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EXAMPLES COMPARING IMPORTANCE SAMPLING AND
THE METROPOLIS ALGORITHM

FEDERICO BASSETTI AND PERSI DIACONIS

Abstract. Importance sampling, particularly sequential and adaptive
importance sampling, have emerged as competitive simulation tech-

niques to Markov-chain Monte-Carlo techniques. We compare impor-
tance sampling and the Metropolis algorithm as two ways of changing
the output of a Markov chain to get a different stationary distribution.

1. Introduction

Let X be a finite set and π(x) be a probability on X . For f : X → R, we
want to approximate

(1.1) µ =
∑
x

f(x)π(x).

Suppose we have available a reversible Markov chain K(x, y) on X with sta-
tionary distribution σ(x) > 0 for all x in X . Two classical procedures are
available.

Metropolis. Change the output of the K chain to have stationary distribu-
tion π by constructing

M(x, y) =

{
K(x, y)A(x, y), A(x, y) := min

(
π(y)K(y,x)
π(x)K(x,y) , 1

)
, x 6= y,

K(x, x) +
∑
z 6=xK(x, z)(1−A(x, z)), x = y.

Generate Y1 from π and then Y2, . . . , YN from M(x, y). It follows that

(1.2) µ̂M =
1
N

N∑
i=1

f(Yi)

is an unbiased estimator of µ, the Metropolis estimate.
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Importance sampling. Generate X1 from σ and then X2, . . . , XN from
K(x, y). Then

(1.3) µ̂I =
1
N

N∑
i=1

π(Xi)
σ(Xi)

f(Xi)

is an unbiased estimate of µ, the importance sampling estimate. Often one
uses

µ̃I =
1∑N

i=1
π(Xi)
σ(Xi)

N∑
i=1

π(Xi)
σ(Xi)

f(Xi)

instead of µ̂I . The advantage for choosing µ̃I instead of µ̂I is that the impor-
tance sampling ratios only need to be evaluated up to an unknown constant.

The Metropolis algorithm was introduced by Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller in [16] and later generalized by Hastings [8]
and Peskun [17], [18]. There exists a large body of literature on the Metropo-
lis algorithm, the interested reader is referred to [24], [14], [19] and references
therein. For this introduction, we have started both Markov chains out in
their stationary distribution. For the study of the rate of convergence of the
Metropolis algorithm see the survey [3]. The systematic development of im-
portance sampling began in the 1950’s with works by Khan [9], [10]. See also
[22], [7], [15]. More recent references can be found in [14]. Importance sam-
pling has seen many extensions and adaptations in recent years. For sequential
importance sampling see [1], for particle filtering see [5], for adaptive impor-
tance sampling see [20]. All of these developments seem worthy of further
mathematical study.

Both µ̂M and µ̂I take the output of the Markov chain K and reweight to
get an unbiased estimate of µ. The work involved is comparable and it is
natural to ask which estimate is better.

In this note we address this question through examples; a random walk on
binary d–tuples with K based on changing a random coordinate (Section 3)
and the independence proposal chain (Section 4). Moreover, in Section 5 we
discuss a problem of Knuth on non-self-intersecting paths and develop the the-
ory for monotone paths in fairly complete detail. In most of our examples the
Metropolis algorithm is either comparable or else dominates, sometimes by
an exponential amount. The proofs are based on explicit spectral decomposi-
tions which give exact expressions for variances as determined in the following
section.

2. Variance computation

Let P (x, y) be a reversible Markov chain on the finite set X with stationary
distribution p(x). Thus, p(x)P (x, y) = p(y)P (y, x). Throughout we assume
all Markov chains are ergodic so p is the unique stationary distribution for
P . Let L2(p) = {f : X → R} with 〈f, g〉p = Ep(fg) =

∑
x f(x)g(x)p(x).
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Reversibility is equivalent to P : L2 → L2 being self-adjoint. Here Pf(x) =∑
y f(y)P (x, y). The spectral theorem implies that P has real eigenvalues

1 = β0 > β1 ≥ β2 ≥ · · · ≥ β|X |−1 > −1 with an orthonormal basis of
eigenfunctions ψi : X → R (Pψi(x) = βiψi(x), 〈ψi, ψj〉p = δij).

Proposition 2.1. Let f ∈ L2(p) have
∑
x f(x)p(x) = 0, expand f(x) =∑

i≥1 aiψi(x) (with ai = 〈f, ψi〉p). Let Z be chosen from p and Z1, . . . , ZN be
a realization of the P (x, y) chain. Then

µ̂P =
1
N

N∑
i=1

f(Zi)

has variance

(2.1) Varp(µ̂P ) =
1
N2

∑
k≥1

|ak|2WN (k)

with

(2.2) WN (k) =
N + 2βk −Nβ2

k + 2βN+1
k

(1− βk)2
.

Proof. Because µ̂ has mean zero,

Varp(µ̂P ) = Ep(µ̂2
p) =

1
N2

∑
i,j

Ef(Yi)f(Yj).

For i ≤ j,

Ef(Yi)f(Yj) = Ep

{(∑
k

akψk(Yi)

)(∑
l

alψl(Yl)

)}

= Ep

{(∑
k

akψk(Yi)

)
Ep

(∑
l

alψl(Yl)|Yi

)}

= Ep

{(∑
k

akψk(Yi)

)(∑
l

alβ
j−i
l ψl(Yi)

)}
=
∑
k

a2
kβ

j−i
k .

The last equality uses the orthonormality of ψj . The next to last equality
uses Ep(ψl(Yj)|Yi) = βj−il ψl(Yi). Summing over i, j, using the identity∑

1≤i<j≤N

xj−i =
{

(N − 1)x−Nx2 + xN+1
}
/(1− x)2,
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one gets

Ep(µ̂2
P ) =

1
N2

∑
k

a2
k

N + 2
∑

1≤i<j≤N

βj−ik


=

1
N2

∑
k

a2
kWN (k). �

Remark 2.2. (a) If βk = 1 − hk for N large and hk is small, WN (k) ∼
2N/hk and Varp(µ̂P ) ∼ 2

N

∑
k≥1 a

2
k/hk. Of course this last relation is just

heuristic. We will see that it is accurate in examples.
More formally,

σ2
∞(µ̂P ) := lim

N→+∞
N Varp(µ̂P ) =

∑
k≥1

|ak|2
1 + βk
1− βk

(2.3)

≤ 2
1− β1

‖f‖22,p.

