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DIFFUSING POLYGONS AND SLE(κ, ρ)

ROBERT O. BAUER AND ROLAND M. FRIEDRICH

Abstract. We give a geometric derivation of SLE(κ, ρ) in terms of con-

formally invariant random growing compact subsets of polygons. The
parameters ρj are related to the exterior angles of the polygons. We
also show that SLE(κ, ρ) can be generated by a metric Brownian mo-
tion, where metric and Brownian motion are coupled and the metric is
a pull-back metric of the Euclidean metric of an evolving polygon.

1. Introduction

Stochastic Loewner evolution (or SLE) as introduced by Schramm in [13]
describes random growing compacts in a simply connected planar domain D.
Schramm discovered SLE by considering discrete random simple curves which
satisfy (1) a Markovian-type property and whose scaling limit was conjec-
tured to be (2) conformally invariant. These two properties (plus a reflection
symmetry) render SLE canonical in the sense that there exists only a one-
parameter family of random non-self-crossing curves γ with these properties.
They are all obtained by solving Loewner’s equation [9] with a driving func-
tion given in terms of Brownian motion. If D is the upper half-plane H, and
κ ≥ 0, consider for each z ∈ H the ordinary differential equation

(1.1) ∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z,

where Wt =
√
κBt, and Bt is a one-dimensional standard Brownian motion.

Let Tz be the duration for which this equation is well defined, i.e.,

Tz = sup{t : inf
s∈[0,t]

|gt(z)−Wt| > 0},

and set Kt = {z : Tz ≤ t}. Then it is easy to show that gt is a conformal
map from H\Kt onto H with limz→∞ g(z) − z = 0. It can also be shown
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[11] that with probability one the random growing compact set Kt is gener-
ated by a random non-self-crossing curve t 7→ γt in the sense that H\Kt is
the unbounded component of H\γ[0, t]. γ is a random curve connecting the
boundary points 0 and ∞ and is called chordal SLEκ in H from 0 to ∞. For
an arbitrary domain D and prime ends z and w chordal SLEκ in D from z
to w is defined via conformal invariance up to a time-change. If f(H) = D,
f(0) = z, f(∞) = w, then f ◦ γt is a chordal SLEκ in D from z to w. If
g is another conformal map from H onto D with g(0) = z, g(∞) = w, then
{g ◦ γt, t ≥ 0} has the same law as a time-change of {f ◦ γt, t ≥ 0}.

For calculations involving SLE conformal invariance is a powerful tool as
it is always permissible to choose the geometrically most convenient configu-
ration to do a given calculation. The solution depends only on the conformal
equivalence class, or the moduli, of the configuration. The determination of
certain hitting probabilities is reduced to solving appropriate hypergeometric
equations. In fact, what one does is to track the evolution of these hitting
probabilities as the curve γ grows, which comes down to tracking the evolu-
tion of the image under the uniformizing map gt of the set γ is supposed to
hit. For example, if γ is chordal SLEκ in the upper half-plane from 0 to ∞,
κ > 4 and x, y > 0, then the probability that γ hits (−∞,−y) before (x,∞)
depends only on the cross ratio −y/x and is given by

p =
Γ(2− 4a)

Γ(2− 2a)Γ(1− 2a)

(
y/x

y/x+ 1

)1−2a

F (2a, 1− 2a, 2− 2a;
y/x

y/x+ 1
),

for a = 2/κ; see [7]. The calculation of p uses the movement x and −y undergo
under the uniformizing map gt, i.e., t 7→ xt ≡ gt(x), −yt ≡ gt(−y). We note
that although xt and yt are coupled to Wt via

∂txt =
2

xt −Wt
, ∂t(−yt) =

2
−yt −Wt

,

there is no coupling of Wt to xt or −yt. If we do couple Wt to xt,−yt via

dWt =
√
κdBt + b(Wt, xt,−yt)dt,

then the requirement that the random curve γ that results from solving
Löwner’s equation for this Wt be both conformally invariant and satisfy a
Markovian-type property, forces the function b to be homogenous of degree
−1; see [2]. A particularly simple such function is

b(w, x, y) =
ρ1

w − x
+

ρ2

w − y
.

