2) :

hi > 0, hk = 0 if k 6∈ {i} ∪Ri, x ∈ S0}.

For j ∈ N2, let

|f |α,j = sup{|f(x+ h)− f(x)||h|−αxα/2j :hj > 0, hk = 0 if k 6= j, x ∈ S0}.

Set I = (Z ∩ C) ∪N2. Then let

|f |Cαw = max
j∈I
|f |α,j , |f |Cα = sup

i≤d
|f |Cα,i,

‖f‖Cαw = |f |Cαw + ‖f‖∞, ‖f‖Cα = |f |Cα + ‖f‖∞,

where ‖f‖∞ is the supremum norm of f . We let

Cαw(S0) = {f ∈ Cb(S0) : ‖f‖Cαw <∞}

denote the Banach space of weighted α-Hölder continuous functions on S0.
We also denote by

Cα(S0) = {f ∈ Cb(S0) : ‖f‖Cα <∞}

the classical Banach space of α-Hölder continuous functions on S0.
Cαw(S0) will be the Banach space we use in (14) above. It is a modification

of the weighted Hölder norm used in [BP1].
In proving (14) most of the work will go into analyzing the semigroups P it

in (12) for i ∈ Z ∩ C on its state space R|Ri| × R+. In this context a special
role will be played by another norm which we first define in a general context.
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Given a Markov semigroup {Pt} on the bounded Borel functions on D, where
D ⊂ Rd and α ∈ (0, 1) the semigroup norm (cf. [ABP]) is defined via

|f |α = sup
t>0

‖Ptf − f‖∞
tα/2

,

‖f‖α = |f |α + ‖f‖∞.

The associated Banach space of functions is

Sα = {f : D → R : f Borel, ‖f‖α <∞}.

We will use this norm for the catalytic semigroups P it , i ∈ Z ∩ C, from (12)
and in fact show (Theorem 19 below) that it is equivalent to the weighted
Hölder norm ‖ ‖Cαw in this (|Ri| + 1)-dimensional context. This equivalence,
which plays an important role in our proofs, is patterned after a similar result
in [ABP], where the semigroup in question is a product of independent Feller
branching processes.

We first obtain bounds on the supnorm of the appropriate first and second
order differential operators applied to P it f . These bounds are singular and
non-integrable in t as t ↓ 0 (see the first sets of inequalities in Propositions 16
and 17). The semigroup norm allows us to easily obtain bounds on the same
quantities in terms of |f |α, now with an improved and integrable singularity
at t = 0 (see the second set of inequalities in the same Propositions). The
simple proof of this improvement, given in Proposition 16 below, is taken from
[ABP]. A similar reduction of singularities holds for the Hölder norms of the
same functions—see again the improvements from the first set of inequalities
to the second set in Propositions 22 and 23 below.

Convention 1. Throughout this paper all constants appearing in state-
ments of results may depend on a fixed parameter α ∈ (0, 1) and {b0j , γ0

j : j ∈
V }. By (8)

(15) M0 = M0(γ0, b0) ≡ max
i∈V

(γ0
i ∨ (γ0

i )−1 ∨ |b0i |) ∨ max
i∈Z∩(R∪C)

(b0i )
−1 <∞.

Given α ∈ (0, 1) and 0 < M <∞, we can, and shall, choose the constants to
hold uniformly for all coefficients satisfying M0 ≤M .

In order to simplify the notation, in most of Section 2 we will work in the
special case

d = 2, |Ri| = 1, Z = {2}, N2 = ∅, and |f |Cαw = |f |α,2.(16)

1.5. Outline of the paper. In Section 2 we establish properties of the
basic semigroups that are used to verify (14) in the norm ‖·‖Cαw . In Subsection
2.1 we review representations of the catalytic and branching semigroups which
play an important role in the proofs. In Subsection 2.2 we show that the
semigroup takes bounded Borel functions to C2 functions, in Subsection 2.3
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we obtain L∞ bounds on the first and second order partial derivatives of the
semigroup and prove the equivalence of norms mentioned above. In Subsection
2.4 weighted Hölder bounds on the (m+ 1)-dimensional catalytic semigroups
are derived (in the case m = 1) and the corresponding bounds from [BP1]
for the one-dimensional branching semigroups are noted in Remark 29. In
Section 3 the required L∞ and weighted Hölder norms on the multidimensional
resolvent are obtained and then these bounds are used in Section 4 to complete
the proof of the uniqueness.

2. Properties of the basic semigroups

2.1. Representations of the catalytic semigroups and branching
semigroups. In this section, until otherwise indicated, we work with the
catalytic generator

A1 =
m∑
j=1

{
b0j

∂

∂xj
+ γ0

j xm+1
∂2

∂x2
j

}
+ b0m+1

∂

∂xm+1
+ γ0

m+1xm+1
∂2

∂x2
m+1

with semigroup Pt on the state space Rm × R+. We assume the coefficients
satisfy (cf. (8))

γ0
j > 0 all j ≤ m+ 1; b0j ∈ R if j ≤ m, b0m+1 > 0,

and

(17) Convention 1 applies with M0 =
[

max
i≤m+1

γ0
i ∨ (γ0

i )−1∨|b0i |
]
∨ (b0m+1)−1.

If the associated process is denoted by xt = ({x(j)
t }mj=1, x

(m+1)
t ), this semi-

group has the explicit representation

Ptf(x1, . . . , xm, xm+1)(18)

= Exm+1

∫
Rm

f(z1, . . . , zm, x
(m+1)
t )

m∏
j=1

pγ0
j 2It(zj − xj − b

0
j t) dzj

 ,
where Pxm+1 is the law of the Feller branching immigration process x(m+1) on
C(R+,R+), with generator

A′0 = b0m+1

∂

∂xm+1
+ γ0

m+1xm+1
∂2

∂x2
m+1

,

It =
∫ t

0

x(m+1)
s ds,

and for y ∈ (0,∞)

py(z) :=
e−

z2
2y

(2πy)1/2
.
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For (y1, y2) ∈ (0,∞)× [0,∞) and x = (x1, . . . , xm), let
(19)

G(y1, y2) = Gt,x(y1, y2) =
∫
Rm

f(z1, . . . , zm, y2)
m∏
j=1

pγ0
j 2y1

(zj − xj − b0j t)dzj .

Then (18) can be rewritten as

(20) Ptf(x1, . . . , xm, xm+1) = Exm+1(G(It, x
(m+1)
t )).

Proposition 6. The joint Laplace functional of (x(m+1)
t ,

∫ t
0
x

(m+1)
s ds) is

given by

L(λ1, λ2) = Exm+1

[
exp
(
−λ1x

(m+1)
t − λ2

2

∫ t

0

x(m+1)
s ds

)]

=
(

cosh
(√

λ2γ0
m+1

2
t

)
+
√

2
λ1√

λ2/γ0
m+1

sinh
(√

λ2γ0
m+1

2
t

))− b0m+1
γ0
m+1

· exp
(
−xm+1

√
λ2/2γ0

m+1

(
1 +

√
2λ1√

λ2/γ0
m+1

coth
(√

λ2γ0
m+1
2 t

))
(

coth
(√

λ2γ0
m+1
2 t

)
+

√
2λ1√

λ2/γ0
m+1

) )
.

Proof. See [Y1], Equation (2.1), page 16 (with γ0
m+1 = 2). �

Lemma 7.

(a)

Exm+1(x(m+1)
t ) = xm+1 + b0m+1t,

Exm+1((x(m+1)
t )2) = x2

m+1 + (2b0m+1 + 2γ0
m+1)xm+1t+ (b0m+1 + γ0

m+1)b0m+1t
2,

Exm+1((x(m+1)
t − xm+1)2) = 2γ0

m+1xm+1t+ b0m+1(b0m+1 + γ0
m+1)t2,

Exm+1

(∫ t

0

x(m+1)
s ds

)
= xm+1t+

b0m+1

2
t2.

(b)

Exm+1

((∫ t

0

x(m+1)
s ds

)−p)
≤ c7(p)t−p(t+ xm+1)−p ∀p > 0.

(c)

Exm+1((x(m+1)
t + s)−2) ≤ c7(xm+1 + s)−2 for all s ≥ γ0

m+1t.

Proof. (a) These identities are standard.
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(b) To simplify the notation we set b = b0m+1, γ = γ0
m+1 and x = xm+1 in

the following calculation and also in (c).

Ex

((∫ t

0

x(m+1)
s ds

)−p)
= cpEx

(∫ ∞
It

u−p−1du

)
= cp

∫ ∞
0

P (It ≤ u)u−p−1du

≤ cpe
∫ ∞

0

E(e−u
−1It)u−p−1du

≤ cpe
∫ ∞

0

[
e
√

γ
u t + e−

√
γ
u t

2

]−b/γ
· exp

{
−x
√
γ

u

[
e
√

γ
u t − e−

√
γ
u t

e
√

γ
u t + e−

√
γ
u t

]}
u−p−1du

≤ cp,2
∫ ∞

0

e−
√

γ
u
tb
γ exp

{
−x
√
γ

u
c

(√
γ

u
t ∧ 1

)}
u−p−1du,

where we used ex−e−x
ex+e−x ≥ c(x ∧ 1). Set v =

√
γ
u t, so u = γ

v2 t
2 and du =

−2γt2dvv−3, to see

Ex(I−pt ) ≤ 2cp,2
∫ ∞

0

γ−pe−
bv
γ e−

x
t vc(v∧1)v2p+2−3dvt2t−2p−2

≤ 2cp,2γ−pt−2p

∫ ∞
0

v2p−1e−c
x
t v(v∧1)e

−bv
γ dv

≡ 2cp,2γ−pt−2p J.

Now J ≤
∫∞

0
v2p−1e

−bv
γ dv <∞ (p > 0) and so we can choose cp,3 so that

(21) Ex(I−pt ) ≤ cp,3t−2p.

Assume x > t now. Then

J ≤
∫ 1

0

v2p−1e−c(
x
t )v2

dv +
∫ ∞

1

v2p−1e−c
x
t vdv

=
∫ √ cx

t

0

w2p−1e−w
2
dw

(
cx

t

)−p
+
∫ ∞
x/t

w2p−1e−cwdw

(
x

t

)−2p

≤ cp

[(
t

x

)p
+
(
t

x

)2p
]
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and so

Ex(I−pt ) ≤ cp,4t−2p

[(
t

x

)p
+
t2p

x2p

]
(22)

≤ cp,4
[

1
xptp

+
1
x2p

]
≤ cp,4
xptp

as x > t.

(21) and (22) together give

Ex(I−pt ) ≤ c(p)
tp(xp + tp)

≤ c(p)
tp(x+ t)p

.

(c) It follows from Proposition 6 that

(23) Ex(e−λx
(m+1)
t ) = (1 + λγt)−b/γ exp

{
−xλ

1 + λtγ

}
.

If s ≥ γt, this gives

Ex((x(m+1)
t + s)−2) =

∫ ∞
s

2u−3Px(x(m+1)
t + s ≤ u)du

≤
∫ ∞
s

2u−3eEx(e−x
(m+1)
t (u−s)−1

)du

≤ 2e
∫ ∞
s

u−3

[
1 +

γt

u− s

]−b/γ
exp
{

−x
u− s+ γt

}
du

≤ 2e
∫ ∞
s

u−3 exp(−x/u)du

≤ 2e
∫ x/s

0

wx−2 exp(−w)dw

≤ c(x+ s)−2. �

Now let {P 0
x : x ≥ 0} denote the laws of the Feller branching process X

with no immigration (equivalently, the 0-dimensional squared Bessel process)
with generator L0f(x) = γxf ′′(x). If ω ∈ C(R+,R+) let ζ(ω) = inf{t > 0 :
ω(t) = 0}. There is a unique σ-finite measure N0 on

Cex = {ω ∈ C(R+,R+) : ω(0) = 0, ζ(ω) > 0, ω(t) = 0 ∀t ≥ ζ(ω)}

such that for each h > 0, if Ξh is a Poisson point process on Cex with intensity
hN0, then

(24) X =
∫
Cex

νΞh(dν) has law P 0
h ;
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see, e.g., Theorem II.7.3 of [P] which can be projected down to the above by
considering the total mass function. Moreover we also have

(25) N0(νδ > 0) = (γδ)−1

and by [P], Thm. II.7.2(iii), for t > 0,

(26)
∫
Cex

νtdN0(ν) = 1.

For t > 0 let P ∗t denote the probability on Cex defined by

(27) P ∗t (A) =
N0(A ∩ {νt > 0})
N0(νt > 0)

.

Lemma 8. For all h > 0

(28) P 0
h (ζ > t) = P 0

h (Xt > 0) = 1− e−h/(tγ) ≤ h

tγ
.

Proof. The first equality is immediate from the fact that X is a non-
negative martingale. The second equality follows from (24) and (25). �

The following result is easy to prove, for example, by modifying the argu-
ments in the proof of Theorem II.7.3 of [P].

Proposition 9. Let f : C(R+,R+) → R be bounded and continuous.
Then for any δ > 0,

lim
h↓0

h−1E0
h(f(X)1(Xδ > 0)) =

∫
Cex

f(ν)1(νδ > 0)dN0(ν).

The representation (24) leads to the following decompositions of the pro-
cess x(m+1)

t that will be used below. Recall x(m+1)
t is the Feller branching

immigration process with coefficients b0m+1 > 0, γ0
m+1 > 0 (b0m+1 ≥ 0 suffices

for this result) starting at xm+1 and with law Pxm+1 .

Lemma 10. Let 0 ≤ ρ ≤ 1. (a) We may assume

(29) x(m+1) = X ′0 +X1,

where X ′0 is a diffusion with generator A′0f(x) = γ0
m+1xf

′′(x) + b0m+1f
′(x)

starting at ρxm+1, X1 is diffusion with generator γ0
m+1xf

′′(x) starting at
(1− ρ)xm+1 ≥ 0, and X ′0, X1 are independent. In addition, we may assume

(30) X1(t) =
∫
Cex

νtΞ(dν) =
Nt∑
j=1

ej(t),

where Ξ is a Poisson point process on Cex with intensity (1− ρ)xm+1N0,
{ej , j ∈ N} is an iid sequence with common law P ∗t , and Nt is a Poisson
random variable (independent of the {ej}) with mean (1−ρ)xm+1

tγ0
m+1

.
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(b) We also have∫ t

0

X1(s)ds =
∫
Cex

∫ t

0

νsds1(νt 6= 0)Ξ(dν)(31)

+
∫
Cex

∫ t

0

νsds1(νt = 0)Ξ(dν)

≡
Nt∑
j=1

rj(t) + I1(t),

∫ t

0

x(m+1)
s ds =

Nt∑
j=1

rj(t) + I2(t),(32)

where rj(t) =
∫ t

0
ej(s)ds, I2(t) = I1(t) +

∫ t
0
X ′0(s)ds.

(c) Let Ξh be a Poisson point process on Cex with intensity hm+1N0 (hm+1 >
0), independent of the above processes. Set Ξx+h = Ξ + Ξh and Xh

t =∫
νtΞh(dν). Then

Xx+h
t ≡ x(m+1)

t +Xh(t) =
∫
Cex

νtΞx+h(dν) +X ′0(t)(33)

is a diffusion with generator A′0 starting at xm+1 + hm+1. In addition

(34)
∫
Cex

νt Ξx+h(dν) =
N ′t∑
j=1

ej(t),

where N ′t is a Poisson random variable with mean
((1− ρ)xm+1 + hm+1)(γ0

m+1t)
−1, such that {ej} and (Nt, N ′t) are indepen-

dent.
Also

(35)
∫ t

0

Xx+h
s ds =

N ′t∑
j=1

rj(t) + I2(t) + Ih3 (t),

where Ih3 (t) =
∫
Cex

∫ t
0
νsds1(νt = 0)Ξh(dν).

Proof. (a) (29) follows from Theorem XI.1.2 of [RY]. (30) follows from (24)
and (25). The other parts, (b), (c), follow in a similar way. �

We next give a first application of the representation of the catalytic semi-
group to obtain some preliminary results that will be needed below.