This last inequality is classical and it is the usual way of relating spectral gaps
to asymptotic variance. It is used to compare proposal chains [17] and as a
standard bound or rough estimate of the actual variance of the estimator. For
small state spaces and long runs, this is reasonable. However, for large state
spaces and runs a few multiples of the relaxation time, it can be badly off.

(b) Laurent Saloff-Coste suggests that the asymptotic variance can also be
bounded by

(2.4) σ2
∞(µ̂P ) ≤ 2|a∗|2

∑
k≥1

1
1− βk

with a∗ := maxi≥1 |ai|.

The following examples show that both bounds (2.3) and (2.4) are useful.

Example 2.3. Let X = Zn, the integers modulo n, with n = 2m − 1 an
odd number. Let

P (x, y) =

{
1/2 if |x− y| = 1,
0 otherwise,

be the transition matrix for the simple random walk. This has stationary
distribution p(x) = 1/n, and the eigenvalues and orthonormal eigenfunctions
are well known:

β0 = 1, ψ0 = 1,

βj = cos(2πj/n), ψcj(h) =
√

2 cos(2πjh/n),

ψsj (h) =
√

2 sin(2πjh/n), 1 ≤ j ≤ (n− 1)/2.
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(The non-unit eigenvalues have multiplicity two.) If f(h) = δ0(h) − 1
n , then

acj =
√

2/n, asj = 0. The asymptotic variance is

σ2
∞ =

n−1
2∑
j=1

2
n2

1 + cos(2πj/n)
1− cos(2πj/n)

∼ π2

3
.

The bound (2.3) is of order n2(1 − 1/n)/n ∼ n. Thus here the easiest
bound is off while the bound (2.4) is bounded in n. Similar results hold
for f(h) = δ[−a,a](h). Saloff-Coste has suggested that the a∗ bound (2.4) will
be better for one and two dimensional random walk problems, but will not be
an improvement more generally.

Example 2.4. Let X = Z
d
2 be the hypercube. Let

P (x, y) =

{
1/d if |x− y| = 1,
0 otherwise,

be the transition matrix for the nearest neighbor random walk. This has
stationary distribution p(x) = 1/2d. The eigenvalues and othonormal eigen-
functions are well known. It is convenient to index them by x ∈ Zd2:

βx = 1− 2|x|
d
, ψx(y) = (−1)x·y.

Here |x| =
∑d
i=1 xi is the Hamming-weight. Note that 1−2j/d has multiplicity(

d
j

)
, 0 ≤ j ≤ d. If f(x) = δ0(x) − 1/2d, the Fourier coefficients at x 6= 0 are

ax = 1/2d. The asymptotic variance is

σ2
∞ =

1
22d

d∑
j=1

(
d

j

)
2 + 2j/d

2j/d
=

1
22d

d∑
j=1

[
d

j

(
d

j

)
+ 2d

]
≤ 4

2d
.

On the other hand, ‖f‖22 = 1
2d

(1− 1
2d

). The crude upper bound from (2.3) is
2d 1

2d
(1− 1

2d
), which is off by a factor of d. The a∗ bound from (2.4) for σ2

∞ is

2
22d

d−1∑
j=1

(
d

j

)
d

2j
≤ C

2d
.

This has the right order.
If f(x) =

∑d
j=1(−1)xj = d − 2|x|, ax = 0 if |x| > 1 and ax = 1 if |x| = 1.

Thus

σ2
∞ = d

2− 2/d
2/d

= d(d− 1).
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Here, ‖f‖22 = d. The crude bound from Remark 2.2 is 2d/(2/d) = d2. The a∗
bound is

d∑
j=1

(
d

j

)
d

2j
∼ c2d

for some c. This is wildly off.

There is another approach to bounding the asymptotic variance σ2
∞(µ̂P )

defined by (2.3). This uses the basic Poincaré inequality ([4], [21])

‖f‖22,p ≤
1

1− β1
E(f, f)

with E(f, f) the Dirichlet form

E(f, f) =
1
2

∑
x,y

(f(x)− f(y))2p(x)P (x, y).

Using this in (2.3) gives

σ2
∞(µ̂P ) ≤ 2

(1− β1)2
E(f, f).

The point is that sometimes E(f, f) can be usefully bounded since it only
involves knowing how f varies under a local change. In Example 2.4 of this
section with f(x) = d−2|x|, (f(x)−f(y))2 = 4 when P (x, y) > 0, so E(f, f) =
2. Thus our bound gives σ2

∞ ≤ d2. This is essential sharp. In Example 2.3,
with f(x) = δ0 − 1/n, (f(x)− f(y))2 equals 1 when (x, y) = (0,±1), (±1, 0),
and 0 otherwise. It follows that E(f, f) = 2/n. Thus our bound gives σ2

∞ ≤
4/(n(1 − cos(2π/n))2). Here the bound is off. Of course, these are simple
examples. The power of these Poincaré arguments will only show in more
complex problems where little is known about the stationary distribution or
the eigenfunctions.