Coupling with this particular choice of drift b leads to an example of SLE(κ, ρ),
which we now define.
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Let z1 < z2 < · · · < zn be real numbers all distinct from 0. Consider the
system of stochastic differential equations

dWt =
√
κ dBt +

n∑
k=1

ρk
Wt − Zkt

dt,

dZkt =
2

Zkt −Wt
dt, k = 1, . . . , n,

(1.2)

with W0 = 0, Z1
0 = z1, . . . , Z

n
0 = zn, and where Bt is a one-dimensional

standard Brownian motion. The solution exists at least up to some small t.
As above, let gt(z) be the solution to (1.1). Then the family of conformal
maps gt is called SLE(κ, ρ) in the upper half-plane from (0, z1, . . . , zn) to ∞.
In this paper we will show that SLE(κ, ρ) arises naturally when one considers
random growing compacts in polygons, i.e., that the particular drift of Wt

in (1.2) can be derived from purely geometric considerations. SLE(κ, ρ), its
properties and relation to SLE have been studied in several papers; see [8],
[15], [4]. The recent paper [14] extends SLE(κ, ρ) to interaction with interior
‘force points.’

2. Schwarz-Christoffel formula

Let D be a bounded simply connected domain whose boundary is a closed
polygonal line without self-intersections. Let the consecutive vertices be
p1, . . . , pn in positive cyclic order. The angle at pk is given by the value
of arg(pk−1 − pk)/(pk+1 − pk) between 0 and 2π (we set pn+1 = p1). De-
note this angle by αkπ, 0 < αk < 2. We also introduce the outer angles
βkπ = (1− αk)π, −1 < βk < 1, and note that

(2.1) β1 + · · ·+ βn = 2.

The polygon is convex if and only if all βk > 0. We will call the pairs (pk, βk)
the corners of the polygon.

Let f be a conformal map from D onto the upper half-plane H and let
zk = f(pk). Assume that none of the zk equals ∞. For z ∈ H define the
Schwarz-Christoffel mapping

(2.2) SC(z) = SC

[
z1, . . . , zn z
β1, . . . , βn z∗

]
=
∫ z

z∗

n∏
k=1

(z − zk)−βk dz,

where the powers (z − zk)−βk denote analytic branches in H. Note that

(2.3) SC ′(z) =
n∏
k=1

(z − zk)−βk ,
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and

(2.4)
SC ′′(z)
SC ′(z)

= −
n∑
k=1

βk
z − zk

.

Then it is well known that for some constants a 6= 0, b ∈ C,

f−1 = aSC + b;

see [1]. We also note for future reference that for any λ > 0

(2.5) SC

[
λz1, . . . , λzn λz
β1, . . . , βn λz∗

]
=

1
λ
SC

[
z1, . . . , zn z
β1, . . . , βn z∗

]
.

This is a consequence of (2.1).

3. Loewner evolution in a polygon

Let D be a polygon with corners (p1, β1), . . . , (pn, βn) as above. Let u and
χ be two points on the boundary of D which are not vertices. Then there is a
conformal map f from D onto H such that f(u) = 0 and f(χ) =∞. Any other
such map is of the form λf for some λ > 0. Via a translation and rotation we
can move D into position so that u = 0 and {z ∈ H : |z| < ε} ⊂ D for some
ε > 0. In particular, the edge containing 0 is real. Assume now that D is in
such a position. We choose f so that f−1 is given by the Schwarz-Christoffel
map

(3.1) z ∈ H 7→ SC

[
z1, . . . , zn z
β1, . . . , βn 0

]
∈ D,

where zk = f(pk).
If γ is a simple curve in D from u to χ and γ′ is a subarc of γ from u to

u′ ∈ D, then there is a unique conformal map g from H\f ◦γ′ onto H such that
limz→∞ g(z)−z = 0. The expansion of g at infinity is g(z) = z+2t/z+o(1/|z|),
where t is a positive real number. If γ′′ is a subarc from u to u′′ strictly
contained in γ′, and g̃ the conformal map from H\f ◦γ′′ onto H with expansion
g̃(z) = z+2s/z+o(1/|z|) at infinity, then s < t and in fact we may parametrize
t ∈ [0,∞) 7→ γ(t) so that gt : H\f ◦ γ[0, t]→ H has expansion

gt(z) = z + 2t/z + o(1/|z|), z →∞.