Lemma 11. Let Gt,x be as in (19). Then:
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(a) For i = 1, . . . ,m,∣∣∣∣∂Gt,x∂xi
(y1, y2)

∣∣∣∣ ≤ ‖f‖∞(γ0
i y1)−1/2,(36)

and more generally for any j ∈ N, there is a cj such that

(37)
∣∣∣∣∂jGt,x∂xji

(y1, y2)
∣∣∣∣ ≤ cj‖f‖∞y−j/21 .

(b) We have

(38)
∣∣∣∣∂Gt,x∂y1

(y1, y2)
∣∣∣∣ ≤ c1‖f‖∞/y1,

and more generally there is a sequence {cj} such that for i1, i2 ∈
{1, . . . ,m},

(39)
∣∣∣∣ ∂j+k1+k2

∂xk1
i1
∂xk2

i2
∂yj1

Gt,x(y1, y2)
∣∣∣∣ ≤ cj+k1+k2‖f‖∞y

−j−(k1+k2)/2
1

for all j, k1, k2 ∈ N.

(c) ∀y2 ≥ 0, (x, y1)→ Gt,x(y1, y2) is C3 on R
m × (0,∞).

Proof. (a) We have

Gt,x(y1, y2) =
∫
f(w1 + b01t, . . . , wm + b0mt, y2)

m∏
j=1

p2γ0
j y1

(wj − xj) dwj

and so∣∣∣∣∂Gt,x∂xi
(y1, y2)

∣∣∣∣(40)

=
∣∣∣∣∫ f(w1 + b01t, . . . , wm + b0mt, y2)

m∏
j=1

p2γ0
j y1

(wj − xj)
(wi − xi)

2γ0
i y1

dwj

∣∣∣∣
≤ ‖f‖∞

∫ ∞
−∞

|w|
2γ0
i y1

p2γ0
i y1

(w)dw ≤ ‖f‖∞(γ0
i y1)−1/2.

The general case can be proved by an induction.
(b) If j = 0, this follows by arguing as in (a) and using the product form of

the density. In fact one can handle any number of xij variables. Recall that

∂Gt,x
∂y1

(y1, y2) =
m∑
j=1

γ0
j

∂2Gt,x
∂x2

j

(y1, y2)

by the heat equation. Hence the general case follows from the j = 0 case, as
extended above.

(c) This is an exercise in Dominated Convergence. �
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Lemma 12. If f : Rm × R+ is a bounded Borel function, then, for each
t > 0, Ptf ∈ Cb(Rm × R+); in fact,

|Ptf(x)− Ptf(x′)| ≤ c12‖f‖∞t−1|x− x′|.

Proof. Recalling (20), we have for x, x′ ∈ Rm,

|Ptf(x1, . . . , xm, xm+1)− Ptf(x′1, . . . , x
′
m, xm+1)|

≤ |Exm+1(Gt,x(It, x
(m+1)
t )−Gt,x′(It, x(m+1)

t ))|

≤ ‖f‖∞
m∑
i=1

|xi − x′i|√
γ0
i

Exm+1(I−1/2
t ) (by(36))(41)

≤ c‖f‖∞t−1 max
i
{(γ0

i )−1/2}
m∑
i=1

|xi − x′i| (by Lemma 7(b)).(42)

For h > 0 let xh denote an independent copy of x(m+1) starting at h but with
b0m+1 = 0, and let Th = inf{t ≥ 0 : xht = 0}. Then x(m+1) + xh has law
Pxm+1+h and so if Ih(t) =

∫ t
0
xhsds, then

|Ptf(x1, . . . , xm+1 + h)− Ptf(x1, . . . , xm, xm+1)|

= |E(G(It + Ih(t), x(m+1)
t + xht )−G(It, x

(m+1)
t ))|

≤ E(c1‖f‖∞Ih(t)I−1
t + |G(It, x

(m+1)
t + xht )−G(It, x

(m+1)
t )|)

(by(38))

≤ c1‖f‖∞E(Ih(t))E(I−1
t ) + 2‖f‖∞P (Th > t)

≤ c‖f‖∞htt−2 + 2‖f‖∞h(tγ0
m+1)−1 (by (28) and Lemma 7(b))

= c‖f‖∞h(t−1).

This and (42) imply the result. �

Finally, we give an elementary calculus inequality that will be used below.

Lemma 13.

(a) Let g : (0,∞)→ R be C2. Then for all ∆,∆′,∆′′, y ∈ (0,∞),

|g(y + ∆ + ∆′)− g(y + ∆)− g(y + ∆′) + g(y)|
(∆∆′)

≤ sup
{y1∈[y,y+∆+∆′]}

|g′′(y1)|



ON THE UNIQUENESS PROBLEM FOR CATALYTIC BRANCHING NETWORKS 339

and

|g(y+ ∆ + ∆′+ ∆′′)− g(y+ ∆ + ∆′)− g(y+ ∆ + ∆′′)− g(y+ ∆′+ ∆′′)

+ g(y + ∆) + g(y + ∆′) + g(y + ∆′′)− g(y)|(∆∆′∆′′)−1

≤ sup
{y1∈[y,y+∆+∆′+∆′′]}

|g′′′(y1)|.

(b) Let f : R× (0,∞)→ R be C3. Then for all ∆1 ∈ R non-zero, and all
∆2,∆′2 > 0,

|f(y1 + ∆1, y2,+∆2)− f(y1 + ∆1, y2)− f(y1, y2 + ∆2) + f(y1, y2)|
(|∆1|∆2)

≤ sup
y′1∈I1,y′2∈I2

∣∣∣∣ ∂∂y2

∂

∂y1
f(y′1, y

′
2)
∣∣∣∣,

and

|f(y1 + ∆1, y2 + ∆2 + ∆′2)− f(y1 + ∆1, y2 + ∆2)− f(y1 + ∆1, y2 + ∆′2)

+ f(y1 + ∆1, y2)− f(y1, y2 + ∆2 + ∆′2) + f(y1, y2 + ∆2)

+ f(y1, y2 + ∆′2)− f(y1, y2)| (|∆1|∆2∆′2)−1

≤ sup
y′1∈I1,y′2∈I′2

∣∣∣∣ ∂2

∂y2
2

∂

∂y1
f(y′1, y

′
2)
∣∣∣∣,

where Ij is the closed interval between yj and yj + ∆j, and I ′2 is the
interval between y2 and y2 + ∆2 + ∆′2.

Proof. (a) Fix ∆′ > 0 and let h(z) = (g(z + ∆′)− g(z))/∆′. By the mean
value theorem,

|g(y + ∆ + ∆′)− g(y + ∆)− g(y + ∆′) + g(y)|(∆∆′)−1

= |h(y + ∆)− h(y)|∆−1

= |h′(∆′′ + y)| ∃∆′′ ∈ (0,∆)

= |g′(∆′′ + y + ∆′)− g′(∆′′ + y))|(∆′)−1

= |g′′(y + ∆′′ + ∆′′′)| ∃∆′′′ ∈ (0,∆′).

Now consider the second bound. If h(x) = g(x+∆′′)−g(x)
∆′′ , the left-hand side

is
|h(y + ∆ + ∆′)− h(y + ∆)− h(y + ∆′) + h(y)|

(∆∆′)

and so we may apply the first bound to h and then the mean value theorem
to get the second bound.
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(b) We only prove the slightly more involved second bound. If g = ∂f
∂y1

,
then the left-hand side is∣∣∣∣∫ y1+∆1

y1

g(y′1, y2 + ∆2 + ∆′2)− g(y′1, y2 + ∆2)− g(y′1, y2 + ∆′2) + g(y′1, y2)dy′1

∣∣∣∣.
Now apply (a) to y2 → g(y′1, y2) to obtain the required bound. �

2.2. Existence of derivatives of the catalytic semigroup. In this
subsection A1 and Pt are as in the previous subsection. We will show that
this semigroup takes bounded Borel functions to C2 functions and describe
the derivatives in terms of the canonical measure N0 introduced in the pre-
vious subsection. In order to simplify the notation, in this and the next two
subsections, we will work with the special case m = 1 and then indicate how
the general case m ≥ 1 will follow by some simple modifications. This means
we have N2 = ∅, I = Z ∩ C = {2}, N1 = R2 = {1}, S0 = R× R+ and so for
f : R× R+ → R,

(43) |f |Cαw = |f |α,2 = sup{|f(x+ h)− f(x)|[|h|−αxα/22 ∨ |h|α/2] :

h2 > 0, x ∈ R× R+}.

Let G be given as in (19) with m = 1. Then

Ptf(x1, x2) = Ex2(Gt,x1(It, x
(2)
t )),

where now

(44) It =
∫ t

0

x(2)
s ds.

If X ∈ C(R+,R+), ν, ν′ ∈ Cex, let

(45) ∆Gt,x1(X, ν′, ν) = Gt,x1

(∫ t

0

Xs + ν′s + νsds,Xt + ν′t + νt

)
−Gt,x1

(∫ t

0

Xs + ν′sds,Xt + ν′t

)
−Gt,x1

(∫ t

0

Xs + νsds,Xt + νt

)
+Gt,x1

(∫ t

0

Xsds,Xt

)
.

Proposition 14. If f is a bounded Borel function on R×R+ and t > 0,
then Ptf ∈ C2

b (R× R+) and for i, j ∈ {1, 2}

(46) ‖(Ptf)ij‖∞ ≤ c14
‖f‖∞
t2

.
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Moreover if f is bounded and continuous on R× R+, then

(Ptf)2(x) = Ex2

(∫
Gt,x1

(∫ t

0

x(2)
s + νsds, x

(2)
t + νt

)
(47)

−Gt,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)
N0(dν)

)
,

(Ptf)22(x) = Ex2

(∫∫
∆Gt,x1(x(2), ν′, ν)dN0(ν)dN0(ν′)

)
.(48)

Proof. In view of Lemma 12, and the fact that Ptf = Pt/2(Pt/2f), it suffices
to consider bounded continuous f . Let us assume (Ptf)2 exists and is given
by (47). We will use this to prove the existence of, and corresponding formula
for, (Ptf)22(x). It should be then clear how to derive (47). Let 0 < δ ≤ t. If
ν′δ = νt = 0, use Lemmas 13 and 11(b) to see that

|∆Gt,x1(x(2), ν′, ν)|(49)

=
∣∣∣∣Gt,x1

(∫ t

0

x(2)
s ds+

∫ t

0

νsds+
∫ δ

0

ν′sds, x
(2)
t

)
−Gt,x1

(∫ t

0

x(2)
s ds+

∫ δ

0

ν′sds, x
(2)
t

)
−Gt,x1

(∫ t

0

x(2)
s ds+

∫ t

0

νsds, x
(2)
t

)
+Gt,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)∣∣∣∣
≤ c‖f‖∞

(∫ t

0

x(2)
s ds

)−2 ∫ δ

0

ν′sds

∫ t

0

νsds.

If ν′δ = 0 and νt > 0, then by Lemma 11(b)

|∆Gt,x1(x(2), ν′, ν)|(50)

≤
∣∣∣∣Gt,x1

(∫ t

0

x(2)
s + νsds+

∫ δ

0

ν′sds, x
(2)
t + νt

)
−Gt,x1

(∫ t

0

x(2)
s + νsds, x

(2)
t + νt

)∣∣∣∣
+
∣∣∣∣Gt,x1

(∫ t

0

x(2)
s ds+

∫ δ

0

ν′sds, x
(2)
t

)
−Gt,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)∣∣∣∣
≤ 2c1‖f‖∞

(∫ t

0

x(2)
s ds

)−1 ∫ δ

0

ν′sds.

A similar argument shows if ν′δ > 0 and νt = 0, then

(51) |∆Gt,x1(x(2), ν′, ν)| ≤ 2c1‖f‖∞
(∫ t

0

x(2)
s ds

)−1 ∫ t

0

νsds.
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Finally, if νδ > 0, νt > 0, then we have the trivial bound

(52) |∆Gt,x1(x(2), ν′, ν)| ≤ 4‖f‖∞.

Combine (49)–(52) to conclude

|∆Gt,x1(x(2), ν′, ν)|(53)

≤
[
1(ν′δ = 0, νt = 0)

(∫ t

0

x(2)
s ds

)−2 ∫ δ

0

ν′sds

∫ t

0

νsds)

+ 1(ν′δ = 0, νt > 0)
(∫ t

0

x(2)
s ds

)−1 ∫ δ

0

ν′sds)

+ 1(ν′δ > 0, νt = 0)
(∫ t

0

x(2)
s ds

)−1 ∫ t

0

νsds)

+ 1(ν′δ > 0, νt > 0)
]
· c‖f‖∞

≡ ḡt,δ(x(2), ν′, ν).

Let Xh
· be independent of x(2) satisfying

Xh
t = h+

∫ t

0

√
2γ0

2X
h
s dB

′
s, (h > 0)

(i.e., Xh has law P 0
h ) so that x(2) +Xh has law Px2+h. Therefore (47) implies

(54)
1
h

[(Ptf)2(x+ he2)− (Ptf)2(x)]

=
1
h

∫∫∫
∆G(x(2), Xh, ν)dN0(ν)dPx2dP

0
h .

In addition (53) implies (use also (25) and (26) and Lemma 7(b) with p = 1
or 2)

1
h

∫∫∫
|∆G(x(2), Xh, ν)|1(Xh

δ = 0)dN0dPx2dP
0
h(55)

≤ c‖f‖∞
{
Ex2

(∫ t

0

x(2)
s ds

)−2 1
h
E0
h

(∫ δ

0

Xh
s ds

)∫ ∫ t

0

νsdsdN0

+ Ex2

((∫ t

0

x(2)
s ds

)−1) 1
h
E0
h

(∫ δ

0

Xh
s ds

)
N0(νt > 0)

}
≤ c‖f‖∞(t−2(x2 + t)−2δt+ t−1(x2 + t)−1δt−1)

≤ c‖f‖∞(t−3)δ.
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As G is bounded and continuous on R+ × (0,∞), Proposition 9 implies

(56) lim
h↓0

h−1E0
h(∆G(x(2), Xh, ν)1(Xh

δ > 0))

=
∫

∆G(x(2), ν′, ν)1(ν′δ > 0)dN0(ν′)

for all δ > 0, pointwise in (x, ν) ∈ C(R+,R+)× Cex. Use (53) to see that

h−1E0
h(|∆G(x(2), Xh, ν)|1(Xh

δ > 0))

≤ c‖f‖∞
[
P 0
h (Xh

δ > 0)
h

][(∫ t

0

x(2)
s ds

)−1 ∫ t

0

νsds+ 1(νt > 0)
]

≤ c‖f‖∞δ−1

[(∫ t

0

x(2)
s ds

)−1 ∫ t

0

νsds+ 1(νt > 0)
]
,

the last by (28). The final expression is integrable with respect to Px2 × N0

and so by dominated convergence we conclude from (56) that

(57) lim
h↓0

h−1

∫∫∫
∆G(x(2), Xh, ν)1(Xh

δ > 0)dN0(ν)dPx2dP
0
h

= Ex2

(∫∫
∆G(x(2), ν′, ν)1(ν′δ > 0)dN0(ν)dN0(ν′)

)
∀ δ > 0.

Use (53) as in the derivation of (55) to see
(58)

Ex2

(∫
sup
x1

|∆Gt,x1(x(2), ν′, ν)|1(ν′δ = 0)dN0(ν)dN0(ν′)
)
≤ c‖f‖∞(t−3)δ.

Use (54), (55), (57) and (58) and take δ ↓ 0 to conclude

(59)
∂+

∂x+
2

(Ptf)2(x) = Ex2

(∫∫
∆Gt,x1(x(2), ν′, ν)dN0(ν)dN0(ν′)

)
.

Recall from Lemma 11(a) that∣∣∣∣∂Gt,x1(y1, y2)
∂x1

∣∣∣∣ ≤ (γ0
1)−1/2‖f‖∞y−1/2

1 .