3. The hypercube

Let X = Z
d
2 be the set of binary d–tuples. Let

π(x) = θ|x|(1− θ)d−|x|

with 1/2 ≤ θ ≤ 1 and |x| the number of ones in the d–tuple x. Let the base
chain K(x, y) be given by “from x, pick a coordinate at random and change
it to one or zero with probability p or 1− p” (1/2 < p ≤ 1). The K–chain has
stationary distribution

σ(x) = p|x|(1− p)d−|x|.
This example models a high-dimensional problem where the desired distribu-
tion π(x) is concentrated in a small part of the space. We have available a
sampling procedure—run the chain K(x, y)—where the stationary distribu-
tion is roughly right (if p is close to θ) but not spot on.
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Let us begin by diagonalizing the Metropolis chain. This may be presented
as

(3.1) M =
1
d

d∑
i=1

Mi

with Mi the Metropolis construction operating on the i–th coordinate. The
transition matrix restricted to the ith coordinate is

0 1

0
1

(
p̄

p θ̄/θ

p

1− p θ̄/θ

)
with p̄ = 1− p, θ̄ = 1− θ.

This matrix has stationary distribution (θ̄, θ) on {0, 1}. The eigenvalues are
β0 = 1, β1 = 1− p/θ, with normalized eigenvectors

(3.2) ψ0(0) = ψ0(1) = 1, ψ1(0) =
√
θ/θ̄, ψ1(1) = −

√
θ̄/θ.

Proposition 3.1. The Metropolis chain (3.1) on Zd2 has 2d eigenvalues
and eigenvectors which will be indexed by ζ ∈ Zd2. These are

(3.3) βζ = 1− |ζ|p
dθ

,

(3.4) ψζ(x) =
d∏
i=1

ψζi(xi) =
d∏
i=1

(√
θ

θ̄

)ζi(1−xi)(
−
√
θ̄

θ

)ζixi
,

with ψi defined in (3.2). The eigenvectors are orthonormal in L2(π).

Proof. This is a straightforward verification from (3.2) and the basic struc-
ture of the product chains. For more details, see [2, Sec. 5]. �

Using these tools we may compute the variance of the Metropolis algorithm
for a variety of functions f . We take f to be the number of ones normalized
to have mean zero.

Proposition 3.2. On Zd2, let

(3.5) f(x) =
d∑
i=1

(xi − θ).

Under the Metropolis chain (3.1), with µ̂M defined by (1.2), we have µ = 0
and

Varπ(µ̂M ) =
2d2θ̄θ2

Np
− dθθ̄

N
+

2d3θ3θ̄

N2p2

(
1− p

dθ

)N+1

+
2d3θ̄θ3

N2p2

(
1− p

dθ

)
.
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Here

σ2
∞(µ̂M ) ∼ 2d2θ̄θ2

p
(d→ +∞).

Proof. To use Proposition 2.1, we must compute the expansion of f in (3.5)
with respect to the eigen basis ψζ of (3.4). For ζ 6= 0, by the orthogonality
of ψζ with ψ0 ≡ 1,

∑
x ψζ(x)f(x)π(x) =

∑
x(
∑
i xi)ψζ(x)π(x). For fixed i,

write xi for (x1, . . . , xi−1, xi+1, . . . , xd). If ζi = 0,∑
x

xiψζ(x)π(x) = 0.

If ζi = 1, ∑
x

xiψζ(x)π(x) =
∑
xi

π(xi)ψζi(xi)(0θ̄ψζi(0)− θψzi(1))

=

{
−
√
θθ̄ if ζi = 0,

0 otherwise.

Hence, aζ = −
√
θθ̄ if |ζ| = 1 and aζ = 0 otherwise. Now, Proposition 2.1 and

(3.3) give

Varπ(µ̂M ) =
dθ̄θ

N2

(
2Nh−Nh2 + 2(1− h) + 2(1− h)N+1

h2

)
with h = (θd)−1p. �

Consider next the importance sampling chain with the same K and σ
considered above. Represent K as

(3.6) K =
1
d

d∑
i=1

Ki

with Ki having matrix (restricted to the ith coordinate)

0 1

0
1

(
p̄

p̄

p

p

)
with p̄ = 1− p.

This matrix has stationary distribution (p̄, p) on {0, 1}. The eigenvalues are
β∗0 = 1, β∗1 = 0 with normalized eigenvectors ψ∗0(0) = ψ∗1(1) = 1, ψ∗1(0) =√
p/p̄, ψ∗1(1) = −

√
p̄/p. Arguing as for Proposition 3.2 we have the following:

Proposition 3.3. The Markov chain (3.6) on Zd2 has 2d eigenvalues and
eigenvectors indexed by ζ in Zd2. These are

(3.7) β∗ζ = 1− |ζ|
d
,
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(3.8) ψ∗z(x) =
d∏
i=1

ψ∗ζi(xi) =
d∏
i=1

(√
p

p̄

)ζi(1−xi)(
−
√
p̄

p

)ζixi
.

The eigenvectors are orthonormal in L2(σ), where σ(x) = p|x|(1− p)d−|x|.

The importance sampling estimate is

(3.9) µ̂I =
1
N

N∑
i=1

π(Xi)
σ(Xi)

f(Xi)

with
π(x)
σ(x)

= ab|x|

for a = ((1− θ)/(1− p))d, b = (θ(1− p)/(p(1− θ)))d.
To use the machinery above, we need to compute the spectral coefficients.

Proposition 3.4. Let ψ∗ζ be defined as in (3.8) and

g(x) =

(
d∑
i=1

(xi − θ)

)
π(x)
σ(x)

.

Then 〈g, ψ∗ζ 〉π = −α|ζ|β|ζ| with α := (θθ̄
√
p/p̄+ θ̄θ

√
p̄/p)/(θ̄

√
p/p̄− θ

√
p̄/p)

and β := θ̄
√
p/p̄− θ

√
p̄/p.

Proof. Write

〈g, ψ∗ζ 〉π =
d∑
i=1

Eσ
π(x)
σ(x)

ψ∗ζ (x)(xi − θ).

Under σ, the coordinates are independent, taking values one or zero with
probability p and 1 − p. The integrand is a product and we may compute it
componentwise. Consider the ith term in the sum. For j 6= i, the expectation
of the jth term in the product is 1 if ζj = 0, and θ̄

√
p/p̄ − θ

√
p̄/p if ζj = 1.