This is known as parametrization by half-plane capacity; see [7]. Let

zkt = gt(zk)

and set

ft = SC

[
z1
t , . . . , z

n
t ·

β1, . . . , βn 0

]
◦ gt ◦ SC

[
z1, . . . , zn ·
β1, . . . , βn 0

]−1

.
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Then ft maps D\γ[0, t] conformally onto the polygon Dt with vertices

pkt = SC

[
z1
t , . . . , z

n
t zkt

β1, . . . , βn 0

]
.

This parametrization is natural in the sense that s ∈ [0,∞) 7→ ft ◦ γ(t+ s) is
parametrized by half-plane capacity in Dt, if t ∈ [0,∞) 7→ γ(t) is parametrized
by half-plane capacity in D. Indeed, this follows readily from the fact that
it is true for parametrization by half-plane capacity in the upper half-plane
itself and the commutative diagram

D\γ[0, t+ s]
ft−−−−→ Dt\ft ◦ γ[t, t+ s]

ft+s◦f−1
t−−−−−−→ Dt+s

SC

x SCt

x SCt+s

x
H\SC−1 ◦ γ[0, t+ s]

gt−−−−→ H\gt ◦ SC−1 ◦ γ[t, t+ s]
gt+s◦g−1

t−−−−−−→ H

Here

SC = SC

[
z1, . . . , zn ·
β1, . . . , βn 0

]
, and SCt = SC

[
z1
t , . . . , z

n
t ·

β1, . . . , βn 0

]
.

From Loewner’s equation in the upper half-plane we get

∂tz
k
t = ∂tgt(zk) =

2
zkt − wt

,

where wt = gt(f ◦ γ(t)). Set ut = SCt(wt). Then

∂tft(ζ) = (∂tSCt)
[(
SC−1

t ◦ ft
)

(ζ)
]

(3.2)

+
2(

SC−1
t

)′
(ft(ζ))

[
SC−1

t (ft(ζ))− SC−1
t (ηt)

]
≡ Ξ(ft(ζ), ηt; ζ1

t , . . . , ζ
n
t ).

Explicitly,

Ξ(ζ, u; p1, . . . , pn) =
∫ z

0

n∏
k=1

(v − zk)−βk
n∑
l=1

2βl
(v − zl)(zl − w)

dv(3.3)

+
2

z − w

n∏
k=1

(z − zk)−βk ,

The vectorfield
ζ ∈ D 7→ Ξ(ζ, u; p1, . . . , pn) ∈ C

defined in (3.2) has residue

2[
(SC−1)′ (u)

]2 = 2
n∏
k=1

(w − zk)−2βk
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at ζ = u. Also, for λ > 0,

Ξ(λζ, λu;λp1, . . . , λpn) = λ3Ξ(ζ, u; p1, . . . , pn).

If we change time s = s(t) so that
∂s

∂t
=
[(
SC−1

t

)′
(ut)

]−2

and let γ̃(s) = γ(t), f̃s = ft, g̃s = gt, ũs = ut, and S̃Cs = SCt, then

∂sf̃s(ζ) =
(
∂sS̃Cs

) [(
S̃C
−1

s ◦ f̃s
)

(ζ)
]

(3.4)

+
2
[(
S̃C
−1

s

)′
(ũs)

]2

(
S̃C
−1

s

)′
(f̃s(ζ))

[
S̃C
−1

s (f̃s(ζ))− S̃C
−1

s (ũs)
] .

The vectorfield on the right is given by

ζ ∈ D 7→ Ξ(ζ, u; p1, . . . , pn)
n∏
k=1

(w − zk)2βk .