This, together with (58) and Lemma 7(b), implies for 0 < δ ≤ t∣∣∣∣Ex2

(∫∫
(∆Gt,x1(x(2), ν′, ν)−∆Gt,x′1(x(2), ν′, ν))dN0(ν)dN0(ν′)

)∣∣∣∣
≤ c‖f‖∞(t−3)δ

+ Ex2

(∫∫
1(νδ > 0, ν′δ > 0)

c‖f‖∞
(
∫ t

0
x

(2)
s ds)1/2

dN0(ν)dN0(ν′)
)
|x1 − x′1|

≤ c‖f‖∞[(t−3)δ + δ−2t−1|x1 − x′1|].
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(28) was used in the last line. By first choosing δ small and then |x1 − x′1|
small, one sees the right hand side of (59) is continuous in x1, uniformly in
x2 ≥ 0. If xn2 ↑ x2, then we may construct {xn} such that xn ↑ x(2) in
C(R+,R+), xn with law Pxn2 and x(2) with law Px2 (e.g., xn−1 − xn has law
P 0
xn−1

2 −xn2
and are independent). Then ∆Gt,x1(xn, ν′, ν)→ ∆Gt,x1(x(2), ν′, ν)

pointwise (by an elementary argument using (45) and the continuity of f) and
(by (53))

|∆Gt,x1(xn, ν′, ν)| ≤ ḡt,δ(x1, ν′, ν),
which is integrable with respect to Px2×N0×N0 by Lemma 7(b). Dominated
convergence now shows that

lim
n→∞

Exn2

(∫∫
∆Gt,x1(x(2), ν′, ν)dN0(ν)dN0(ν′)

)
= Ex2

(∫∫
∆Gt,x1(x(2), ν′, ν)dN0(ν)dN0(ν′)

)
.

A similar argument holds if xn2 ↓ x2, so the right-hand side of (59) is also con-
tinuous in x2 for each x1. Combined with the above this shows ∂+

∂x+
2

(Ptf)2(x)
is continuous in x ∈ R × R+. An elementary calculus exercise using the
continuity in x2 shows this in fact equals (Ptf)22(x) and so

(Ptf)22(x) = Ex2

(∫∫
∆Gt,x1(x(2), ν′, ν)dN0(ν)dN0(ν′)

)
.

This together with (53), Lemma 7(b), (25) and (26) give the upper bound

‖(Ptf)22‖ ≤ c
‖f‖∞
t2

.

Turning to derivatives with respect to x1, let us assume 2γ0
1 = 1 to ease

the notation.
Lemma 7(b) and dominated convergence allows us to differentiate through

the integral sign and conclude (by Lemmas 7(b) and 11(a)) that

∂

∂x1
Ptf(x) = Ex2

(
G′t,x1

(∫ t

0

x(2)
s ds, x

(2)
t

))
≤ c‖f‖∞

t
,(60)

∂2

∂x2
1

Ptf(x) = Ex2

(
G′′t,x1

(∫ t

0

x(2)
s ds, x

(2)
t

))
≤ c‖f‖∞

t2
.(61)

Now use (61), Lemma 11(b) with j = 3, and Lemma 7(b) to see that
∂2

∂x2
1
Ptf(x1, x2) is continuous in x1 uniformly in x2. The weak continuity of Ex2

in x2 (e.g., by our usual coupling argument), the continuity of ∂2

∂x2
1
Gt,x1(y1, y2)

in y1 ∈ (0,∞) (see Lemma 11(b)), the bound (37) with j = 2, and Lemma
7(b) imply ∂2

∂x2
1
Ptf(x1, x2) is continuous in x2 for each x1. Therefore (Ptf)11

is jointly continuous.
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For the mixed partial, first note that by Lemma 11(b)

(62) | ∂
∂y1

G′t,x1
(y)| ≤ c‖f‖∞y−3/2

1 .

Let

∆1G
′
t,x1

(x(2), ν) = G′t,x1

(∫ t

0

x(2)
s + νsds, x

(2)
t + νt

)
−G′t,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)
and argue as for (Ptf)22, using (62) in place of Lemma 11(a) (in fact the
argument is simpler now), to see that

(Ptf)12(x1, x2) = Ex2

(∫
∆1G

′
t,x1

(x(2), ν)N0(dν)
)
.

From (62) we have for 0 < δ ≤ t,

Ex2

(∫
sup
x1

|∆1G
′
t,x1

(x(2), ν)|1(νδ = 0)dN0(ν)
)

(63)

≤ c‖f‖∞Ex2

((∫ t

0

x(2)
s ds

)−3/2)∫ ∫ δ

0

νsdsdN0(ν)

≤ c‖f‖∞t−3δ,

the last from Lemma 7(b) and (26). Just as for (Ptf)22, we may use this
with (37) (for j = 2) and dominated convergence to conclude that (Ptf)12 is
continuous in x1, uniformly in x2. Continuity in x2 for each x1 is obtained by
an easy modification of the argument for (Ptf)22, using the bound (63). This
completes the proof that Ptf is C2.

Finally to get a (crude) upper bound on |(Ptf)12| use (63) with δ = t and
(37) with j = 1 to see

|(Ptf)12(x)|

≤ Ex2

(∫
|∆1G

′
t,x1

(x(2), ν)|1(νt = 0)dN0(ν)
)

+ Ex2

(∫
1(νt > 0)

[∣∣∣∣G′t,x1

(∫ t

0

x(2)
s + νs ds, x

(2)
t + νt

)∣∣∣∣
+
∣∣∣∣G′t,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)∣∣∣∣dN0(ν)
])

≤ c‖f‖∞t−2 + c‖f‖∞Ex2

((∫ t

0

x(2)
s ds

)−1/2)
N0(νt > 0)

≤ c‖f‖∞t−2,

by Lemma 7(b) and (25). �
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Remark 15. It is straightforward to extend Proposition 14 to general
m ≥ 1. One need only replace the one-dimensional Gaussian distribution by
an m-dimensional one and make minor changes. One can then apply this
to the semigroup Pt in (12) from Section 1.3 via a Fubini argument and
conclude that if i ∈ C ∩ Z, x̄i = ({xj , j ∈ Ri}, xi), x̂i = {xj : j /∈ Ri ∪ {i}}
and j1, j2 ∈ Ri, then (Ptf)j1j2 is continuous in x̄i for each x̂i and

‖(Ptf)j1j2‖∞ ≤ c
‖f‖∞
t2

.

2.3. L∞ bounds on the catalytic semigroup and equivalence of
norms. We continue to work with the semigroup Pt on the state space R×R+

from Section 2.2 associated with A1 and m = 1. The main objective of this
section is to establish L∞ bounds on the first order partial derivatives of the
semigroup and use these results to establish the equivalence of the weighted
Hölder norm and semigroup norm from Section 1.4. The derivatives with
respect to x1 are considerably easier.

Proposition 16. If f is a bounded Borel function on R× R+, then

(64)
∥∥∥∥ ∂

∂x1
Ptf

∥∥∥∥
∞
≤ c16‖f‖∞√

t
√
x2 + t

,

and

(65)
∥∥∥∥x2

∂2

∂x2
1

Ptf

∥∥∥∥
∞
≤ c16‖f‖∞

t
.

If f ∈ Sα, then ∥∥∥∥ ∂

∂x1
Ptf

∥∥∥∥
∞
≤ c16|f |αt

α
2−

1
2

√
x2 + t

≤ c16|f |αt
α
2−1,(66)

and ∥∥∥∥x2
∂2

∂x2
1

Ptf

∥∥∥∥
∞
≤ c16|f |αt

α
2−1.(67)

Proof. We begin with the first derivative for f bounded Borel measurable.
Use (41) (here m = 1), Proposition 14 (for the existence of (Ptf)1) and Lemma
7(b) to see that ∣∣∣∣ ∂∂x1

Ptf(x)
∣∣∣∣ ≤ c ‖ f ‖∞ Ex2

(
1

I
1/2
t

)
≤ c ‖ f ‖∞√

t
√
x2 + t

.

We now turn to the second derivative. Note that A1 and ∂
∂x1

commute and
therefore the semigroup Pt and ∂

∂x1
commute. Therefore a double application
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of (64) gives ∥∥∥∥ ∂2

∂x2
1

Ptf

∥∥∥∥
∞

=
∥∥∥∥ ∂

∂x1
P t

2

∂

∂x1
P t

2
f

∥∥∥∥
∞

(68)

=
c√

t
√
x2 + t

∥∥∥∥ ∂

∂x1
Pt/2f

∥∥∥∥
∞

≤ c‖f‖∞
t(t+ x2)

.

This proves the first two inequalities and also shows that

(69) lim
t→∞

∥∥∥∥ ∂

∂x1
Ptf(x)

∥∥∥∥
∞

= 0.

If f ∈ Sα, we proceed as in [ABP] and write∣∣∣∣ ∂∂x1
P2tf −

∂

∂x1
Ptf

∣∣∣∣ =
∣∣∣∣ ∂∂x1

Pt(Ptf − f)
∣∣∣∣ .

Applying the previous estimate to g = Ptf − f and using the definition of
|f |α we get ∣∣∣∣ ∂∂x1

P2tf −
∂

∂x1
Ptf

∣∣∣∣ ≤ c ‖ g ‖∞√
t
√
x2 + t

≤ |f |αtα/2
c√

t
√
x2 + t

.

This together with (69) implies that∣∣∣∣ ∂∂x1
Ptf(x)

∣∣∣∣ ≤ ∞∑
k=0

∣∣∣∣ ∂∂x1
(P2ktf − P2(k+1)tf)(x)

∣∣∣∣
≤ |f |α

∞∑
k=0

(2kt)
α
2−

1
2

1√
x2 + t2k

≤ c|f |αt
α
2−

1
2

1√
x2 + t

.

This then immediately yields (66). Use the above in (68) to derive (67). �

Notation. If w > 0, set pj(w) = wj

j! e
−w. If {rj(t)} and {ej(t)} are as in

Lemma 10, let Rk = Rk(t) =
∑k
j=1 rj(t) and Sk = Sk(t) =

∑k
j=1 ej(t).

Proposition 17. If f is a bounded Borel function on R× R+, then

(70)
∥∥∥∥ ∂

∂x2
Ptf

∥∥∥∥
∞
≤ c17‖f‖∞√

t
√
x2 + t

,
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and

(71)
∥∥∥∥x2

∂2

∂x2
2

Ptf

∥∥∥∥
∞
≤ c17x2‖f‖∞

t(t+ x2)
≤ c17‖f‖∞

t
.

If f ∈ Sα, then

(72)
∥∥∥∥ ∂

∂x2
Ptf

∥∥∥∥
∞
≤ c17|f |αt

α
2−

1
2

√
x2 + t

≤ c17|f |αt
α
2−1,

and

(73)
∥∥∥∥x2

∂2

∂x2
2

Ptf

∥∥∥∥
∞
≤ c17|f |αt

α
2−1.

Proof. As in the proof of Proposition 14 we may assume without loss of
generality that f is bounded and continuous. From Proposition 14 we have

(Ptf)2(x) = Ex2

(∫ [
Gt,x1

(∫ t

0

x(2)
s + νsds, x

(2)
t

)
−Gt,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)]
1(νt = 0)dN0(ν)

)
+ Ex2

(∫ [
Gt,x1

(∫ t

0

x(2)
s + νsds, x

(2)
t + νt

)
−Gt,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)]
1(νt > 0)dN0(ν)

)
≡ E1 + E2.

By Lemmas 11 and 7, and (26),

|E1| ≤ c‖f‖∞
∫ ∫ t

0

νsdsdN0(ν)Ex2

(
1∫ t

0
x

(2)
s ds

)
(74)

≤ c‖f‖∞
t

t(t+ x2)
=
c‖f‖∞
t+ x2

.

We now use the decomposition of Lemma 10 with ρ = 0. Use (30) and (31)
to conclude that if G = Gt,x1 , then

E2 = ct−1E

(
G

(Nt+1∑
j=1

rj(t) + I2(t),
Nt+1∑
j=1

ej(t) +X ′0(t)
)

−G
( Nt∑
j=1

rj(t) + I2(t),
Nt∑
j=1

ej(t) +X ′0(t)
))

.
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Let w = x2
γ0

2 t
and recall that ‖G‖∞ ≤ ‖f‖∞. We may sum by parts and use

the independence of Nt from (It, X ′0(t), {ej}) to see that

|E2| = ct−1

∣∣∣∣ ∞∑
k=0

pk(w)E(G(Rk+1 + I2(t), Sk+1 +X ′0(t))

−G(Rk + I2(t), Sk +X ′0(t)))
∣∣∣∣

≤ ct−1‖f‖∞
∞∑
k=1

|pk−1(w)− pk(w)|+ ct−1e−w‖f‖∞

≤ ct−1‖f‖∞
∞∑
k=1

pk(w)
|k − w|
w

+ ct−1e−w‖f‖∞

≤ ct−1‖f‖∞
∞∑
k=0

pk(w)
|k − w|
w

≤ c‖f‖∞t−1w−1[(E((Nt − w)2)1/2 ∧ E(Nt + w)]

≤ c‖f‖∞√
t
√
t+ x2

.

This and (74) give (70).
Next consider the second derivative for continuous f and use the notation

and conventions in the above argument. Proposition 14 and symmetry allows
us to write

(Ptf)22(x) =Ex2

(∫∫
∆G(x(2), ν, ν′)1(νt = 0, ν′t = 0)dN0(ν)dN0(ν′)

)
+ 2Ex2

(∫∫
∆G(x(2), ν, ν′)1(νt = 0, ν′t > 0)dN0(ν)dN0(ν′)

)
+ Ex2

(∫∫
∆G(x(2), ν, ν′)1(νt > 0, ν′t > 0)dN0(ν)dN0(ν′)

)
≡ E1 + 2E2 + E3.

Use Lemma 11(b), (c) and Lemma 13(a) with g(y1) = G(y1, x
(2)
t ) to show

that if χt = 1(νt = ν′t = 0), then

|E1| =
∣∣∣∣Ex2

(∫∫ [
G

(∫ t

0

(x(2)
s + νs + ν′s) ds, x

(2)
t

)
−G

(∫ t

0

(x(2)
s + ν′s) ds, x

(2)
t

)
−G

(∫ t

0

(x(2)
s + νs) ds, x

(2)
t

)
+G

(∫ t

0

x(2)
s ds, x

(2)
t

)]
χtdN0(ν)dN0(ν′)

)∣∣∣∣
≤ c‖f‖∞Ex2

(∫∫ ∫ t

0

νs ds

∫ t

0

ν′s dsdN0(ν)dN0(ν′)
(∫ t

0

x(2)
s ds

)−2)
≤ c‖f‖∞

t2

t2(t+ x2)2
=

c‖f‖∞
(t+ x2)2

,
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where in the last line we have used (26) and Lemma 7(b).
For E2 we may drop νt from the expression for G(X, ν, ν′), regroup terms,

and use Lemma 11(b) and (25) to write

|E2| ≤ Ex2

(∫∫ {∣∣∣∣G(∫ t

0

x(2)
s + νs + ν′s ds, x

(2)
t + ν′t

)
−G

(∫ t

0

x(2)
s + ν′s ds, x

(2)
t + ν′t

)∣∣∣∣1(ν′t > 0)

+
∣∣∣∣G(∫ t

0

x(2)
s + νs ds, x

(2)
t

)
−G

(∫ t

0

x(2)
s ds, x

(2)
t

)∣∣∣∣1(ν′t > 0)
}

dN0(dν)dN0(ν′)
)

≤ c

t

[
‖f‖∞

∫ ∫ t

0

νsdsdN0(ν)Ex2

((∫ t

0

x(2)
s ds

)−1)]
≤ c‖f‖∞
t(x2 + t)

,

where in the last line we have again used (26) and Lemma 7(b).
Again using the decomposition and notation of Lemma 10 with ρ = 0 and

(25), we have

|E3| = (γ0
2)−2t−2

∣∣∣∣Ex2

(∫∫
G

(∫ t

0

x(2)
s + νs + ν′s ds, x

(2)
t + ν′t + νt

)(75)

−G
(∫ t

0

x(2)
s + ν′s ds, x

(2)
t + ν′t

)
−G

(∫ t

0

x(2)
s + νs ds, x

(2)
t + νt

)
+G

(∫ t

0

x(2)
s ds, x

(2)
t

)
dP ∗t (ν)dP ∗t (ν′)

)∣∣∣∣
=

c

t2

∣∣∣∣E(G(Nt+2∑
j=1

rj(t) + I2(t),
Nt+2∑
j=1

ej(t) +X ′0(t)
)

− 2G
(Nt+1∑
j=1

rj(t) + I2(t),
Nt+1∑
j=1

ej(t) +X ′0(t)
)

+G

( Nt∑
j=1

rj(t) + I2(t),
Nt∑
j=1

ej(t) +X ′0(t)
))∣∣∣∣

= c(x2t)−1

∣∣∣∣ ∞∑
k=0

wpk(w)[G(Rk+2 + I2(t), Sk+2 +X ′0(t))

− 2G(Rk+1 + I2(t), Sk+1 +X ′0(t)) +G(Rk + I2(t), Sk +X ′0(t))]
∣∣∣∣.
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Recall here that w = x2
γ0

2 t
. Now sum by parts twice and use |G| ≤ ‖f‖∞ to

bound the above by

c‖f‖∞(x2t)−1

∣∣∣∣w[−p0(w) + p1(w)] +
∞∑
k=2

w[pk−2(w)− 2pk−1(w) + pk(w)]
∣∣∣∣

≤ c‖f‖∞(x2t)−1

[ ∞∑
k=2

pk(w)
|[w − k]2 − k|

w
+ wp0(w) + wp1(w)

]

≤ c‖f‖∞(x2t)−1

[ ∞∑
k=0

pk(w)
[

(w − k)2 + k

w

]
+ 2p1(w)

]
≤ c‖f‖∞(x2t)−1.