For j = i, the expectation of the ith term in the product is 0 if ζi = 0 and
−θθ̄

√
p/p̄−θθ̄

√
p̄/p if ζi = 1. Computing the product and summing in i gives

the stated result. �

Combining these results gives a formula for the variance.

Proposition 3.5. For the Markov chain K of (3.6) and f(x) =
∑d
i=1(xi−

θ), the importance sampling estimate µ̂I of (3.9) has mean zero and variance

Varσ(µ̂I) =
α2

N2

d∑
i=1

(
d

i

)
i2β2iW ∗N (i),
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with α and β from Proposition 3.4 and

W ∗n(i) =
2Nd
i
−N +

2d2

i2
(1− i/d) +

2d2

i2
(1− i/d)N+1.

Remark 3.6. (a) The lead term in Varσ(µ̂I) is

σ2

N2

d∑
i=1

(
d

i

)
i2β2i 2Nd

i
=

2α2d

N

d∑
i=1

(
d

i

)
iβ2i = 2β2α

2d2

N
(1 + β2)d−1.

The last equality used d(1 +x)d−1x =
∑d
i=0

(
d
i

)
ixi. For our running example,

θ = 7/8, p = 3/4, β = −0.2887, 1 + β2 = 1.0833; for large d and N , Varσ(µ̂I)
is exponentially worse (in d) than the Metropolis variance.

(b) The next term is

− α
2

N2

d∑
i=1

(
d

i

)
i2β2iN = −α

2

N
(1 + dβ2)sβ2(1 + β2)d−2;

the sum of these two lead terms is
α2dβ2

N
(1 + β2)d−2{2(1 + β2)d− (1 + dβ2)}.

(c) For the next term we need
d∑
i=1

(
d

i

)
i2β2i d

2

i2

(
1− i

d

)
= d2((1 + β2)d − 1)− d2(1 + β2)d−1β2

= d2((1 + β2)d−1 − 1).

From this, the third term is 2d2α2((1 + β2)d−1 − 1)/N2.
(d) For the last term we need

2d2
d∑
i=1

(
d

i

)
β2i

(
1− i

d

)N+1

≤ 2d2
d∑
i=1

(
d

i

)
β2ie−i(N+1)/d

≤ 2d2

((
1 + β2e−(N+1)/d

)d
− 1
)
.

From this the last term is positive and bounded above by

2d2α2

((
1 + β2e−(N+1)/d

)d
− 1
)
/N2.

(e) The bottomline is

Varσ(µ̂I) ∼
2α2d2β2

N
(1 + β2)d−1.

This is exponentially worse (in d) than the estimate

Varπ(µ̂M ) ∼ 2d2θ2θ̄

Np
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from Proposition 3.2.
(f) From Remark 3.6 (a), the variance of the importance sampling estimator

blows up as d2(1 + β2)d, with β2 = θ̄2p/p̄+ p̄/pθ2 − 2θθ̄. It is natural to ask
how close p must be to θ so that this doesn’t blow up. If p = θ + ε, a
straightforward calculation gives

β2 =
ε2

θθ̄
+O(ε2).

It follows that ε of order 1/
√
d is required to keep the variance from exponen-

tial explosion.

For another example we take f(x) = δd(|x|) − θd. Again we compute the
spectral coefficients.

Proposition 3.7. Let ψζ and ψ∗ζ be defined as in (3.3) and (3.8). Let
f(x) = δd(|x|) − θd and g(x) = f(x)π(x)/σ(x). Then µ = Eπ(f) = 0 and
Varπ(f) = θd(1− θd). Moreover,

aζ := 〈f, ψζ〉π = (−1)d
(√

θ̄

θ

)|ζ|
θd,

a∗ζ := 〈f, ψ∗ζ 〉π = (−1)d
(√

θ̄

θ

)|ζ|
θd

{
1−

(
θ − p
1− p

)|ζ|}
holds true for every ζ with |ζ| 6= 0, and a0 = a∗0 = 0.

Proof. This is a straightforward verification. Indeed, by orthogonality,
〈f, ψζ〉π = 〈δd(|x|), ψζ〉π, and then 〈f, ψζ〉π = θdψζ(1), where 1 = (1, 1, . . . , 1).
Moreover, arguing as in the proof of Proposition 3.4, we get

a∗ζ = 〈δd(|x|), ψ∗ζ 〉π − θd〈1, ψ∗z〉π

= (−1)|ζ|
(√

p̄

p

)|ζ|
θd − θd

(
θ̄

√
p

p̄
− θ
√
p̄

p

)|ζ|
= (−1)|ζ|

(√
p̄

p

)|ζ|
θd

(
1−

(
θ − p
1− p

)|ζ|)
. �

Combining the previous results we get:

Proposition 3.8. On Zd2, let f(x) = δd(|x|) − θd. Under the Metropolis
chain (3.1), with µ̂M defined by (1.2), we have µ = 0 and

Varπ(µ̂M ) =
θ2d

N2

d∑
i=1

(
d

i

)(
θ̄

θ

)i
W ∗N (ip/θ),
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with

W ∗n(i) =
2Nd
i
−N +

2d2

i2
(1− i/d) +

2d2

i2
(1− i/d)N+1.

Moreover, for the Markov chain K of (3.6) the importance sampling estimate
µ̂I of (3.9) has mean zero and variance

Varσ(µ̂I) =
θ2d

N2

d∑
i=1

(
d

i

)(
p̄

p

)i(
1−

(
θ − p
1− p

)i)2

W ∗N (i).

Remark 3.9. (a) The lead term in Varπ(µ̂M ) is

θ2d

N

d∑
i=1

(
d

i

)(
θ̄

θ

)i(2dθ
p

1
i
− 1
)

=
2θ2dθ

Np
dAd(θ̄/θ)− θd(1− θd)/N,

with

Ad(x) :=
d∑
i=1

(
d

i

)
xi/i.