Finally, if

(3.5) ˜̃
fs = f̃s −

∫ s

0

(
∂rS̃Cr

) [
S̃C
−1

r ◦ f̃r(ũr)
]
dr,

then the vectorfield ζ 7→ Ξ(ζ, u; p1, . . . , pn) defined by

(3.6) ∂s
˜̃
fs(ζ) = Ξ

( ˜̃
fs(ζ), ˜̃ηs;

˜̃
ζ1
s , · · · ,

˜̃
ζns

)
,

has residue 2 at ζ = u and

(3.7) lim
ζ→η

Ξ(ζ, η; ζ1, . . . , ζn)− 2
ζ − η

= 0.

Explicitly,

Ξ(ζ, u; p1, . . . , pn)(3.8)

=
n∏
k=1

(w − zk)2βk

∫ z

w

n∏
l=1

(v − zk)−βk
n∑

m=1

2βm
(v − zm)(zm − w)

dv

+
2

z − w

n∏
k=1

(z − zk)−βk(w − zk)2βk .

In particular

Ξ(λζ, λu;λp1, . . . , λpn) =
1
λ

Ξ(ζ, u; p1, . . . , pn).

Note that all scaling relations follow from the basic relation (2.5).
To make the notation less cumbersome, we now drop the symbols ∼ while

still referring to the quantities defined in (3.5), (3.6). We then have
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Theorem 3.1 (Loewner equation in a polygon). If γ is a simple curve in
a polygon D (positioned as above) connecting boundary points 0 and χ which
are not vertices of D, then there is a unique parametrization

t ∈ (0,∞) 7→ γ(t) ∈ D

such that there is (1) a family ft of conformal maps from D\γ(0, t] onto a
polygon Dt with the same angles as D and mapping vertices to vertices and
(2) a vectorfield Ξ satisfying (3.7), so that for every ζ ∈ D

∂tft(ζ) = Ξ(ft(ζ), ut; p1
t , . . . , p

n
t ), f0(ζ) = ζ.

Here ut = ft(γ(t)), pkt = ft(pk), k = 1, . . . , n.

Property (3.7) of the vectorfield Ξ in the theorem says that near its singu-
larity the vectorfield looks—to first order—like the vectorfield for the chordal
Loewner equation in the upper half-pane. The term

2
[(
SC−1

)′ (η)
]2

(SC−1)′ (ζ) [SC−1(ζ)− SC−1(η)]

in the definition of Ξ (see (3.6), (3.4)) is nothing but the variation kernel of
Schiffer and Spencer for the sphere when viewed in polygonal coordinates;
see [12]. The variation kernel transforms under a change of coordinates like
a reciprocal differential (i.e., holomorphic vectorfield) in the ζ coordinate—
which explains the factor before the square bracket in the denominator—and
transforms like a quadratic differential in the η-coordinate—which explains
the numerator. It is thus natural to consider Ξ as the variation kernel for a
polygon with corners (p1, β1), . . . , (pn, βn).

Theorem 3.2 (Loewner evolution in a polygon). If t ∈ [0,∞) 7→ ut ∈ R
is smooth with u0 = 0 and χ 6= 0 is a boundary point of a polygon D positioned
as above, then there exists (1) a simple curve t ∈ (0,∞) 7→ γ(t) ∈ D and (2)
a family ft of conformal maps from D\γ(0, t] onto a polygon Dt with the same
angles as D and mapping vertices to vertices, such that for every ζ ∈ D

∂tft(ζ) = Ξ(ft(ζ), ut; p1
t , . . . , p

n
t ), f0(ζ) = ζ.

Here Ξ is the vectorfield defined in (3.6) and γ(0) = 0, limt→∞ γ(t) = χ.

Note that the endpoint χ enters in the definition of Ξ via SC. The property
(3.7) of the vectorfield Ξ means here that to first order the slit γ ∈ D obtained
by solving the Loewner equation for ηt in a polygon grows the same way as
the slit γ̃ ∈ H obtained by solving the chordal Loewner equation in H with
the same driving function ηt.
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Proof. The theorem follows from the corresponding result for the chordal
Loewner evolution in the upper half-plane and the fact that the conformal
parameters pkt , k = 1, . . . , n, can be obtained by solving the system