On the other hand if we use the trivial bound |G| ≤ ‖f‖∞ in (75) we get
|E3| ≤ c‖f‖∞t−2 and so

|E3| ≤
c‖f‖∞
t(t+ x2)

.

Combine the above bounds on E1, E2 and E3 to obtain (71).
The bounds for f ∈ Sα are then obtained from the above just as in the

proof of Proposition 16. �

Set Jt = 2γ0
1It, where It is given by (44) and recall Convention 1, as

adapted in (17). Recall that in our current setting, |f |Cαw is as in (43).

Lemma 18. For each M ≥ 1 and α ∈ (0, 1) there is a c18 = c18(M,α) > 0
such that if M0 ≤M , then

(76) |fg|α ≤ c18|f |Cαw‖g‖∞ + ‖f‖∞|g|α

and

(77) ‖fg‖α ≤ c18[‖f‖Cαw‖g‖∞ + ‖f‖∞|g|α]

Proof. Let x = (x1, x2) ∈ R × R+ and define f̃(y) = f(y) − f(x). Then
(18) gives

|Pt(fg)(x)− fg(x)| ≤ |Pt(f̃g)(x)|+ |f(x)||Ptg(x)− g(x)|(78)

≤ ‖g‖∞Ex2

(∫
|f̃(z, x(2)

t )|pJt(z − x1 − b01t) dz
)

+ ‖f‖∞|g|αtα/2.
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Write

Ex2

(∫
|f̃(z, x(2)

t )|pJt(z − x1 − b01t)dz
)

(79)

≤ Ex2

(∫
|f̃(z, x(2)

t )− f̃(z, x2)|pJt(z − x1 − b01t)dz
)

+ Ex2

(∫
|f(z, x2)− f(x1 + b01t, x2)|pJt(z − x1 − b01t)dz

)
+ |f(x1 + b01t, x2)− f(x)|
≡ E1 + E2 + E3.

The definition of |f |α,i gives

E1 ≤ |f |α,2Ex2(|x(2)
t − x2|αx−α/22 ∧ |x(2)

t − x2|α/2)

≤ |f |α,2
[
Ex2(|x(2)

t − x2|2)α/2x−α/22 ∧ Ex2(|x(2)
t − x2|2)α/4

]
.

Lemma 7 (a) gives

Ex2(|x(2)
t − x2|2) ≤ cM2(t2 + x2t)

for some universal constant c. Therefore

E1 ≤ |f |α,2c(M,α)[((t2 + x2t)α/2x
−α/2
2 ) ∧ (t2 + x2t)α/4]

≤ c(M,α)|f |α,2tα/2[(t/x2 + 1)α/2 ∧ (1 + x2/t)α/4]

≤ c(M,α)2α/2|f |α,2tα/2.
Similarly we have

E2 ≤ |f |α,2Ex2

(∫
[|z − (b01t+ x1)|αx−α/22 ] ∧ [|z − (b01t+ x1)|α/2]

pJt(z − x1 − b01t)dz
)

≤ c|f |α,2
(
Ex2(Jα/2t x

−α/2
2 ) ∧ Ex2(Jα/4t )

)
≤ c|f |α,2

((
Ex2(Jt)α/2x

−α/2
2

)
∧ Ex2(Jt)α/4

)
.

Lemma 7(a) shows that Ex2(Jt) ≤ 2M(t2 +x2t). Put this in the above bound
on E2 and argue as above to see

E2 ≤ c(M,α)|f |α,2tα/2.
Put the above bounds on E1 and E2 into (79) and then in (78) to see that

|Pt(fg)(x)− fg(x)|

≤ ‖g‖∞[c(M,α)(|f |α,2 + |f |α,2 + |b01|α/2|f |α,2)]tα/2 + ‖f‖∞|g|αtα/2
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and so
|fg|α ≤ c(M,α)|f |Cαw‖g‖∞ + ‖f‖∞|g|α.

This gives (76) and (77) is then immediate. �

Theorem 19.

(80) (2 + c16 + c17)−1|f |Cαw ≤ |f |α ≤ c18|f |Cαw .

In particular Cαw = Sα and so Sα contains C1 functions with compact support
in R× R+.

Proof. Set g = 1 in Lemma 18 to obtain the second inequality in (80).
Let x, h ∈ R× R+, t > 0 and use Propositions 16 and 17 to see that

|f(x+ h)− f(x)| ≤ 2|f |αtα/2 + |Ptf(x+ h)− Ptf(x)|(81)

≤ 2|f |αtα/2 + (c16 + c17)|f |αtα/2−1/2(x2 + t)−1/2|h|.

First set t = |h| and bound (x2 + t)−1/2 by t−1/2 to see that (81) is at most

(82) (2 + c16 + c17)|f |α|h|α/2.

Next for x2 > 0, set t = |h|2/x2 and bound (x2 + t)−1/2 by x
−1/2
2 to bound

(81) by

(83) (2 + c16 + c17)|f |αx−α/22 |h|α.

The first inequality in (80) is now immediate from (82) and (83) and the proof
is complete. �

We next state versions of Propositions 16 and 17 for general m ≥ 1, i.e.,
for the semigroup Pt on Rm × R+ given by (18). The proofs are minor mod-
ifications of those already given for m = 1 as one replaces a one-dimensional
Gaussian density by an m-dimensional one and then makes some obvious
changes. We have only stated the extensions we will actually need below.

Proposition 20.

(a) If f is a bounded Borel function on Rm × R+, then

(84)
m+1∑
j=1

∥∥∥∥ ∂

∂xj
Ptf

∥∥∥∥
∞
≤ c20‖f‖∞√

t
√
xm+1 + t

.

(b) If f ∈ Sα, then

(85)
m+1∑
j=1

∥∥∥∥ ∂

∂xj
Ptf

∥∥∥∥
∞
≤ c20|f |αt

α
2−

1
2

√
xm+1 + t

≤ c20|f |αt
α
2−1,
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and

(86)
m+1∑
j=1

∥∥∥∥∥xm+1
∂2

∂x2
j

Ptf

∥∥∥∥∥
∞

≤ c20|f |αt
α
2−1.

Remark 21. The proof of Theorem 19 now goes through with only minor
changes to prove (80) in this m + 1 dimensional setting. For m = 0, i.e., for
the semigroup of A1f(x) = b01f

′(x)+γ0
1xf

′′(x) (x ≥ 0), this result was proved
in Section 7 of [ABP] assuming only b01 ≥ 0 (as opposed to the b01 > 0 assumed
here). This strengthening will be used in Section 3 below.

2.4. Weighted Hölder bounds on the catalytic semigroup. In this
section we will obtain bounds on the weighted Hölder norms of Ptf . We
continue to work in the same setting as Sections 2.2 and 2.3 with m = 1. As
usual, the x1 derivatives are easier.

Proposition 22. If f is a bounded Borel function on R × R+, then for
all x, h ∈ R× R+,

(87)
∣∣∣∣∂Ptf∂x1

(x+ h)− ∂Ptf

∂x1
(x)
∣∣∣∣ ≤ c22‖f‖∞

t3/2(x2 + t)1/2
|h|,

and

(88)
∣∣∣∣(x+ h)2

∂2Ptf

∂x2
1

(x+ h)− x2
∂2Ptf

∂x2
1

(x)
∣∣∣∣ ≤ c22‖f‖∞

t3/2(x2 + t)1/2
|h|.

If f ∈ Sα, then for all x, h ∈ R× R+,

(89)
∣∣∣∣∂Ptf∂x1

(x+ h)− ∂Ptf

∂x1
(x)
∣∣∣∣ ≤ c22|f |αt

α
2−

3
2 (x2 + t)−1/2|h|,

and

(90)
∣∣∣∣(x+ h)2

∂2Ptf

∂x2
1

(x+ h)− x2
∂2Ptf

∂x2
1

(x)
∣∣∣∣ ≤ c22|f |αt

α
2−

3
2 (x2 + t)−1/2|h|.

Proof. As in the proof of Proposition 14 it suffices to consider f bounded
and continuous. As (87) is simpler, we only give a proof of (88). Recall
ěi is the ith unit basis vector and the definition (44) of It. From (61) and
Lemma 11(a) we have (recall G′′t,x1

denotes the second derivative with respect
to x1),

|x2(Ptf)11(x+ h1ě1)− x2(Ptf)11(x)|(91)

= x2|Ex2((G′′t,x1+h1
−G′′t,x1

)(It, x
(2)
t ))|

≤ x2c3‖f‖∞Ex2(I−3/2
t )|h1|

≤ x2c3‖f‖∞c7t−3/2(x2 + t)−3/2|h1| (by Lemma 7(b))

≤ c‖f‖∞t−3/2(x2 + t)−1/2|h1|.
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Turning now to increments in x2, (61) implies that for h2 ≥ 0,

(x2 + h2)(Ptf)11(x+ h2ě2)− x2(Ptf)11(x)

= [(x2 + h2)Ex2+h2 − x2Ex2 ](G′′t,x1
(It, x

(2)
t ))

= h2Ex2+h2(G′′t,x1
(It, x

(2)
t )) + x2[Ex2+h2 − Ex2 ](G′′t,x1

(It, x
(2)
t ))

= E1 + E2.

By Lemmas 11(a) and 7(b),

|E1| ≤ h2c11‖f‖∞Ex2+h2(I−1
t ) ≤ c‖f‖∞t−1(x2 + t)−1h2.

For E2 we use the decompositions (33), (34), (35) and notation from
Lemma 10 with ρ = 1

2 . Then

|E2| = x2

∣∣∣∣E(G′′t,x1

( N ′t∑
j=1

rj(t) + I2(t) + Ih3 (t),
N ′t∑
j=1

ej(t) +X ′0(t)
)

−G′′t,x1

( Nt∑
j=1

rj(t) + I2(t),
Nt∑
j=1

ej(t) +X ′0(t)
))∣∣∣∣

≤ x2

∣∣∣∣E(G′′t,x1

( N ′t∑
j=1

rj(t) + I2(t) + Ih3 (t),
N ′t∑
j=1

ej(t) +X ′0(t)
)

−G′′t,x1

( N ′t∑
j=1

rj(t) + I2(t),
N ′t∑
j=1

ej(t) +X ′0(t)
))∣∣∣∣

+ x2

∣∣∣∣E(G′′t,x1

( N ′t∑
j=1

rj(t) + I2(t),
N ′t∑
j=1

ej(t) +X ′0(t)
)

−G′′t,x1

( Nt∑
j=1

rj(t) + I2(t),
Nt∑
j=1

ej(t) +X ′0(t)
))∣∣∣∣

≡ E2a + E2b.

By Lemmas 11(b) and 7(b), and the independence of x(2) and Ξh,

|E2a| ≤ x2 c‖f‖∞Ex2

((∫ t

0

x(2)
s ds

)−2)
E(Ih3 (t))

≤ x2 c‖f‖∞c7t−2(x2 + t)−2h2

∫ ∫ t

0

νsdsdN0(ν)

≤ c‖f‖∞t−1(x2 + t)−1h2,
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where (26) is used in the last line. Recall that Rk =
∑k
j=1 rj(t) and pk(w) =

e−wwk/k!. The independence of N ′t from the other random variables appear-
ing in the first term in E2b allows us to condition on its value. The same
is true for Nt in the second term in E2b. Therefore, if w = x2/2γ0

2t and
w′ = w + (h2/γ

0
2t), then by Lemma 11(a),

|E2b| = x2

∣∣∣∣∑
k=0

(pk(w′)− pk(w))E(G′′t,x1
(Rk + I2(t), Sk +X ′0(t)))

∣∣∣∣
≤ ctw

∞∑
k=0

∣∣∣∣∫ w′

w

p′k(u) du
∣∣∣∣‖f‖∞E((∫ t

0

X ′0(s) ds
)−1)

≤ c‖f‖∞tw
∫ w′

w

∞∑
k=0

pk(u)
|k − u|
u

dut−1

(
x2

2
+ t

)−1

(by Lemma 7(b))

≤ c‖f‖∞tw
∫ w′

w

u−1/2dut−1(x2 + t)−1

≤ c‖f‖∞w1/2h2t
−1(x2 + t)−1

≤ c‖f‖∞h2t
−3/2(x2 + t)−1/2.

The above bounds on |E1|, |E2a| and |E2b|, and (91) give (88).
Let f ∈ Sα. We only prove (90) as (89) is then proved by the same

argument. If g = Ptf − f , then ‖g‖∞ ≤ |f |αtα/2, and so by (88),

|(x+ h)2(P2tf − Ptf)11(x+ h)− x2(P2tf − Ptf)11(x)|
= |(x+ h)2(Ptg)11(x+ h)− x2(Ptg)11(x)|

≤ c|f |αt
α
2−

3
2 (x2 + t)−1/2|h| → 0 as t→∞.

Therefore we may write the left-hand side of (90) as a telescoping sum and
use the above bound to show

|(x+ h)2(Ptf)11(x+ h)− x2(Ptf)11(x)|

=
∣∣∣∣ ∞∑
k=1

(x+ h)2(P2ktf − P2k−1tf)11(x+ h)

− x2(P2ktf − P2k−1tf)11(x)
∣∣∣∣

≤
∞∑
k=1

c|f |α(2k−1t)
α
2−

3
2 (x2 + 2k−1t)−1/2|h|

≤ c|f |αt
α
2−

3
2 (x2 + t)−1/2|h|. �
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Proposition 23. If f is a bounded Borel function on R × R+, then for
all x, h ∈ R× R+,

(92)
∣∣∣∣∂Ptf∂x2

(x+ h)− ∂Ptf

∂x2
(x)
∣∣∣∣ ≤ c23‖f‖∞

t(x2 + t)
|h|,

and

(93)
∣∣∣∣(x+ h)2

∂2Ptf

∂x2
2

(x+ h)− x2
∂2Ptf

∂x2
2

(x)
∣∣∣∣ ≤ c23‖f‖∞

t3/2(x2 + t)1/2
|h|.