Since

Ad(x) = (x(d+ 1))−1
d+1∑
i=2

(
d+ 1

i

)
xii/(i− 1),

for every positive x, we can write

(3.10)
[(1 + x)d+1 − 1− x(d+ 1)]

x(d+ 1)
≤ Ad(x) ≤ 2

[(1 + x)d+1 − 1− x(d+ 1)]
x(d+ 1)

.

Hence, the lead term in Varπ(µ̂M ) can be written as

N−1(2θd+1dBd(θ̄/θ)/(pθ̄(d+ 1))−Varπ(f))

with Bd(θ̄/θ) bounded in d. More exactly, (3.10) gives[
1− θd+1 − θ̄θd(d+ 1)

]
≤ Bd(θ̄/θ) ≤ 2

[
1− θd+1 − θ̄θd(d+ 1)

]
.

This suggests that N Varπ(µ̂M ) = O(Varπ(f)) for d → +∞. This will be
formalized in the next proposition.

(b) The first term in Varσ(µ̂I) can be written as

2θ2dd

N

d∑
i=1

(
d

i

)(
p̄

p

)i 1
i

[
1 +

(
θ − p
1− p

)2i

− 2
(
θ − p
1− p

)i]

=
2θ2dd

N

[
Ad(p̄/p) +Ad

(
(θ − p)2

p(1− p)

)
− 2Ad

(
θ − p
p

)]
=

2θdd
N(d+ 1)

(
θ

p

)d
B∗d(p, θ)
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with

B∗d(p, θ) = (d+ 1)pd
[
Ad(p̄/p) +Ad

(
(θ − p)2

p(1− p)

)
− 2Ad

(
θ − p
p

)]
.

Again using (3.10), it is easy to see that d 7→ B∗d(p, θ) is a bounded function.
The second term in Varσ(µ̂I) is

−θ
d

N

(
θ

p

)d [
1− 2θd +

(
pp̄+ (θ − p)2

p̄

)d]

= −θ
d

N

(
θ

p

)d [
1− 2θd +

(
p+ θ2 − 2θp

p̄

)d]

= −θ
d

N

(
θ

p

)d
C∗d(p, θ)

with

C∗d(p, θ) =

[
1− 2θd +

(
p+ θ2 − 2θp

p̄

)d]
.

If 1/2 < p < θ < 1, then (p+ θ2 − 2θp)/p̄ < 1. Hence, C∗d(p, θ) = 1 + o(1) for
d→ +∞, while some simple computations show that θ(p+ θ2 − 2θp)/(p(1−
p)) < 1 if 1/2 < θ < p < 1.

Combining the previous remarks we get:

Proposition 3.10. For f as in Proposition 3.8,

σ2
∞(µ̂M )/Varπ(f) =

2θ
pθ̄(1− θd)

d

d+ 1
Bd(θ̄/θ)− 1 ∼ K1(θ, p)

with d 7→ Bd(θ̄/θ) bounded, K1 being a suitable constant. Moreover,

σ2
∞(µ̂I)/Varπ(f) =

1
1− θd

(
θ

p

)d [ 2d
d+ 1

B∗d(p, θ)− C∗d(p, θ)
]

∼ K2(θ, p)
(
θ

p

)d
with d 7→ [ 2d

d+1B
∗
d(p, θ) − C∗(p, θ)] bounded and strictly positive, for every p

and θ such that 1/2 < p < θ < 1, while

σ2
∞(µ̂I)/Varπ(f) ∼ K3(θ, p)

[(
θp+ θ3 − 2θ2p

p(1− p)

)d
+
(
θ

p

)d]

with θp+θ3−2θ2p
p(1−p) < 1 if 1/2 < θ < p < 1, K2,K3 being suitable constants.
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Remark 3.11. The last proposition shows that, for 1/2 < p < θ < 1,
the normalized asymptotic variance of µ̂I is exponentially worse (in d) than
the normalized asymptotic variance of µ̂M , while it is exponentially better if
1/2 < θ < p < 1. On the one hand, this fact agrees with the heuristic that
the importance sampling estimator of π(A) performs better than the Monte
Carlo estimator, whenever the importance distribution σ puts more weight on
A than π. On the other hand, the last example shows that even a small “loss
of weight” in A can cause an exponentially worse behavior.

4. Independence sampling

In this section the proposal chain is a sequence of independent and iden-
tically distributed variables with common probability density σ. Because of
this, the structure of the state space does not matter. Throughout we take
X = {0, 1, . . . ,m − 1} with σ(i) > 0 fixed and π(i) the desired distribution.
Without loss, suppose the states are numbered so that the importance weights
π(i)/σ(i) are decreasing, i.e.,

(4.1)
π(0)
σ(0)

≥ π(1)
σ(1)

≥ · · · ≥ π(m− 1)
σ(m− 1)

.

This section makes use of an explicit diagonalization of the Metropolis chain
due to Jun Liu [13].

Metropolis. For the proposal chain of independent picks from σ, the Metrop-
olis chain starts with a pick from π. From state i it proceeds by choosing j from
σ; if j ≤ i the chain moves to j. If j > i the chain stays at j with probability
(π(j)σ(i)/π(i)σ(j)) and remains at i with probability (1−π(j)σ(i))/π(i)σ(j)).
Liu [13] proves that this chain has eigenvalue 1 and, for 1 ≤ k ≤ m− 1,

(4.2) βk =
∑
i≥k

(
σ(i)− π(i)

σ(k)
π(k)

)
,

(4.3) ψk = (0, . . . , 0︸ ︷︷ ︸
k−1

, Sπ(k+1),−π(k), . . . ,−π(k)), Sπ(k+1) :=
m−1∑
j=k+1

π(j).

These eigenvectors are orthogonal in L2(π). From these facts and Proposition
2.1 we get the following:

Proposition 4.1. For the Metropolis algorithm based on independent pro-
posals with distribution σ(i) and stationary distribution π(i), let f : X → R

have representation f(i) =
∑m−1
k=1 akψk(i), with µ =

∑m−1
i=0 f(i)π(i) = 0.