(3.9) ∂tp
k
t = Ξ(pkt , ut; p

1
t , . . . , p

n
t ), k = 1, . . . , n,

with initial condition pk0 = pk, k = 1, . . . , n. �

4. Stochastic Loewner evolution in a polygon and SLE(κ, ρ)

4.1. Conformally invariant measures. Let D be a polygon and u, χ
points on the boundary of D minus its vertices. Suppose for each such triple
(D,u, χ), we are given a random simple curve γ = γD,u→χ in D from u to χ
which is parametrized as in Theorem 3.1. Suppose further that the laws of
the random simple curves γ are related as follows:

(1) If a 6= 0, b ∈ C, D′ = aD + b, u′ = au + b, and χ′ = aχ + b, then
aγD,u→χ + b has the same law as a timechange of γD′,u′→χ′ .

(2) If ft is as in Theorem 3.1, and Dt = ft(D\γ(0, t]), Ut = ft(γD,u→χ(t)),
χt = ft(χ), then, conditional on γ[0, t], {ft ◦ γD,u→χ(t + s) : s ≥ 0}
has the same law as {γDt,Ut→χt(s) : s ≥ 0}.

Statement (1) is the invariance under certain conformal maps, namely lin-
ear transformations, and (2) is a combination of conformal invariance and the
domain-Markovian property familiar from SLE.

By Theorem 3.1 and Theorem 3.2, knowing {γD,u→χ(t) : t ≥ 0} is equiva-
lent to knowing {Ut, χt, P 1

t , . . . , P
n
t ), i.e., the random curve

t ∈ (0,∞) 7→ γD,u→χ(t) ∈ D

gives rise to a random process

t ∈ [0,∞) 7→ (Ut, χt, P 1
t , . . . , P

n
t ),

with (U0, χ0;P 1
0 , . . . , P

n
0 ) = (u, χ; p1, . . . , pn), and, conversely, we can recover

γD,u→χ from the process (Ut, χt, P 1
t , . . . , P

n
t ). Note that the image of the

endpoint of the curve γ, that is, χt, carries no additional information. It is
determined as the image of∞ under SCt (only its initial value, χ, is required).
In terms of the process (Ut, χt, P 1

t , . . . , P
n
t ) the statement (2) is equivalent to

the following statement:
(2’) Conditioned on {(Ur, χr, P 1

r , . . . , P
n
r ) : r ≤ t}, the law of

{(Ut+s, χt+s, P 1
t+s, . . . , P

n
t+s) : s ≥ 0},

where (U0, χ0, P
1
0 , . . . , P

n
0 ) = (u, χ, p1, . . . , pn), is equal to the law of

{(Ũs, χ̃s, P̃ 1
s , . . . , P̃

n
s ) : s ≥ 0},

an independent process with (Ũ0, χ̃0, P̃
1
0 , . . . , P̃

n
0 ) =

(Ut, χt, P 1
t , . . . , P

n
t ).
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But this is simply saying that the process (Ut, χt, p1
t , . . . , p

n
t ) is a Markov

process. Note that although it is possible to recover γ from ut, t ≥ 0, and
χ, p1, . . . , pn, we cannot conclude that ut is a Markov process, because knowl-
edge of Dt requires knowledge of us for all s ≤ t; see (3.9). The same situation
arises in the case of multiply connected domains; see [2].

We now study what (1) says about the Markov process (Ut, χt, p1
t , . . . , p

n
t ).

If γ is a simple curve in D connecting two points on the boundary and t ∈
(0,∞) 7→ γ(t) ∈ D is its natural parametrization as defined in Theorem 3.1,
then, for any λ > 0, λγ is a simple curve in λD and

t ∈ (0,∞) 7→ λγ(t/λ2) ∈ λD

is its natural parametrization. Indeed, the curve in its natural parametrization
is created by the variation kernel, which transforms as a quadratic differential
in the variable giving the singularity, see above.

For the Markov process (Ut, χt, p1
t , . . . , p

n
t ) statement (1) thus implies that

it has Brownian scaling. Since

dUt = a(Ut, χt;P 1
t , . . . , P

n
t ) dBt + b(Ut, χt;P 1

t , . . . , P
n
t ) dt,

for some coefficients a, b, it follows that for any λ > 0,

a(λu, λχ;λp1, . . . , λpn) = a(u, χ; p1, . . . , pn),

b(λu, λχ;λp1, . . . , λpn) =
1
λ
b(u, χ; p1, . . . , pn).