If f ∈ Sα, then for all x, h ∈ R× R+,

(94)
∣∣∣∣∂Ptf∂x2

(x+ h)− ∂Ptf

∂x2
(x)
∣∣∣∣ ≤ c23|f |αt

α
2−1(x2 + t)−1|h|,

and

(95)
∣∣∣∣(x+ h)2

∂2Ptf

∂x2
2

(x+ h)− x2
∂2Ptf

∂x2
2

(x)
∣∣∣∣ ≤ c23|f |αt

α
2−

3
2 (x2 + t)−1/2|h|.

Proof. The last two inequalities follow from the first two just as in the
proof of Proposition 22. As the proof of (92) is similar to, but much easier
than, that of (93), we only prove the latter. As usual we may assume f is
bounded and continuous.

To simplify the write-up we assume γ0
1 = 1 but note that our constants, as

usual, will be uniform in ε ≤ γ0
1 ≤ ε−1. Recall the notation ∆Gt,x1(X, ν, ν′)

from (45) just before Proposition 14. That result shows

(Ptf)22(x) = Ex2

(∫∫
∆Gt,x1(x(2), ν, ν′)dN0(ν)dN0(ν′)

)
(96)

=
4∑
j=1

Ex2(∆Gjt,x1
(x(2))),

where

∆G1
t,x1

(X) =
∫∫

∆Gt,x1(X, ν, ν′)1(νt = ν′t = 0)dN0(ν)dN0(ν′),

∆G2
t,x1

(X) =
∫∫

∆Gt,x1(X, ν, ν′)1(νt > 0, ν′t = 0)dN0(ν)dN0(ν′),

∆G3
t,x1

(X) =
∫∫

∆Gt,x1(X, ν, ν′)1(νt = 0, ν′t > 0)dN0(ν)dN0(ν′),

and

∆G4
t,x1

(X) =
∫∫

∆Gt,x1(X, ν, ν′)1(νt > 0, ν′t > 0)dN0(ν)dN0(ν′),

= (γ0
2t)
−2

∫∫
∆Gt,x1(X, ν, ν′)1(νt > 0, ν′t > 0)dP ∗t (ν)dP ∗t (ν′).
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In the last line P ∗t is the probability defined by (27) and we have used (25).
∆Gjt,x1

(X) depends on X only through Xt and
∫ t

0
Xsds, and so we will abuse

the notation and write ∆Gjt,x1
(Xt,

∫ t
0
Xsds) when it is convenient.

Consider first the increments in x2. Let h2 ≥ 0 and use (96) to write

|(x2 + h2)(Ptf)22(x1, x2 + h2)− x2(Ptf)22(x1, x2)|(97)

≤ h2|(Ptf)22(x1, x2 + h2)|

+
4∑
j=1

|((x2 + 2h2)Ex2+h2 − x2Ex2)(∆Gjt,x1
(X))|.

In the following lemmas we again use the decompositions of x(2)
t and Xx+h

t

from Lemma 10 with ρ = 1
2 .

Lemma 24. We have

|((x2 + 2h2)Ex2+h2 − x2Ex2)(∆G1
t,x1

(X))| ≤ c24‖f‖∞
t(x2 + t)

h2.

Proof. Write ∆Gj for ∆Gjt,x1
and G for Gt,x1 . The left-hand side is

bounded by

2h2Ex2+h2(|∆G1(X)|)

+ x2

∣∣∣∣E(∆G1

(∫ t

0

x(2)
s +Xh

s ds,X
x+h
t

)
−∆G1

(∫ t

0

x(2)
s ds,Xx+h

t

))∣∣∣∣
+ x2

∣∣∣∣E(∆G1

(∫ t

0

x(2)
s ds, x

(2)
t +Xh

t

)
−∆G1

(∫ t

0

x(2)
s , x

(2)
t

))∣∣∣∣
= E1 + E2 + E3.

Use Lemmas 13(a) and 11(b), and (26) to get

E1 ≤ 2h2

∣∣∣∣Ex2+h2

(∫∫ (
G

(∫ t

0

Xsds+
∫ t

0

νsds+
∫ t

0

ν′sds,Xt

)
−G

(∫ t

0

Xsds+
∫ t

0

νsds,Xt

)
−G

(∫ t

0

Xsds+
∫ t

0

ν′sds,Xt

)
+G

(∫ t

0

Xsds,Xt

))
1(νt = ν′t = 0)

)
dN0(ν)dN0(ν′)

)∣∣∣∣
≤ 2h2c2‖f‖∞Ex2+h2

((∫ t

0

Xsds

)−2)[∫ ∫ t

0

νsdsdN0(ν)
]2

≤ ch2‖f‖∞t−2(x2 + t)−2t2 = ch2‖f‖∞(x2 + t)−2.

The integrand in E2 is a third order difference in G(·, Xx+h
t ) to which we

may apply Lemma 13(b) and the bound on ∂3G
∂y3

1
(y1, y2) from Lemma 11, and



ON THE UNIQUENESS PROBLEM FOR CATALYTIC BRANCHING NETWORKS 359

the independence of x(2) and Xh to conclude that

E2 ≤ x2c3‖f‖∞Ex2

((∫ t

0

x(2)
s ds

)−3)
E

(∫ t

0

Xh
s ds)

)(∫ ∫ t

0

νsdsdN0(ν)
)2

≤ cx2‖f‖∞t−3(x2 + t)−3h2t
3

≤ c‖f‖∞(x2 + t)−2h2.

Finally bound E3 by

x2E

(
1(Xh

t > 0)
∣∣∣∣∆G1

(∫ t

0

x(2)
s ds, x

(2)
t +Xh

t

)∣∣∣∣)
+ x2E

(
1(Xh

t > 0)
∣∣∣∣∆G1

(∫ t

0

x(2)
s ds, x

(2)
t

)∣∣∣∣).
Each term can be handled in the same way, so consider the first. The integrand
defining ∆G1(

∫ t
0
x

(2)
s ds, x

(2)
t + Xh

t ) is a second order difference in G(·, x(2)
t +

Xh
t ) to which we may apply Lemma 13(a) and the bound on ∂2G

∂y2
1

(y1, y2) from
Lemma 11. This allows us to bound E3 by

c2‖f‖∞x2Ex2

((∫ t

0

x(2)
s ds

)−2)
P (Xh

t > 0)
(∫ ∫ t

0

νsdsdN0(ν)
)2

≤ c‖f‖∞x2t
−2(t+ x2)−2h2t

−1t2

≤ c‖f‖∞t−1(x2 + t)−1h2.

We have also used (28) in the second line to bound P (Xh
t > 0). The above

bounds on E1 − E3 give the required result. �

Lemma 25. For j = 2, 3 we have

|((x2 + 2h2)Ex2+h2 − x2Ex2)(∆Gjt,x1
(X))| ≤ c25‖f‖∞

t(x2 + t)
h2.

Proof. By symmetry we only need consider j = 2. As before we let w =
x2

2γ0
2 t

, wh = (x2
2 + h2)(γ0

2t)
−1, Sk =

∑k
j=1 ej(t), Rk =

∑k
j=1 rj(t), and N0(· ∩

{νt > 0}) = (γ0
2t)
−1P ∗t (·) by (27). We also write G for Gt,x1 . Let Qh be

the law of Ih3 (t). As this last random variable is independent of the others
appearing below by an elementary property of Poisson point processes, we
may condition on it and use (33), (34) and (35) to conclude
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(x2 + 2h2)Ex2+h2

(
∆G2

(∫ t

0

Xsds,Xt

))
= 2whE

(∫∫∫
[
G

(
I2(t) + z +RN ′t +

∫ t

0

νsds+
∫ t

0

ν′sds,X
′
0(t) + SN ′t + νt

)
−G

(
I2(t) + z +RN ′t +

∫ t

0

ν′sds,X
′
0(t) + SN ′t

)
−G

(
I2(t) + z +RN ′t +

∫ t

0

νsds,X
′
0(t) + SN ′t + νt

)
+G(I2(t) + z +RN ′t , X

′
0(t) + SN ′t)

]
1(ν′t = 0)dP ∗t (ν)dN0(ν′)dQh(z)

)
.

Recall that pk(u) = e−uuk/k!. N ′t is independent of (I2(t), {Rk}, {Sk}, X ′0(t))
and so we may condition on its value to see that the above equals

2
∞∑
k=0

whpk(wh) · E
(∫∫

1(ν′t = 0)
[
G

(
I2(t) + z(98)

+Rk+1 +
∫ t

0

ν′sds,X
′
0(t) + Sk+1

)
−G

(
I2(t) + z +Rk +

∫ t

0

ν′sds,X
′
0(t) + Sk

)
−G(I2(t) + z +Rk+1, X

′
0(t) + Sk+1)

+G(I2(t) + z +Rk, X
′
0(t) + Sk)

]
dN0(ν′)dQh(z)

)
= 2

∞∑
k=0

qk(wh)
∫

(Gk+1(z)−Gk(z))dQh(z),

where qk(y) = ypk(y) = (k + 1)pk+1(y) and

Gk(z) = E

(∫
1(ν′t = 0)

[
G

(
I2(t) + z +Rk +

∫ t

0

ν′sds,X
′
0(t) + Sk

)
−G(I2(t) + z +Rk, X

′
0(t) + Sk)

]
dN0(ν′)

)
.

When working under Ex2 there is no Ih3 (t) term and so similar reasoning leads
to

(99) x2Ex2

(
∆G2

(∫ t

0

x(2)
s ds, x

(2)
t

))
= 2

∞∑
k=0

qk(w)(Gk+1(0)−Gk(0)).



ON THE UNIQUENESS PROBLEM FOR CATALYTIC BRANCHING NETWORKS 361

If Hk =
∫
Gk(z)−Gk(0)dQh(z), and dk = qk(wh)−qk(w), where d−1 = q−1 =

0, we may take differences between (98) and (99) and then sum by parts to
get

∣∣∣∣[(x2 + h2)Ex2+2h2 − x2Ex2

](
∆G2

(∫ t

0

Xsds,Xt

))∣∣∣∣
(100)

= 2
∣∣∣∣ ∞∑
k=0

qk(wh)
[∫

Gk+1(z)−Gk(z)dQh(z)
]
− qk(w)(Gk+1(0)−Gk(0))

∣∣∣∣
= 2
∣∣∣∣ ∞∑
k=0

[
dk

∫
Gk+1(z)−Gk(z)dQh(z) +

∞∑
k=0

qk(w)(Hk+1 −Hk)
]∣∣∣∣

= 2
∣∣∣∣ ∞∑
k=0

(dk−1 − dk)
∫
Gk(z)dQh(z) +

∞∑
k=0

(qk−1(w)− qk(w))Hk

∣∣∣∣.
Now

Hk = E

(∫∫
1(ν′t = 0)

[
G

(
I2(t) + z +Rk +

∫ t

0

ν′sds,X
′
0(t) + Sk

)
−G(I2(t) + z +Rk, X

′
0(t) + Sk)

−G
(
I2(t) +Rk +

∫ t

0

ν′sds,X
′
0(t) + Sk

)
+G(I2(t) +Rk, X

′
0(t) + Sk)

]
dN0(ν′)dQh(z)

)
.

The expression inside the square brackets is a second order difference in the
first variable of G to which we may apply Lemmas 13(a) and 11(b), and
conclude

|Hk| ≤ c‖f‖∞
∫

1(ν′t = 0)
∫ t

0

ν′sdsdN0(ν′)
∫
zdQh(z)E

((∫ t

0

X ′0(s)ds
)−2)(101)

≤ c‖f‖∞th2

∫ ∫ t

0

ν′sdsdN0(ν′)
(
x2

2
+ t

)−2

t−2 (by Lemma 7(b))

≤ c‖f‖∞h2(x2 + t)−2.

For all k ≥ 0, qk−1(w)−qk(w) = pk(w)(k−w) and we therefore may conclude
that

(102)
∞∑
k=0

|qk−1(w)− qk(w)| =
∞∑
k=0

pk(w)|k − w| ≤ w1/2.
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The bound on |∂G/∂y1| from Lemma 11(b) implies that

|Gk(z)| ≤ ‖f‖∞E
((∫ t

0

X ′0(s)ds
)−1)∫ ∫ t

0

ν′sdsdN0(ν′)(103)

≤ c‖f‖∞(x2 + t)−1 (by (26) and Lemma 7(b)).

Use the identity kp′k(u) = k(pk−1(u)− pk(u)), for all k ≥ 0, and some algebra
to see that

∞∑
k=0

|dk−1 − dk| =
∞∑
k=0

∣∣∣∣∫ wh

w

q′k−1(u)− q′k(u)du
∣∣∣∣(104)

=
∞∑
k=0

∣∣∣∣∫ wh

w

kp′k(u)− (k + 1)p′k+1(u)du
∣∣∣∣

=
∞∑
k=0

∣∣∣∣∫ wh

w

pk(u)
[

(k − u)2

u
− 1
]
du

∣∣∣∣
≤
∫ wh

w

[ ∞∑
k=0

pk(u)(k − u)2u−1

]
+ 1du

= 2h2(γ0
2t)
−1.

Use (101)–(104) in (100) to see that∣∣∣∣((x2 + 2h2)Ex2+h2 − x2Ex2)
(

∆G2

(∫ t

0

Xsds,Xt

))∣∣∣∣
≤ c‖f‖∞h2

γ0
2t(x2 + t)

+
√
x2√
γ0

2t

c‖f‖∞h2

(x2 + t)2

≤ c‖f‖∞h2

t(x2 + t)
,

as required. �

Lemma 26. We have

|((x2 + 2h2)Ex2+h2 − x2Ex2)(∆G4
t,x1

(X))| ≤ c26‖f‖∞
t3/2(x2 + t)1/2

h2.

Proof. We use the same setting and notation as in Lemma 25. Also intro-
duce

Ĝk(z) = E(G(I2(t) +Rk + z,X ′0(t) + Sk)),

and

Ĥk =
∫

(Ĝk(z)− Ĝk(0)) dQh(z).
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As in the derivation of (98) we have

(x2 + 2h2)Ex2+h2

(
∆G4

(∫ t

0

Xsds,Xt

))(105)

=
(x2 + 2h2)

(γ0
2t)2

E

(∫∫∫ [
G

(
I2(t) +RN ′t + z

+
∫ t

0

νsds+
∫ t

0

ν′sds,X
′
0(t) + SN ′t + νt + ν′t

)
−G

(
I2(t) +RN ′t + z +

∫ t

0

νsds,X
′
0(t) + SN ′t + νt

)
−G

(
I2(t) +RN ′t + z +

∫ t

0

ν′sds,X
′
0(t) + SN ′t + ν′t

)
+G(I2(t) +RN ′t + z,X ′0(t) + SN ′t)

]
dP ∗t (ν)dP ∗t (ν′)dQh(z)

)
= 2(γ0

2t)
−1
∞∑
k=0

whpk(wh)
∫

(Ĝk+2(z)− 2Ĝk+1(z) + Ĝk(z))dQh(z)

= 2(γ0
2t)
−1
∞∑
k=0

qk(wh)
∫

(Ĝk+2(z)− 2Ĝk+1(z) + Ĝk(z))dQh(z).

A similar argument holds under Px2 but now there is no Ih3 (t) term and
hence no Qh integration. This leads to

(106) x2Ex2

(
∆G4

(∫ t

0

Xsds,Xt

))
= 2(γ0

2t)
−1
∞∑
k=0

qk(w)(Ĝk+2(0)− 2Ĝk+1(0) + Ĝk(0)).