Then the Metropolis estimator µ̂M of (1.2) satisfies

(4.4) Varπ(µ̂M ) =
1
N2

m−1∑
k=1

b2kWN (k)
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with WN (k) given by (2.2) using the eigenvalues of (4.2) and

bk := ζk

f(k)Sπ(k + 1)π(k)− π(k)
∑
j≥k

f(j)π(j)

 ,

ζk := (π(k)Sπ(k)Sπ(k + 1))−1/2.

The following lemma supplements Liu’s results:

Lemma 4.2. With the notation as above, the eigenvalues βk in (4.2) satisfy

1− σ(0)
π(0)

≥ β1 ≥ β2 ≥ · · · ≥ βm−1 = 0.

Proof. We have

βk = σ(k) + · · ·+ σ(m− 1)− σ(k)
π(k)

(π(k) + · · ·+ π(m− 1))

≥ σ(k + 1) + · · ·+ σ(m− 1)− σ(k + 1)
π(k + 1)

(π(k + 1) + · · ·+ π(m− 1))

= βk+1.

For β1, note that

β1 = 1− σ(0)− σ(0)
π(0)

(1− π(0)) ≤ 1− σ(0)
π(0)

.

For βm−1 note that

βm−1 = σ(m− 1)− σ(m− 1)
π(m− 1)

π(m− 1) = 0. �

The variance of the importance sampling estimator is (for µ = 0)

(4.5) Varσ(µ̂I) =
1
N2

∑
l

(
π(l)
σ(l)

f(l)
)2

σ(l).

We record a different expression for this, similar to J. Liu’s above.

Lemma 4.3. Let P be the Markov chain on {0, 1, . . . ,m−1} with all rows
equal to σ. Then, P has one eigenvalue β0 = 1 with ψ0(i) ≡ 1 and m − 1
eigenvalues 0. An orthogonal basis for the zero eigenspace in L2(σ) is

(4.6) ψk = (0, . . . , 0, Sσ(k + 1),−σ(k), . . . ,−σ(k)), 1 ≤ k ≤ m− 1.

Remark 4.4. If σ = π, this basis agrees with the Metropolis basis of
(4.3). This must be because then P commutes with the Metropolis chain.
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Proposition 4.5. Let g(i) satisfy
∑m−1
i=0 g(i)σ(i) = 0. Then

Varσ(g) =
m−1∑
i=0

g(i)2σ(i)

=
m−1∑
i=1

g(i)Sσ(i+ 1)− σ(i)
∑
j≥i

g(j)σ(j)

2

/(σ(i)Sσ(i)Sσ(i+ 1)).

Example 4.6. Let us compare the Metropolis and the importance esti-
mator in the following case. For X = {0, 1, . . . ,m − 1}, let π(i) = aic(a)
for fixed a with 0 < a < 1 with c(a) = (1 − a)/(1 − am). For the pro-
posal chain take σ(i) = 1/m, 0 ≤ i ≤ m − 1. Take f(i) = (i − µ) with
µ = c(a)a(1 − am−1(a + (1 − a)m))/(1 − a)2. Thus µ = Eπ(f) = 0. For a
fixed and m large µ ∼ a/(1− a).

Metropolis. We must compute the expansion of f in the basis ψk, 1 ≤ k ≤
m− 1. We have

ak =
∑
j

f(j)ψk(j)π(j) = (k − µ)Sπ(k + 1)π(k)− π(k)
m−1∑
j=k+1

(j − µ)π(j).

Here
Sπ(k + 1) = c(a)(1− am−k−1)ak+1/(1− a),

and

m−1∑
j=k+1

(j − µ)π(j)

= c(a)(ak((k + 1)(1− a)− a)− am−1(m(1− a)− a))/(1− a)2.

It follows that
ak = a2kb(a,m, k)

with b(a) bounded uniformly in m, k, (1 − a)2. It thus follow that b2k in
(4.4) equals a2kc(m, k) with c(m, k) uniformly bounded. The eigenvalues βk
of (4.2) become

βk = 1− k

m
− 1
m

(
1− am−k

1− a

)
.

Plugging into (4.4) yields the following proposition.

Proposition 4.7. Fix a with 0 < a < 1, for independent proposal Me-
tropolis sampling with uniform proposals on {0, 1, . . . ,m−1} for π(i) = aic(a)
the Metropolis algorithm has Varπ(µ̂M (f)) = (m/N)A(a) with A continuous
and bounded uniformly in m and N .
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Importance sampling. From (4.5),

Varσ(µ̂I) =
1
N

m−1∑
i=0

(
π(i)
σ(i)

(i− µ)
)2

σ(i) =
m

N

m−1∑
i=0

(π(i)(i− µ))2
.

This expression is of the form
m

N
B(a)

with B(a) continuous in a and bounded uniformly in m for fixed a ∈ (0, 1). It
follows that importance sampling and the Metropolis algorithm are roughly
comparable for this example.

Remark 4.8. The example above helps us to calibrate two obvious bounds.
From (2.3), for independent Metropolis sampling applied to f of mean zero,

σ2
∞(µ̂M ) ≤ 2

‖f‖22,π
1− β1

≤ 2
π(0)
σ(0)

‖f‖22,π,

Varσ(µ̂I) =
1
N

∑
i

(
π(i)
σ(i)

f(i)
)2

σ(i) =
1
N

∑
i

π(i)2

σ(i)
f(i)2

≤ 1
N

π(0)
σ(0)

‖f‖22,π.