(4.1)

The simplest nontrivial case is

a ≡
√
κ and b ≡ 0,

for some positive constant κ ≤ 4, and we will show that this corresponds to a
timechange of SLE(κ, ρ) when viewed in the upper half-plane.

4.2. SLE(κ, ρ) as polygon motion. Let SC : H→ D and z1, . . . , zn be
defined as in (3.1), and set

(4.2) ρk =
κ

2
βk, k = 1, . . . , n.

Then −κ/2 ≤ ρk ≤ κ/2. Suppose that (Wt, Z
1
t , . . . , Z

n
t ) is a solution to (1.2).

For z in the upper half-plane, set

SCt(z) = SC

[
Z1
t , . . . , Z

n
t z

β1, . . . , βn 0

]
.

Then z 7→ SCt(z) extends continuously to the real axis with the points Zkt
removed and is differentiable there as a function of t. In particular, if Ws 6=
Z1
s , . . . , Z

n
s for s ∈ [0, t], then we may define

(4.3) ht(z) = SCt(z)−
∫ t

0

(∂sSCs)(Ws) ds.
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Define the stopping time σ by

σ = sup{t : Ws, Z
1
s , . . . , Z

n
s are all distinct for 0 ≤ s ≤ t}.

Lemma 4.1. The process Ut ≡ ht(Wt) is a martingale for t < σ. Further-
more, if

At ≡ κ
∫ t

0

(SC ′s(Ws))
2
ds

and τ(t) is defined by Aτ(t) = t, then t 7→ Uτ(t) is a standard Brownian
motion.

Proof. By an appropriate Itô formula [10],

dUt = (∂tht)(Wt) dt+ h′t(Wt) dWt +
κ

2
h′′t (Wt) dt.

Thus (4.3), (1.2), and (2.4) imply

dUt =
√
κSC ′t(Wt) dBt.

By (2.3), 0 < |SC ′t(Wt)| <∞ for t < σ, and the lemma follows. �

Theorem 4.2. Let γD,0→χ be the random simple curve obtained by solving
Loewner’s equation in the polygon D for the process (

√
κBt, χt;P 1

t , . . . , P
n
t ).

Then SC−1 ◦ γD,0→χ is a timechange of SLE(κ, ρ) with

ρk =
κ

2
βk and zk = SC−1(pk), k = 1, . . . , n.

Proof. This follows by noting that ht ◦ gt ◦ SC−1 is a timechange of ˜̃
ft,

defined in (3.5). �

Remark 4.3. Note that the integral term in the definition of ht in (4.3) is
precisely what is required to make both γD,0→χ and SC−1 ◦γD,0→χ ∈ H grow
according to a vector field with expansion const./z+O(|z|) at its singularity,
and a simple timechange then gives the singularity 2/z + O(|z|); see (3.7).
If instead of starting with SLE(κ, ρ) we had begun with another diffusion
(Wt, Z

1
t , . . . , Z

n
t ) we could always choose an integral drift term for a map

h̃t from H onto a polygon D̃ sending Zkt to vertices, so that h̃t(Wt) is a
martingale. However, in that case, not both curves γD̃ and γH would grow
according to a vectorfield with expansion const./z +O(|z|) at its singularity.

Remark 4.4. If we begin with an arbitrary SLE(κ, ρ), i.e., we begin with
a choice of z1, . . . , zn and ρ1, . . . , ρn, then the results of this section continue to
hold. In this case the Schwarz-Christoffel mapping SC is no longer guaranteed
to be one-to-one. However, it still maps the intervals [zk, zk+1] onto straight
line segments. By considering the Riemann surface of the analytic function
SC we can still interpret the image SC(H) as a polygon, albeit not a planar
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one. For example, SLE(2, (−1,−1)), up to a normalization, leads to the map
z3 − 3z which is easily understood in terms of a 3-fold cover; see [1].