Recall that dk = qk(wh) − qk(w) and pk = dk = qk = 0 if k < 0. Take
differences between (105) and (106) and then sum by parts twice to see that∣∣∣∣((x2 + 2h2)Ex2+h2 − x2Ex2)

(
∆G4

(∫ t

0

Xsds,Xt

))∣∣∣∣(107)

= 2(γ0
2t)
−1

∣∣∣∣ ∞∑
k=0

qk(wh)
∫

(Ĝk+2(z)− 2Ĝk+1(z) + Ĝk(z))dQh(z)

− qk(w)(Ĝk+2(0)− 2Ĝk+1(0) + Ĝk(0))
∣∣∣∣
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= 2(γ0
2t)
−1

∣∣∣∣ ∞∑
k=0

dk

∫
(Ĝk+2 − 2Ĝk+1 + Ĝk)(z)dQh(z)

+ qk(w)[Ĥk+2 − 2Ĥk+1 + Ĥk]
∣∣∣∣

= 2(γ0
2t)
−1

∣∣∣∣ ∞∑
k=0

(dk−2 − 2dk−1 + dk)
∫
Ĝk(z)dQh(z)

+
∞∑
k=0

(qk−2(w)− 2qk−1(w) + qk(w))Ĥk

∣∣∣∣.
Lemmas 11(a) and 7(b) imply

|Ĥk| = |E(G(I2(t) +Rk + Ih3 (t), X ′0(t) + Sk)(108)

−G(I ′2(t) +Rk, X
′
0(t) + Sk)|

≤ c‖f‖∞E
((∫ t

0

X ′0(s)ds
)−1)

E(Ih3 (t))

≤ c‖f‖∞t−1

(
x2

2
+ t

)−1 ∫ ∫ t

0

νsdsdN0(ν)h2

≤ c‖f‖∞(x2 + t)−1h2.

We also have

∞∑
k=0

|qk−2(w)− 2qk−1(w) + qk(w)|(109)

=
∞∑
k=0

e−w
wk

k!

∣∣∣∣k(k − 1)− 2kw + w2

w

∣∣∣∣
≤
∞∑
k=0

pk(w)
[(w − k)2 + k]

w
= 2.

Finally qk(u) = (k + 1)pk+1(u) implies for k ≥ −2,

q′k(u) = (k + 1)p′k+1(u) = (k + 1)(pk(u)− pk+1(u)).

Use this and a bit of algebra to see that if

h(k, u) = (k − u)3 − 2(k − u)2 + 3u(u− k) + k,
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then
∞∑
k=0

|dk−2 − 2dk−1 + dk| =
∞∑
k=0

∣∣∣∣∫ wh

w

q′k−2(u)− 2q′k−1(u) + q′k(u) du
∣∣∣∣(110)

=
∞∑
k=0

∣∣∣∣∫ wh

w

pk(u)
u2

h(k, u), du
∣∣∣∣.

If N = N (u) is Poisson with mean u, then for u ≥ 1,

u−2E(|h(N,u)|) ≤ cu−2(u3/2 + u+ 3u3/2 + u) ≤ cu−1/2.(111)

For 0 < u ≤ 1,
∞∑
k=0

pk(u)
u2
|h(k, u)| = e−uu−2| − u3 + u2|+ e−uu−1|u(−2 + 4u− u2)|(112)

+
∞∑
k=2

e−uuk−2

k!
|h(k, u)|

≤ e−u(u+ 1) + e−u| − 2 + 4u− u2|+
∞∑
k=2

e−uuk−2

k!
ck2(k − 1)

≤ c+ c

∞∑
k=2

e−uuk−2

(k − 2)!
k = c+ c(u+ 2) ≤ c.

Use (111) and (112) in (110) to show that
∞∑
k=0

|dk−2 − 2dk−1 + dk|(113)

≤
∫ wh

w

∞∑
k=0

pk(u)u−2|h(k, u)|du

≤
∫ wh

w

c(u+ 1)−1/2du ≤ c(w + 1)−1/2h2(γ0
2t)
−1

≤ ch2√
t
√
x2 + t

.

Substitute (108), (109), (113) and the trivial bound |Ĝk(z)| ≤ ‖f‖∞ into
(107) to conclude∣∣∣∣((x2 + 2h2)Ex2+h2 − x2Ex2)

(
∆G4

(∫ t

0

Xsds,Xt

))∣∣∣∣
≤ c‖f‖∞h2

t3/2(x2 + t)1/2
+
c‖f‖∞h2

t(x2 + t)
,

as required. �
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Finally we consider the increments in x1.

Lemma 27. If f is a bounded Borel function on R × R+, then for all
x ∈ R× R+ and all h1 ∈ R,

(114)
∣∣∣∣x2

∂2Ptf

∂x2
2

(x1 + h1, x2)− x2
∂2Ptf

∂x2
2

(x1, x2)
∣∣∣∣

≤ c27‖f‖∞t−3/2(x2 + t)−1/2|h1|.

Proof. Let

∆2Gjt,x1
(X) = ∆Gjt,x1+h1

(X)−∆Gjt,x1
(X), j = 1, . . . , 4,

so that by (96),

(115) x2(Ptf)22(x1+h1, x2)−x2(Ptf)22(x1, x2) =
4∑
j=1

x2Ex2(∆2Gjt,x1
(x(2))).

Considering the j = 1 contribution in the above sum first, write

x2Ex2(∆2G1
t,x1

(x(2)))

= x2Ex2

(∫∫
1(νt = ν′t = 0)

[
Gt,x1+h1

(∫
x(2)
s + νs + ν′sds, x

(2)
t

)
−Gt,x1+h1

(∫
x(2)
s + νsds, x

(2)
t

)
−Gt,x1+h1

(∫
x(2)
s + ν′sds, x

(2)
t

)
+Gt,x1+h1

(∫
x(2)
s ds, x

(2)
t

)
−Gt,x1

(∫
x(2)
s + νs + ν′sds, x

(2)
t

)
+Gt,x1

(∫
x(2)
s + νsds, x

(2)
t

)
+Gt,x1

(∫
x(2)
s + ν′sds, x

(2)
t

)
−Gt,x1

(∫
x(2)
s ds, x

(2)
t

)]
dN0(ν)dN0(ν′)

)
.

The expression in square brackets on the righthand side is a third order dif-
ference of Gt,x1(y1, Xt) (first order in x1 and second order in y1) to which we

may apply Lemma 13(b) and the bound on ∂3Gt,x1
∂x1∂y2

1
(y1, y2) from Lemma 11,

and conclude

|x2Ex2(∆2G1
t,x1

(x(2)))|(116)

≤ cx2‖f‖∞Ex2

((∫ t

0

x(2)
s ds

)−5/2)
|h1|
(∫ ∫ t

0

νsdsdN0(ν)
)2

≤ cx2‖f‖∞t−5/2(x2 + t)−5/2|h1|t2

≤ c‖f‖∞|h1|t−1/2(x2 + t)−3/2.
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Turning to ∆2G2
t,x1

, set

Ht,x1(It, Xt, ν, h1) = Gt,x1+h1

(
It +

∫ t

0

νsds,Xt

)
−Gt,x1+h1(It, Xt)

−Gt,x1

(
It +

∫ t

0

νsds,Xt

)
+Gt,x1(It, Xt).

Then

(117) |x2Ex2(∆2G2
t,x1

(x(2)))|

=
∣∣∣∣x2Ex2

(∫∫
1(νt = 0, ν′t > 0)

[
Ht,x1

(∫ t

0

x(2)
s + ν′sds, x

(2)
t + ν′t, ν, h1

)
−Ht,x1

(∫ t

0

x(2)
s ds, x

(2)
t , ν, h1)

]
dN0(ν)dN0(ν′)

))∣∣∣∣.
We may apply Lemmas 13(b) and 11(b) to see that

|Ht,x1(It, Xt, ν, h1)| ≤ c‖f‖∞I−3/2
t |h1|

∫ t

0

νsds.

Use this to bound each term in the integrand on the righthand side of (117)
and so conclude

|x2Ex2(∆2G2
t,x1

(x(2)))|

(118)

≤ c‖f‖∞x2Ex2

((∫ t

0

x(2)
s ds

)−3/2)
|h1|

∫ ∫ t

0

νsdsdN0(ν)N0({ν′ : ν′t > 0})

≤ c‖f‖∞x2t
−3/2(x2 + t)−3/2|h1|tt−1

≤ c‖f‖∞t−3/2(x2 + t)−1/2|h1|.

By symmetry the same bound holds for |x2Ex2(∆2G3
t,x1

(x(2)))|.
To bound the j = 4 term in (115), we use the notation and setting intro-

duced for Lemma 10 (with ρ = 1/2) and in the proof of Lemma 25. For h1

fixed, let DGt,x1(y1, y2) = Gt,x1+h1(y1, y2)−Gt,x1(y1, y2) and define

∆Gk = E(DGt,x1(Rk + I2(t), Sk +X ′0(t))).

The Mean Value Theorem and the bound on |∂Gt,x1/∂x1(y)| in Lemma 11
implies

|∆Gk| ≤ c‖f‖∞|h1|Ex2

((∫ t

0

X ′0(s)ds
)−1/2)

(119)

≤ c‖f‖∞|h1|t−1/2(x2 + t)−1/2.

Recall that w = x2(2γ0
2t)
−1 and qk(w) = wpk(w).
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Then

|x2Ex2(∆2G4
t,x1

(x(2)))|

= x2(γ0
2t)
−2

∣∣∣∣Ex2

{∫∫
DGt,x1

(∫ t

0

x(2)
s + νs + ν′sds, x

(2)
t + νt + ν′t

)
−DGt,x1

(∫ t

0

x(2)
s + νsds, x

(2)
t + νt

)
−DGt,x1

(∫ t

0

x(2)
s + ν′sds, x

(2)
t + ν′t

)
+DGt,x1

(∫ t

0

x(2)
s ds, x

(2)
t

)
dP ∗t (ν)dP ∗t (ν′)

}∣∣∣∣
=
cw

t
|E(DGt,x1(I2(t) +RNt+2, X

′
0(t) + SNt+2)

− 2DGt,x1(I2(t) +RNt+1, X
′
0(t) + SNt+1)

+DGt,x1(I2(t) +RNt , X
′
0(t) + SNt))|

= ct−1

∣∣∣∣ ∞∑
k=0

wpk(w)[∆Gk+2 − 2∆Gk+1 + ∆Gk]
∣∣∣∣

= ct−1

∣∣∣∣ ∞∑
k=0

(qk−2(w)− 2qk−1(w) + qk(w))∆Gk

∣∣∣∣,
where we sum by parts twice in the last line and use qk = 0 for k < 0. Use
(109) and (119) in the above to see that

|x2Ex2(∆2G4
t,x1

(x(2)))| ≤ ct−1‖f‖∞|h1|t−1/2(x2 + t)−1/2(120)

≤ c‖f‖∞|h1|t−3/2(x2 + t)−1/2.

Putting (116), (118) and (120) into (115), we complete the proof of Lemma 27.
�

We now may finish the proof of Proposition 23. Use Lemmas 24, 25, and
26, and (71) from Proposition 17 in (97) to obtain

|(x2 + h2)(Ptf)22(x1, x2 + h2)− x2(Ptf)22(x1, x2)|

≤ c17‖f‖∞h2

t(t+ x2)
+

c‖f‖∞h2

t3/2(t+ x2)1/2
≤ c‖f‖∞h2

t3/2(t+ x2)1/2
.

Lemma 27 gives the corresponding bound for increments in x1 and so the
proof of (93) is complete, as required. �

Finally we state the required extensions of Propositions 22 and 23 to general
m ≥ 1, i.e., for the semigroup Pt on Rm × R+ given by (18). The proofs are
again minor modifications of those already given for m = 1.
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Proposition 28.

(a) If f is a bounded Borel function on Rm × R+, then for all x, h ∈
R
m × R+,

m+1∑
j=1

∣∣∣∣∂Ptf∂xj
(x+ h)− ∂Ptf

∂xj
(x)
∣∣∣∣ ≤ c28‖f‖∞t−

3
2 (xm+1 + t)−1/2|h|.

(b) If f ∈ Sα, then for all x, h ∈ Rm × R+,

m+1∑
j=1

∣∣∣∣∂Ptf∂xj
(x+ h)− ∂Ptf

∂xj
(x)
∣∣∣∣

+
∣∣∣∣(x+ h)m+1

∂2Ptf

∂x2
j

(x+ h)− xm+1
∂2Ptf

∂x2
j

(x)
∣∣∣∣

≤ c28|f |αt
α
2−

3
2 (xm+1 + t)−1/2|h|.

Proof. The only step which is slightly different is the derivation of the
bound (91) for

(121) |xm+1(Ptf)ii(x+ hěj)− xm+1(Ptf)ii(x)|

for i 6= j. We again omit the analogous bound for the first derivative. As in
(91), (121) equals

xm+1

∣∣∣∣Exm+1

((
∂2Gt,x+hěj

∂x2
i

− ∂2Gt,x
∂x2

i

)
(It, x

(m+1)
t )

)∣∣∣∣.
As in Lemma 11 one easily checks that∣∣∣∣ ∂2

∂x2
i

∂

∂xj
Gt,x(y1, y2)

∣∣∣∣ ≤ c‖f‖∞y−3/2
1

and the upper bound (91) for (121) now follows just as before. The other
steps in the proof are trivial modifications of those used for m = 1. �

Remark 29. If m = 0 so that Pt is the semigroup of

A1f(x) = b01f
′(x) + γ0

1xf
′′(x),

Propositions 20 and 28 continue to hold as we may consider functions which
depend only on xm+1. Here we assume b01 > 0 but in fact these results (with
m = 0) were proved in [BP1] (see Section 4 of that reference) for b01 ≥ 0.
There the weighted Hölder norm | |Cαw was used but these are equivalent by
Remark 21. This extension will be used in the next section to handle the
coordinates i ∈ N2.
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3. Multi-dimensional bounds

We return to the setting of Section 1.3 and recall the notation introduced
there. In particular we will work with the multi-dimensional semigroup Pt =∏
i∈I P

i
t on the state space S0 = {(x1, . . . , xd) : xi ≥ 0 ∀i /∈ N1}, where

I = (Z ∩ C) ∪ N2. It is now relatively straightforward to use the results
from the previous sections on the semigroups P it , i ∈ I, to prove the required
bounds on the resolvent Rλ of Pt. The arguments are easy modifications of
those in Section 5 of [BP1], although the setting is a bit more complex as in
[BP1] the P it are all one-dimensional. Recall that if i ∈ Z ∩ C, then b0i > 0.

For k ∈ I let

ȳk = ({yj}j∈Rk , yk), if k ∈ Z ∩ C,
ȳk = yk if k ∈ N2,

ŷk = ({yj}j 6∈Rk∪{k}) if k ∈ Z ∩ C,
ŷk = (y1, . . . , yk−1, yk+1, . . . , yd) if k ∈ N2,

and R̄k = R
|Rk| × R+ if k ∈ Z ∩ C and R̄k = R if k ∈ N2. If h̄k ∈ R̄k

and j ∈ Rk, set h̄kēk = hkěk +
∑
j∈Rk hj ěj , respectively hkěk, according as

k ∈ Z ∩ C (and h̄k = ({hj}j∈Rk , hk)) or k ∈ N2 (and h̄k = hk).
Let f : S0 → R be a bounded Borel function. For k ∈ I define

Fk(ȳk; t, x̂k) =
∫
f(y)

∏
i∈I,i 6=k

P it (x̄i, dȳi).

Then

(122) Ptf(x) = P kt (Fk(·; t, x̂k))(x̄k) for all k ∈ I.

If h̄ ∈ R̄k, and k ∈ Z ∩ C, then

|Fk(ȳk + h̄; t, x̂k)− Fk(ȳk; t, x̂k)|

=
∣∣∣∣∫ [f(y + h̄ēk)− f(y)]

∏
i∈I,i 6=k

P it (x̄i, dȳi)
∣∣∣∣

≤ |f |α,k[|h̄|αy−α/2k ∧ |h̄|α/2].

A similar argument works if k ∈ N2 with hαy
−α/2
k in place of [|h̄|αy−α/2k ∧

|h̄|α/2].
Therefore

(123) |Fk(·; t, x̂k)|Cαw ≤ |f |α,k for all k ∈ I.