5. Non-self-intersecting paths

Our interest in this area started with Donald Knuth’s [12] study of non-
self-intersecting paths in a grid. Knuth considered a 10× 10 grid. He wanted
to estimate the number of non-self-intersecting lattice paths γ that start at
(0, 0) and end at (10, 10). He used the following sequential importance sam-
pling (SIS) estimate: build a path γ starting at (0, 0) sequentially, each time
choosing one of the available nearest neighbors with equal probability. As
the path grows, the past is recorded and only non-self-intersecting choices are
considered. Thus, the first step may go up or to the right with probability
1/2. Suppose it goes up. The next step can go up or to the right. Suppose
it goes to the right. The third step has three possibilities (up, right, down)
chosen with probability 1/3, and so on. If the algorithm gets stuck, it simply
starts again at (0, 0). Let σ(γ) be the probability of a successful path. Thus
σ(γ) = 1

2
1
2

1
3 · · · in the example. This is easily computed as the path is cre-

ated. Let Xi = 0 if the ith trial fails and Xi = 1/σ(γ) if the ith trial produces
a legal path γ. Observe that

E(Xi) =
∑
γ

1
σ(γ)

σ(γ) = number of paths.
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Thus if X1, X2, . . . XN is the result of N trials,

µ̂ =
1
N

N∑
i=1

Xi

is an unbiased estimate of the number of paths. Knuth used this sequential
importance sampling algorithm to give the following estimates:

• The number of paths is (1.6± 0.3)1024.
• The average path length is 92± 5.
• The proportion of paths through (5, 5) is 81± 10 percent.

In a personal communication he noted that usually 1/σ(γ) was between
1011 and 1017. A few of his sample values were much larger, accounting for
the 1024. It is hard to bound or asses the variance of the sequential importance
sampling estimator.

There is something to understand: D. Bressanini has found the exact an-
swer to the Knuth problem in sequence A00764 in the online version of Sloane’s
Handbook of Integer Sequences. This contains further references [23]. The
number of non-self-intersecting paths in a 10× 10 grid equals

1568758030464750013214106 = 1.5687× 1024.

This is in good agreement with Knuth’s estimate (1.6 ± 0.3)1024. Knuth
reports further exact computations in an addendum to the reprinted version
of [12]. He gives the exact number of paths going through (5, 5) and the exact
average length of a self-avoiding path (it is about 91.9). Again, the importance
sampling estimates were quite accurate. More importantly, he has pointed us
to a large class of practical problems (back-tracking algorithms) where such
importance type estimates are routinely used and any theoretical justification
is lacking. See [11].

5.1. Monotone paths. As a contribution to understanding Knuth’s use
of sequential importance sampling we consider an easier problem where all
calculations can be carried out. Let X be the set of all monotone paths from
(0, 0) to (n, n) in the usual lattice. Here, paths are only allowed to go up or
to the right. Thus, if n = 2 there are 6 paths.

In general, |X | =
(

2n
n

)
. Shown underneath the example is σ(γ) for the

sequential importance sampling applied to this setting: choose one of the two
available next steps with probability 1/2 until the walk hits the top or right
side of the n × n “box” when the remainder of the walk is forced. If T (γ) is
the first time the walk hits the top or right side, σ(γ) = 2−T (γ). Both the
uniform distribution π(γ) = 1/(2n

n ) and the distribution σ(γ) = 2−T (γ) have
the property that, conditional on T (γ) = j, they are uniformly distributed.
Thus things are determined by the behavior of the distribution of T (γ). The
following proposition determines this for π and σ.



IMPORTANCE SAMPLING AND THE METROPOLIS ALGORITHM 85

1/4 1/8 1/8

1/81/8 1/4

Figure 1

Proposition 5.1. For the monotone paths on an n× n grid we have:
(a) Under the uniform distribution π

π{T (γ) = j} = 2

(
j−1
n−1

)(
2n
n

) , n ≤ j ≤ 2n− 1.

(b) For n large and any fixed k

π{T (γ) = 2n− 1− k} → 1
2k+1

, 0 ≤ k < +∞.

(c) Under the importance sampling distribution σ

σ{T (γ) = j} = 21−j
(
j − 1
n− 1

)
, n ≤ j ≤ 2n− 1.

(d) For n large and any fixed positive x

σ

{
2n− 1− T (γ)√

n
≤ x

}
→ 1

π

∫ x

0

e−y
2/4dy.

Proof. Paths with T (γ) = j may be coded as sequences of zeros and ones
with n zeros and n ones having all zeros (or all ones) before j. This is twice the
number with all ones before j. To count these, put zero at j and the remaining
n − 1 zeros in the remaining j − 1 places. This proves (a),(c). Part (b) is
simple. For (d) we prove a local limit theorem. In (c), take j = 2n − 1 − a.
Then, (

j − 1
n− 1

)
=

(n− 1)(n− 2) . . . (n− 1− a+ 1)
(2n− 2)(2n− 3) . . . (2n− a+ 1)

(
2n− 2
n− 1

)
.

Using Stirling’s formula
(

2n−2
n−1

)
22n−2 ∼ 1/

√
πn. What is left is 2a−1 times

(n− 1)(n− 2) . . . (n− 1− a+ 1)
(2n− 2)(2n− 3) . . . (2n− a+ 1)

=
(1− 1

n−1 ) . . . (1− a−1
n−1 )

(1− 1
2(n−1) ) . . . (1− a−1

2(n−1) )
2a.
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Write the product in the numerator as
a−1∏
i=1

(
1− i

n− 1

)
= exp

{
a−1∑
i=1

log
(

1− i

n− 1

)}
∼ e− 1

n (a2 )

where the asymptotics are valid for a � n2/3. This may be justified and
refined as in [6] Chapter 5. For the denominator,

a−1∏
i=1

(
1− i

2(n− 1)

)
= exp

{
a−1∑
i=1

log
(

1− i

2(n− 1)

)}
∼ e− 1

2n (a2 ).

Putting things together, for j = 2n− 1− a,

σ{T (γ) = j} ∼ 1√
πn

e−
1

4na
2
.

For a = x
√
n, this last expression is 1√

πn
e−x

2/4. Further details are omitted.
�

Remark 5.2. Thus, under the uniform distribution π, T (γ) is close to
its maximum 2n− 1. Under the importance sampling distribution σ, T (γ) is
usually

√
n away from 2n−1. We see below how our two algorithms deal with

this. First, we treat the analog for estimating the size of the state space |X |.