We close this section with an expression in terms of domain functionals for
the evolution equation of the logarithmic derivative of the Loewner mappings
in a polygon D. Denote by

(q, u) ∈ D × ∂D 7→ kD(q, u)

the Poisson kernel of D. If p ∈ ∂D, denote by ∂2HD,p(q, u) the analytic
function in q whose real part is ∂2kD(q, u) and which satisfies

lim
q→p

∂2HD,p(q, u) = 0.

Theorem 4.5. Denote by Kt the hull of an SLE(κ, ρ) in the upper half-
plane and gt : H\Kt → H the normalized uniformizing map. Then

ft ≡ ht ◦ gt ◦ SC−1 : D\SC(Kt)→ Dt

satisfies

(4.4) ∂t ln f ′t(z) = ht(Wt)2∂2HDt,ht(∞)(ft(z), ht(Wt)).

Proof. Let ft = ht ◦ gt ◦ SC−1. Then

f ′t(z) = h′t(gt(SC
−1(z)))g′t(SC

−1(z))(SC−1)′(z)

=
∏n
k=1(gt(SC−1(z))− Zkt )−βkg′t(SC

−1(z))∏n
k=1(SC−1(z)− zk)−βk

.

Set w = SC−1(z). As ∂tg
′
t(z) = −2g′t(z)/(gt(z) − Wt)2, straightforward

computation gives

∂tf
′
t(z) =

∏(
gt(w)− Zkt
w − zk

)−βk
g′t(w)

(4.5)

×

[
n∑
l=1

(
2

gt(w)−Wt
− 2
Zlt −Wt

)
−βl

gt(w)− Zlt
− 2

(gt(w)−Wt)2

]

= f ′t(z)

[
−2

(gt(w)−Wt)2
+

2
(gt(w)−Wt

n∑
l=1

βl
Zlt −Wt

]
.

Now, we note that

HPolt(q, u) = h′t(h
−1
t (u))−1HH(h−1

t (q), h−1
t (u)),

whence, if vt = h−1
t (u),

(4.6)

∂uHPolt(q, u) = h′t(vt)
−2

[
−h
′′
t (vt)
h′t(vt)

HH(h−1
t (q), vt) + ∂2HH(h−1

t (q), vt)
]
.
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Since HH(z, w) = 2/(z − w), the theorem follows. �

5. SLE in variable background metric

Instead of mapping SLE(κ, ρ) into polygons we can also stay in the upper
half-plane and change the metric. Indeed, ht : H→ Dt is an immersion. If we
endow Dt with the Euclidean metric, then the metric induced by ht on H is

gij = δij |h′t(z)|2, i, j = 1, 2,

where the indices 1 and 2 refer to the real and imaginary coordinate, re-
spectively. If Γ = (Γijk) denotes the Levi-Civita connection for this metric,
then the (2-dimensional) Brownian motion W̃ for the metric (gij) solves the
stochastic differential equation

dW̃ i
s = σij(W̃s) dBjs −

1
2
gkl(W̃s)Γikl(W̃s) ds;

see [6]. Here g−1 = (gkl) is the inverse coefficient matrix of g and σ is a
square root of g−1 (i.e., σσT = g−1), and we observe the Einstein summation
convention according to which indices occurring once “upstairs” and once
“downstairs” are to be summed over. For our particular metric g we find

Γ1
11 = Γ1

22 = −<
(
h′′t
h′t

)
;

see [3]. The boundary R = ∂H is a one-dimensional sub-manifold of H. The
metric g on H thus induces the metric (h′t(x))2 dx2 on R. A (one-dimensional)
Brownian motion W relative to this metric solves the stochastic differential
equation

(5.1) dWs =
dBs

h′t(Ws)
− 1

2(h′t(Ws))2

n∑
k=1

βk
Ws − Zkt

ds.

We now couple the metric to the Brownian motion W via

(5.2) dZkt =
2

κ(h′t(Wt))2(Zkt −Wt)
dt, k = 1, . . . , n.

Then, after a time-change, (5.1) and (5.2) become the SLE(κ, ρ)-system (1.2)
with the convention ρk = κβk/2.
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