Here |Fk(·; t, x̂k)|Cαw is defined as in Section 1.4 with {k} ∩ (Z ∩C), {k} ∩N2

playing the roles of Z ∩ C, and N2, respectively.
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If F : S0 → R, let

∂F

∂x̄k
=
({

∂F

∂xj

}
j∈Rk

,
∂F

∂xk

)
,(124) ∣∣∣∣ ∂F∂x̄k

∣∣∣∣ =
∑
j∈Rk

∣∣∣∣ ∂F∂xj
∣∣∣∣+
∣∣∣∣ ∂F∂xk

∣∣∣∣ if k ∈ Z ∩ C,

∂F

∂x̄k
=

∂F

∂xk
, if k ∈ N2,

and for k ∈ I, set ∥∥∥∥ ∂F∂x̄k
∥∥∥∥
∞

= sup
{∣∣∣∣ ∂F∂x̄k (x)

∣∣∣∣ : x ∈ S0

}
.(125)

Similarly introduce

∆kF =
({

xk
∂2F

∂x2
j

}
j∈Rk

, xk
∂2F

∂x2
k

)
, if k ∈ Z ∩ C,

∆kF = xk
∂2F

∂x2
k

, if k ∈ N2,

and define |∆kF | and ‖∆kF‖∞ by the obvious modifications of (124) and
(125).

Proposition 30. There is a constant c30 such that
(a) for all f ∈ Cαw(S0), t > 0, x ∈ S0, and k ∈ I,∣∣∣∣∂Ptf∂x̄k

∣∣∣∣(x) ≤ c30|f |α,ktα/2−1/2(t+ xk)−
1
2 ≤ c30|f |α,ktα/2−1,

and
‖∆kPtf‖∞ ≤ c30|f |α,ktα/2−1;

(b) for all f bounded and Borel on S0 and all k ∈ I,

(126)
∥∥∥∥∂Ptf∂x̄k

∥∥∥∥
∞
≤ c30‖f‖∞t−1.

Proof. By (122) and Proposition 20 (see Remark 29 if k ∈ N2),

‖∆kPtf‖∞ ≤ c sup
x̂k

|Fk(·; t, x̂k)|αtα/2−1

≤ c sup
x̂k

|Fk(·; t, x̂k)|Cαw t
α/2−1 (by Theorem 19 and Remark 21)

≤ c|f |α,ktα/2−1,

the last by (123). The inequalities for the first derivatives are similar. Use
Proposition 20(a) for part (b). �
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Lemma 31. There is a constant c31 such that for all bounded measurable
f : R̄k → R, t > 0, k ∈ I and x, h̄ ∈ R̄k,

(a)

|P kt f(x+ h̄)− P kt f(x)| ≤ c31|f |Cαw t
α/2−1/2(xk + t)−1/2|h̄|,

(b)
|P kt f(x+ h̄)− P kt f(x)| ≤ c31‖f‖∞t−1|h̄|.

Proof. This is a simple application of the Fundamental Theorem of Calcu-
lus and the bounds on |∂P kt f/∂x̄k(x)| from Proposition 30. �

Let Ij = Rj ∪ {j}, if j ∈ Z ∩C, and Ij = {j}, if j ∈ N2, so that
⋃
j∈I Ij is

a partition of V . If j 6= k ∈ I, define

x̂j,k = (xi, i /∈ Ij ∪ Ik) ∈ R{1,...,d}−Ij∪Ik .
For f : Rd+ → R be a bounded Borel function and ȳj ∈ Ij , ȳk ∈ Ik, let

Fj,k(ȳj , ȳk; t, x̂j,k) =
∫
f(y)

∏
i∈I−{j,k}

P it (x̄i, dȳi).

Define |Fj,k(·; t, x̂j,k)|α,j and |Fj,k(·; t, x̂j,k)|α,k as in Section 1.3 with {j, k} ∩
Z ∩ C and {j, k} ∩N2 playing the roles of Z ∩ C and N2, respectively. Then
just as for (122) and (123) we can show

(127) Ptf(x) =
∫∫

Fj,k(ȳj , ȳk; t, x̂j,k)P jt (x̄j , dȳj)P kt (x̄k, dȳk),

and

(128) |Fj,k(·; t, x̂j,k)|α,j ≤ |f |α,j , |Fj,k(·; t, x̂j,k)|α,k ≤ |f |α,k.

Proposition 32. There is a constant c32 such that for all f ∈ Cαw(S0),
i, k ∈ I and h̄i ∈ R̄i,

(a)

(129)
∣∣∣∣∂Ptf∂x̄k

(x+ h̄iēi)−
∂Ptf

∂x̄k
(x)
∣∣∣∣ ≤ c32|f |α,it−3/2+α/2(xi + t)−1/2|h̄i|,

(b)

(130) |∆k(Ptf)(x+ h̄iēi)−∆k(Ptf)(x)| ≤ c32|f |α,it−3/2+α/2(xi + t)−1/2|h̄i|.

Proof. Assume first that i = k ∈ I. By (122) and Proposition 28, we have∣∣∣∣∂(Ptf)
∂x̄i

(x+ h̄iēi)−
∂(Ptf)
∂x̄i

(x)
∣∣∣∣(131)

≤
∣∣∣∣ ∂∂x̄iP it (Fi(·; t, x̂i))(x̄i + h̄iēi)−

∂

∂x̄i
P it (Fi(·; t, x̂i))(x̄i)

∣∣∣∣
≤ c|Fi(·; t, x̂i)|αtα/2−3/2(xi + t)−1/2|h̄i|.
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Note that if k ∈ N2 we may still apply Proposition 28 by Remark 29. The-
orem 19 (see Remark 21) and (123) imply |Fi(·; t, x̂i)|α ≤ c|f |α,i and so the
proof is complete in this case.

Next consider i 6= k. Then (127) implies

∂(Ptf)
∂x̄k

(x) =
∂

∂x̄k

∫∫
Fi,k(ȳi, ȳk; t, x̂i,k)P kt (x̄k, dȳk)P it (x̄i, dȳi)(132)

=
∫

∂

∂x̄k
P kt (Fi,k(ȳi, ·; t, x̂i,k))(x̄k)P it (x̄i, dȳi),

where differentiation through the integral is easily justified using∥∥∥∥ ∂

∂x̄k
P kt (Fi,k(ȳi, ·; t, x̂i,k))

∥∥∥∥
∞

≤ c|Fi,k(ȳi, ·; t, x̂i,k)|α,ktα/2−1 (by Proposition 30)

≤ c|f |α,ktα/2−1 (by (128)).

Let

Ki,k(ȳi; t, x̂i) =
∂

∂x̄k
P kt (Fi,k(ȳi, ·; t, x̂i,k))(x̄k).

For i ∈ I, the above representation and notation together with Lemma 31
give ∣∣∣∣∂(Ptf)

∂x̄k
(x+ h̄iēi)−

∂(Ptf)
∂x̄k

(x)
∣∣∣∣(133)

=
∣∣∣∣∫ Ki,k(ȳi; t, x̂i)[P it (x̄i + h̄iēi, dȳi)− P it (x̄i, dȳi)]

∣∣∣∣
≤ c|Ki,k(·; t, x̂i)|Cαw t

α/2−1/2(xi + t)−1/2|h̄i|.

If h̄i ∈ R̄i and k ∈ Z ∩ C, then

|Ki,k(ȳi + h̄i; t, x̂i)−Ki,k(ȳi; t, x̂i))|

=
∣∣∣∣ ∂∂x̄k {P kt (Fi,k(ȳi + h̄i, ·; t, x̂i,k))(x̄k)− P kt (Fi,k(ȳi, ·; t, x̂i,k))(x̄k)}

∣∣∣∣
≤ c√

t
√
t+ xk

‖Fi,k(ȳi + h̄i, ·; t, x̂i,k)− Fi,k(ȳi, ·; t, x̂i,k)‖∞,

the last by Proposition 20. The same reasoning also applies to k ∈ N2 by
Remark 29. Now use (128) in the above to conclude that

(134) |Ki,k(·; t, x̂i)|Cαw ≤ ct
−1|f |α,i for all i ∈ I and k ∈ Z ∩ C.

Finally, combine (134) with (133) to see that for all i, k ∈ I,∣∣∣∣ ∂∂x̄kPtf(x+ h̄iēi)−
∂

∂x̄k
Ptf(x)

∣∣∣∣ ≤ c|f |α,itα/2−3/2(xi + t)−1/2|h̄i|.

This proves (a).
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The proof of (b) is similar. Instead of Ki,k, one works with

Li,k(ȳi; t, x̂i) = ∆kP
k
t (Fi,k(ȳi, ·; t, x̂i,k))(x̄k). �

Corollary 33. For f ∈ Cαw, Ptf is in C2
b (S0) and for all j1, j2 ∈ V

(135) ‖(Ptf)j1j2‖∞ ≤ c33
‖f‖∞
t2

.

Proof. We focus on the second order partials. Let j1, j2 ∈ V and choose
ki ∈ I so that ji ∈ Iki . Then

(136) (Ptf)j1,j2(x) =
∂2

∂xj1∂xj2
P kt [Fk(·; t, x̂k)](x̄k) if k1 = k2 = k,

and

(Ptf)j1,j2(x) =
∂

∂xj1

∫ [
∂

∂xj2
P k2
t (Fk1,k2(ȳk1 , ·; t, x̂k1,k2))(x̄k2)

]
P k1
t (x̄k1 , dȳk1)

(137)

if k1 6= k2.

Differentiation under the integral sign is easy to justify as in (132). The
required bound on ‖(Ptf)j1,j2‖∞ now follows from Remark 15 if k1 = k2, and
a double application of Proposition 20(a) if k1 6= k2.

Turning now to the continuity of (Ptf)j1,j2 , assume first that k1 = k2 = k.
Then by (136) and Remark 15

(138)
∂2Ptf

∂xj1∂xj2
(x) is continuous in x̄k for x̂k fixed.

If i ∈ I is distinct from k, then

|(Ptf)j1,j2(x+ h̄iēi)− (Ptf)j1,j2(x)|

=
∣∣∣∣∫ ∂2

∂xj1∂xj2
P kt (Fi,k(ȳi, ·; t, x̂i,k))(x̄k)[P it (x̄i + h̄iēi, dȳi)− P it (x̄i, dȳi)]

∣∣∣∣
≤ ct−1|h̄i| sup

ȳi

|(P kt (Fi,k(ȳi, ·; t, x̂i,k))j1,j2(x̄k)| (by Lemma 31(b))

≤ ct−3‖f‖∞|h̄i| (by Remark 15).

This and (138) give the continuity of (Ptf)j1,j2 . For k1 6= k2 continuity
in x̄j for j /∈ {k1, k2} uniformly in the other variables is proved as above,
and continuity in x̄k1 (say) uniformly in the other variables is proved using
Proposition 28(a). The details are left for the reader. �

Recall that Rλf(x) =
∫∞

0
e−λtPtf(x)dt is the resolvent associated with Pt.
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Theorem 34. There is a constant c34 such that for all f ∈ Cαw(S0), λ ≥ 1
and k, i ∈ I,

(a) ∥∥∥∥∂Rλf∂x̄k

∥∥∥∥
∞

+ ‖∆kRλf‖∞ ≤ c34λ
−α/2|f |α,k,

(b)∣∣∣∣∂Rλf∂x̄k

∣∣∣∣
α,i

+ |∆kRλf |α,i ≤ c34[(|f |1−αα,k |f |
α
α,i) ∨ (|f |1−α/2α,k |f |α/2α,i )]

≤ c34|f |Cαw .

Proof. (a) This follows by integrating the inequalities in Proposition 30
over time.

(b) If t̄ > 0 and h̄i ∈ R̄i, then

|∆k(Rλf)(x+ h̄iēi)−∆k(Rλf)(x)|(139)

≤
∫ t̄

0

|∆k(Ptf)(x+ h̄iēi)|+ |∆k(Ptf)(x)|dt

+
∣∣∣∣∫ ∞
t̄

e−λt[∆k(Ptf)(x+ h̄iēi)−∆k(Ptf)(x)]dt
∣∣∣∣

≤
∫ t̄

0

ctα/2−1|f |α,k dt+
∫ ∞
t̄

c|f |α,itα/2−3/2(xi + t)−1/2|h̄i|dt,

where we used Proposition 30 to bound the first term and Proposition 32 to
bound the second. The above is at most

c|f |α,k t̄α/2 + c|f |α,it̄α/2−1/2x
−1/2
i |h̄i|.

Set t̄ = |f |2α,i|f |
−2
α,k|h̄i|2x

−1
i , to conclude that

(140) |∆k(Rλf)(x+ h̄iēi)−∆k(Rλf)(x)| ≤ c|f |1−αα,k |f |
α
α,ix

−α/2
i |h̄i|α.

Use (xi + t)−1/2 ≤ t−1/2 in (139) to conclude that for any t̄ > 0,

|∆k(Rλf)(x+ h̄iēi)−∆k(Rλf)(x)| ≤ c|f |α,k t̄α/2 + c|f |α,it̄α/2−1|h̄i|.

Now set t̄ = |f |α,i|f |−1
α,k|h̄i| to conclude

(141) |∆k(Rλf)(x+ h̄iēi)−∆k(Rλf)(x)| ≤ c|f |1−α/2α,k |f |α/2α,i |h̄i|
α/2.

(140) and (141) together imply the required bound on |∆kRλf |α,i in (b).
The required bound on |∂Rλf/∂x̄k|α,i is proved in the same way. �
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4. Proof of uniqueness

In this section we complete the proof of uniqueness of solutions to the
martingale problem MP (A, ν), where ν is a probability on S and

Af(x) =
∑
j∈R

γj(x)xcjxjfjj(x) +
∑
j 6∈R

γj(x)xjfjj(x) +
∑
j∈V

bj(x)fj(x).

We first give the proof of Lemma 5 which shows that S is the natural state
space for solutions to the martingale problem using the following result.

Lemma 35. Let Zt ≥ 0 be a continuous adapted process for which
∫ t

0
Zsds

is strictly increasing in t. Assume b(s, ω, x) is a P×Borel real-valued function
(P is the predictable σ-field) which is continuous in s and satisfies b(s, ω, x) ≥
ε0 if x ≤ δ for some fixed positive ε0, δ. For some adapted Brownian motion
B and stopping time T ≤ ∞ assume that for some x ≥ 0,

Xt = x+
∫ t

0

b(s,Xs)ds+
∫ t

0

√
ZsXsdBs ≥ 0 for t < T.

Then X > 0 on {(s, ω) : 0 < s < T,Zs(ω) < ε0/2} a.s.

Proof. Let ζ =
∫ T

0
Zsds ≤ ∞ and define τ : [0, ζ)→ [0, T ) by

∫ τt
0
Zsds = t.

If Z̃u = Z(τu) and X̃u = X(τu) for u < ζ, then standard arguments allow
us to define a time-changed filtration F̃u and an (F̃u)-Brownian motion B̃ so
that Z̃ and X̃ are (F̃t)-predictable and satisfy

X̃t = x+
∫ t

0

b(τu, X̃u)Z̃−1
u du+

∫ t

0

√
X̃udB̃u, t < ζ.

If {[Ti, Ui] : i ∈ N} are the stochastic intervals on which Z̃ completes its
upcrossings of [ε0/2, ε0] (Ti ≤ ∞, Ui ≤ ζ), it suffices to fix i and show

X̃ > 0 on (Ti, Ui] ∩ (0, ζ) a.s.

Let V = inf{t ≥ Ti : X̃t ≤ δ/2}∧Ui and W = inf{t > V : X̃t ≥ δ}∧Ui. Then
for u ∈ [V,W ], X(τu) = X̃u ≤ δ and Z̃u ≤ ε0 and so

b(τu, X̃u)
Z̃u

=
b(τu, X(τu))

Z̃u
≥ 1.

A standard comparison theorem (see V.43 of [RW]) shows that X̃t ≥ Y (t−V )
on [V,W ], where Y is the pathwise unique solution of

Yt = X̃V + t+
∫ t

0

√
YsdB̃s+V > 0 ∀t > 0.

Here the last inequality holds because 4Y is the square of a 4-dimensional
Bessel process. This shows X̃ > 0 on (V,W ], and on [V,W ] if X̃V > 0. The
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same reasoning shows X̃ > 0 on subsequent upcrossing intervals of [δ/2, δ] by
X̃ in (Ti, Ui] and so we conclude that X̃ > 0 on (Ti, Ui]∩(0, ζ) as required. �

Proof of Lemma 5. By conditioning we may assume ν = δx. Fix an edge
(i, j) ∈ E . We apply Lemma 35 with Zt = 2γj(xt)x

(i)
t and Xt = x

(j)
t . The fact

that bi|{xi=0} > 0 (since i ∈ C) easily shows that
∫ t

0
Zsds is strictly increasing

in t. If bMj (x) = bj(x1 ∧M, . . . , xd ∧M), then inf bMj |{xj=0} = 2εM > 0 by
Hypothesis 2 (since j ∈ R) and so for some δM > 0, xj ∈ [0, δM ] implies
bMj (x) ≥ εM . Applying the previous result with

T = TM = inf{t ≥ 0 : x(1)
t ∨ · · · ∨ x

(d)
t ≥M},

we see that (x(j)
t + x

(i)
t ) > 0 P -a.s. on [0, TM ] and so letting M →∞ we are

done. �

Let A0 be given by (7) with coefficients satisfying (8) and (9).
Recall that A0 is the generator of a unique diffusion on S(x0) given by

(10) with semigroup Pt and resolvent Rλ given by (12) and (11) respectively.
Recall also M0 is defined by (15). We next consider perturbations around
this diffusion. Let x0 ∈ S be fixed.

Proposition 36. Assume that

Ãf(x) =
∑
j∈V

b̃j(x)fj(x) +
∑
j∈N1

γ̃j(x)xcjfjj +
∑
j 6∈N1

γ̃j(x)xjfjj , x ∈ S(x0),

(142)

where b̃i : S(x0)→ R and γ̃i : S(x0)→ (0,∞)

Γ̃ =
d∑
i=1

‖γ̃i‖Cαw + ‖b̃i‖Cαw <∞.

Let

ε̃0 =
d∑
i=1

‖γ̃i − γ0
i ‖∞ + ‖b̃i − b0i ‖∞,

where {b0, γ0} satisfy (8). Let Bf = (Ã − A0)f . Then there is an ε1 =
ε1(M0) > 0 and a λ1 = λ1(M0, Γ̃) ≥ 0 such that if ε̃0 ≤ ε1 and λ ≥ λ1, then
BRλ : Cαw → Cαw is a bounded operator with ‖BRλ‖ ≤ 1/2.
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Proof. Let f ∈ Cαw and recall definition (15). Then

‖BRλf‖Cαw := ‖(Ã − A0)Rλf‖Cαw

≤
∑
j∈V
‖(b̃j(x)− b0j )

∂Rλf

∂xj
‖Cαw

+
∑
j∈N1

∥∥(γ̃j(x)− γ0
j )xcj

∂2Rλf

∂x2
j

∥∥
Cαw

+
∑
j /∈N1

‖(γ̃j(x)− γ0
j )xj

∂2Rλf

∂x2
j

‖Cαw .

Consider the first term on the right hand side with j ∈ V . Then first using
the triangle inequality and then Theorem 34, yields

|(b̃j(x)− b0j )
∂Rλf

∂xj
(x)|α,i

≤ c[‖b̃j(x)− b0j‖Cαw‖
∂Rλf

∂xj
(x)‖∞ + ‖(b̃j(x)− b0j )‖∞|

∂Rλf

∂xj
(x)|α,i]

≤ c[(Γ̃ +M0)c34λ
−α/2 + ε̃0c34]|f |Cαw

Carrying out similar calculations for the other terms using the appropriate
bounds from Theorem 34, we obtain

(143) ‖BRλf‖Cαw ≤ c0[ε̃0 + (Γ̃ +M0)λ−α/2]|f |Cαw
for some c0 = c0(M0) and therefore

(144) ‖BRλf‖Cαw ≤
1
2
‖f‖Cαw

provided that ε̃0 ≤ (4c0)−1 and λ ≥ (4c0(Γ̃ +M0))2/α. �

If ν is a probability on S(x0), as before we say a probability, P̃ , on
C(R+, S(x0)) solves the martingale problem MP (Ã, ν) if under P̃ , the law of
x0(ω) = ω0 is ν and for all f ∈ C2

b (S(x0)) (xt(ω) = ω(t)),

Mf (t) = f(xt)− f(x0)−
∫ t

0

Ãf(xs) ds

is a local martingale with respect to the canonical right-continuous filtration
(Ft).

Theorem 37. Assume that Ã is given by (142) with coefficients γ̃i :
S(x0) → (0,∞) and b̃i : S(x0) → R which are Hölder continuous of index
α ∈ (0, 1), constant outside a compact set and b̃j |xj=0 ≥ 0 for all j ∈ V \N1.
Assume also that ε̃0 ≤ ε1(M0), where b0i , γ

0
i satisfy (8). Then for each prob-

ability ν on S(x0) there is a unique solution to MP (Ã, ν).
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Proof. Existence of solutions to MP (Ã, ν) is standard and the assumptions
on the coefficients {b̃i} ensure solutions remain in S(x0). Hence, we only
need consider uniqueness. By conditioning we may assume ν = δx, x ∈
S(x0) (see p. 136 of [B]). By Krylov’s Markov selection theorem it suffices to
show uniqueness of a strong Markov family {P x′ , x′ ∈ S(x0)} of solutions to
MP (Ã, δx) (see the proof of Proposition 2.1 in [ABBP]). Let (R̃λ, λ > 0) be
the associated resolvent operators.

Lemma 38. For f ∈ Cαw, R̃λf = Rλf + R̃λBRλf .

Proof. An easy application of Fatou’s Lemma shows that Ẽx(xj(t)) ≤ xj +
‖b̃j‖∞t for all j ∈ V \N1 (recall these coordinates are non-negative). This
implies the square functions of the martingale part of each coordinate are
integrable. It follows that for g ∈ C2

b (S(x0)), Mg is a martingale and so

Ẽx(g(xt)) = g(x) +
∫ t

0

Ẽx(Ãg(xs)) ds.

Multiply by λe−λt and integrate over t ≥ 0 to see that for g ∈ C2
b (S(x0)),

(145) λR̃λg = g + R̃λ(Bg) + R̃λ(A0g).

Let f ∈ Cαw and for δ > 0, set gδ(x) =
∫∞
δ
e−λtPtf(x)dt. Corollary 33 implies

that gδ ∈ C2
b (S(x0)). Moreover using the bounds in Proposition 30 it is easy

to verify that for i ∈ V ,

(146) (gδ)i(x)→ (Rλf)i(x) as δ ↓ 0 uniformly in x ∈ S(x0),

for i ∈ C ∩ Z, j ∈ Ri,

(147) xi(gδ)jj(x)→ xi(Rλf)jj(x) as δ ↓ 0 uniformly in x ∈ S(x0),

and for i /∈ N1,

(148) xi(gδ)ii → xi(Rλf)ii as δ ↓ 0 uniformly on S(x0).

Since {b̃i}, {γ̃i} are bounded, (146), (147), (148) imply that

(149) Bgδ → BRλf as δ ↓ 0 uniformly on S(x0).

An easy calculation using Ṗtgδ = PtA0gδ → A0gδ as t ↓ 0 shows that

(150) A0gδ = λgδ − e−λδPδf → λRλf − f uniformly on S(x0) as δ ↓ 0.

Now set g = gδ in (145) and use (149), (150) and the obvious uniform
convergence of gδ to Rλf to see that

λR̃λ(Rλf) = Rλf + R̃λ(BRλf) + R̃λ(λRλf − f).

Rearranging, we get the required result. �
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Continuing with the proof of Theorem 37, note that the Hölder continuity
of γ̃i and b̃i and the fact that they are constant outside a compact set imply
Γ̃ <∞. Therefore we may choose λ1 as in Proposition 36 so that for λ ≥ λ1,
BRλ : Cαw → Cαw with norm at most 1/2. If f ∈ Cαw, we may iterate Lemma
38 to see that

R̃λf(x) =
∞∑
n=0

Rλ((BRλ)nf)(x),

where the series converges uniformly and the error term approaches zero by
the bound

‖(BRλ)nf‖∞ ≤ ‖(BRλ)nf‖Cαw ≤ 2−n‖f‖Cαw .
This shows that for all f ∈ Cαw, R̃λf(x) is unique for λ ≥ λ1 and hence so is
P̃tf(x) = Ẽx(f(xt)) for all t ≥ 0. As Cαw is measure determining, uniqueness
of P̃t(x, dy) and hence P̃ x follows. �

Proof of Theorem 4. Existence of a solution to MP (A, ν) is standard be-
cause the coefficients are continuous and the |bi| have linear growth at∞ (see,
for example, the proof of Theorem 1.1 in [ABBP]). By Lemma 5 the solutions
remain in S.

Turning to uniqueness, we may assume by conditioning that ν = δz, z ∈ S.
Let τR = inf{t ≥ 0 : Xt /∈ [0, R]d}. By path continuity of our solutions,
τR ↑ ∞ a.s. as R ↑ ∞. Therefore it suffices to prove uniqueness of Xt∧τR
and then let R ↑ ∞. By redefining bi, γi outside [0, R]d we may assume that
{bi}i∈V , {xiγi}i∈V \R, {xcixiγi}i∈R are all bounded and uniformly Hölder con-
tinuous (e.g., for i ∈ R redefine γi(x) to be γi(x1∧R, . . . , xd∧R) R2

(xi∨R)(xci∨R) ).
By the localization argument of Stroock and Varadhan (see Theorem 6.6.1

of [SV] and also the proof of Theorem 1.1 in [ABBP]) it suffices to show
that for all x0 ∈ S there is an r(x0) > 0 and continuous b̃i : S(x0) → R,
γ̃i : S(x0)→ (0,∞) such that for x ∈ B(x0, r) ∩ Rd+

b̃j(x) = bj(x) ∀ j ∈ V,(151)

γ̃j(x) = xjγj(x) for j ∈ N1

γ̃j(x) = xcjγj(x) for j ∈ R\N1

γ̃j(x) = γj(x) for j /∈ R,
and

(152) there is a unique solution to MP (Ã, δx) for all x ∈ S(x0).

Here Ã is defined as in (142) and a solution of the martingale problem is
defined to be a law on C(R+, S(x0)) in the usual way. Some explanation is
in order here. First note that it is easy to check that Af(x) = Ãf(x) for
x ∈ B(x0, r) ∩ S(x0). If TR = inf{t ≥ 0 : x(i)

t + x
(j)
t ≤ 1/R for some j ∈

Ri, i ∈ C ∩ Z}, then by Lemma 5 TR ↑ ∞ a.s. as R → ∞. It therefore
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suffices to prove uniqueness of X(·∧τR∧TR) and so we may apply the covering
argument in Theorem 6.6.1 of [SV] to the compact set KR = [0, R]d − {x :
xi + xj < 1/R for some j ∈ Ri, i ∈ C ∩ Z} to arrive at the above reduction.
The Borel measurability in the initial point assumed in [SV] follows as in Ex.
6.7.4 of [SV], and the boundedness of b̃i, γ̃ixi, etc. (also assumed in [SV]) is
not needed (as long as the original coefficients can be assumed to be bounded
which is the case by the reduction made above). Also the larger state space
S(x0) is convenient but not really used as the solutions are stopped before
they exit Rd+.

Let b0j = bj(x0), γ0
j = γ̃j(x0) (i.e., the right-hand side of (151) when x =

x0), and note by the definition of S (and x0 ∈ S) γ0
j > 0, while Hypothesis 2

implies b0j ≥ 0 if j ∈ Z, and b0j > 0 if j ∈ Z ∩ (C ∪ R). In particular if
M0 = M0(x0) is as in (15), then M0(x0) <∞ for x0 ∈ S.

Case 1. We first assume that for all j ∈ N2, bj(x0) ≥ 0. Let b̂j(x), γ̂j(x)
be defined by the right side of (151) for x ∈ Rd+ and

ε̃0(r) =
∑
j∈V

sup
x∈B(x0,2r)∩Rd+

|b̂j(x)− b0j |+
∑
j∈V

sup
x∈B(x0,2r)∩Rd+

|γ̂j(x)− γ0
j |.

We use continuity of the coefficients to choose 0 < r < mini 6∈Z(x0) x
0
i /2 such

that ε̃0(r) < ε1(M0(x0)) (ε1 is as in Theorem 37). Let ρr : [0,∞)→ [0, 1] be
the function that is 1 on [0, r], 0 on [2r,∞) and linear on [r, 2r]. For x ∈ S(x0)
define x+ = (x+

1 , . . . , x
+
d ), and

b̃i(x) = ρr(|x− x0|)b̂i(x+) + (1− ρr(|x− x0|))b0i ,

and
γ̃i(x) = ρr(|x− x0|)γ̂i(x+) + (1− ρr(|x− x0|))γ0

i .

Clearly b̃i(x) = b̂i(x) and γ̃i(x) = γ̂i(x) for x ∈ B(x0, r) ∩ Rd+.
We claim that (γ̃i, b̃i) satisfy the hypotheses of Theorem 37. The condition

that b0j ≥ 0 for j ∈ N2 (defining this case) implies b0j ≥ 0 for all j /∈ N1

(as b0j > 0 if j ∈ Z ∩ C) and so the required condition (8) on the constants
holds. The α-Hölder continuity of γ̃i and b̃i follows easily from the α-Hölder
continuity of γ̂i and b̂i = bi. Clearly γ̃i and b̃i are constant outside of B(x0, 2r)
and hence also bounded. If i ∈ (R ∪ C) ∩ Z(x0), then b0i > 0 and bi|xi=0 > 0
(by Hypothesis 2) imply b̃i|{xi=0} > 0. If i ∈ Z(x0) the same reasoning shows
that b̃i|xi=0 ≥ 0. Note that r < mini 6∈Z(x0) x

0
i /2 implies γ̃i(x) > 0 for all x.

Finally we have∑
j∈V

sup
x∈S(x0)

|b̃j(x)− b0j |+
∑
j∈V

sup
x∈S(x0)

|γ̃j(x)− γ0
j |

≤ ε̃0(r) < ε1(M0).
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We may therefore apply Theorem 37 to derive (152) and the proof is complete
in this case.

Case 2. Finally, we must deal with the case in which bj(x0) < 0 for
some j ∈ N2, say for j ∈ N−2 . This implies x0

j > 0 by Hypothesis 2. In order
to prove the required uniqueness (152) we first prove uniqueness for the case
in which for j ∈ N−2 we replace bj(x) by b̂j(x), which satisfies Hypothesis 2,
agrees with bj(x) outside B(x0, r), and b̂j(x0) = 0. Here r > 0 is chosen so
that xjγj(x) ≥ εj > 0 in B(x0, 2r). The martingale problem with the modified
coefficients {b̂j(·)} satisfies the conditions of Case 1 and so the required result
is established as above for these modified coefficients. We can then obtain
uniqueness for MP(Ã, δx) for all x ∈ S(x0), where the coefficients of Ã agree
with the original coefficients {bj : j ∈ V } on B(x0, r′) for some 0 < r′ ≤ r
using Girsanov’s theorem as in Case 2 of the proof of Theorem 1.2 in [BP1].

�

Acknowledgment. We thank Sandra Kliem for a thorough reading of the
paper.

References

[ABBP] S. R. Athreya, M. T. Barlow, R. F. Bass, and E. A. Perkins, Degenerate stochastic

differential equations and super-Markov chains, Probab. Theory Related Fields
123 (2002), 484–520. MR 1921011 (2003g:60096)

[ABP] S. R. Athreya, R. F. Bass and E. A. Perkins, Hölder norm estimates for elliptic
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