Let µ = |X | =
(

2n
n

)
. Generate paths γi, 1 ≤ i ≤ N , independently from

σ(x) and set µ̂SIS = 1
N

∑N
i=1 1/σ(γ). As above, Eσ(µ̂SIS) = µ. The variance

of the estimator µ̂SIS is given next.

Proposition 5.3. For µ the number of monotone paths in an n×n grid,

Varσ(µ̂SIS) =
1
N

16n

4
√
n

(
1 +O

(
1
n

))
.

Proof. Varσ(µ̂SIS) = 1
N {Eσ(1/σ(γ)2 − µ2}. We have

Eσ(1/σ(γ)2) =
∑
γ

1/σ(γ) =
2n−1∑
j=n

2j+1

(
j − 1
n− 1

)
.

This sum is dominated by its largest term. Thus

E(1/σ(γ)2) = 22n

(
2n− 2
n− 1

)(
1 +O

(
1
n

))
.

On the other hand, µ2 =
(

2n
n

)
∼ 16n/(πn) is of lower order. �

Remark 5.4. While the variance is exponentially large in n, the relative
variance is

Varσ

(
µ̂SIS
µ

)
=

1
N

√
πn

(
1 +O

(
1
n

))
.
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Thus a relatively small sample size N suffices to get a useful relative error.

We next compare importance sampling and the Metropolis algorithm for
estimating the mean of some simple functions of monotone paths. In our
examples, the Metropolis algorithm dominates.

Importance sampling. Again X is the set of monotone paths from (0, 0) to
(n, n). Let f : X → R be any function. Let γ1, . . . , γN be chosen indepen-
dently using the sequential importance distribution σ(γ) = 2−T (γ). Then,

µ̂SIS(f) :=
1
N

N∑
i=1

2T (γi)(
2n
n

) f(γi)

is an unbiased estimator of µ =
∑
γ f(γ)/

(
2n
n

)
. We have

Varσ(µ̂SIS(f)) =
1
N

E
(

2T (γ)(
2n
n

) f(γ)

)2

− µ2

 .

Using Proposition 5.3 above we may calculate this for simple functions f .

Example 5.5. Let f(γ) = T (γ) be the first hitting time of a uniformly
chosen random path γ to the top or right side of an n× n grid. Then

µ = Eπ(T ) =
(

2− 2
n+ 1

)
n

and

Varσ(µ̂SIS(T )) ∼
√
πn5/2

N
.

Indeed under the uniform distribution,

µ =
2n−1∑
j=n

2j
(
j − 1
n− 1

)
/

(
2n
n

)
= 2n

2n−1∑
j=n

(
j

n

)
/

(
2n
n

)

=
(

2− 2
n+ 1

)
n.

For the variance,

E

(
2T (γ)(

2n
n

) T (γ)

)2

=
1(

2n
n

)2 ∑
γ

22T (γ)T 2(γ)2−T (γ) =
2(

2n
n

)2 2n−1∑
j=n

2jj2

(
j − 1
n− 1

)
.

As before, the sum is dominated by its largest term. This is

22n(2n− 1)2

(
2n− 2
n− 1

)
/

(
2n
n

)2

∼
√
πn5/2.
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Remark 5.6. Here, the expected squared relative error is

E

(
µ̂

µ
− 1
)2

∼
√
πn

4N
.

Thus again, a sample size N of order only larger than
√
n suffices to give

acceptable relative error.

Metropolis sampling. Using independence Metropolis sampling as in Sec-
tion 4 with π(γ) = 1/

(
2n
n

)
and proposal distribution σ(γ) = 2−T (γ), we may

use Liu’s result. To proceed, we must order the state space of paths with
decreasing importance weights π(γ)/σ(γ) and thus by largest values of T (γ).
Using the binary coding of paths introduced in the proof of Proposition 5.3 we
may order via γ ≤ γ′ if T (γ) ≥ T (γ′). If T (γ) = T (γ′), use the lexicographical
order. We break paths into groups by T (γ):

group one with T (γ) = 2n− 1 of size A1 := 2
(

2n− 2
n− 1

)
,

group two with T (γ) = 2n− 2 of size A2 := 2
(

2n− 3
n− 1

)
,

. . .

group i with T (γ) = 2n− i of size Ai := 2
(

2n− 1− i
n− 1

)
,

group n with T (γ) = n of size An := 2.

Proposition 5.7. The independence proposal Markov chain on monotone
paths with proposal distribution σ(γ) = 2−T (γ) and stationary distribution
π(γ) = 1/

(
2n
n

)
has n distinct eigenvalues on each of the n groups above with

multiplicity the size of the ith–group. If s(i) = 2−(2n−1−i), the eigenvalues are

β1 = 1− s(0)
(

2n
n

)
, multiplicity A1 − 1,

β2 = 1− s(1)
(

2n
n

)
+A0(s(1)− s(0)), multiplicity A2,

. . .

βi = 1− s(i− 1)
(

2n
n

)
+A0(s(i− 1)− s(0)) + · · ·

+Ai−2(s(i− 1)− s(i− 2)), multiplicity Ai,

. . .

Proof. This follows from equation (4.2) by elementary manipulations. �
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Remark 5.8. (a) Using Stirling’s formula, for fixed j

βj = 1− 2j√
πn

+Oj

(
1
n

)
From Lemma 4.2, β1 is the second largest eigenvalue.

(b) The eigenvectors of this chain are simple to write down from (4.3).
We do not do this explicitly here. Using the eigenvalues, eigenvectors and
convergence results from [21], we have proved that the relaxation time of the
Metropolis algorithm is of order n3/2 and there is a sharp cut-off.

To conclude this section we bound the asymptotic variance of the Metrop-
olis estimator of the function T (γ) and show that it improves on the impor-
tance sampling estimator of Example 5.5. Recall from (2.3) that σ2

∞(µ̂) =
limN N Var(µ̂).

Example 5.9. Let f(γ) = T (γ) be the first hitting time of a uniformly
chosen random path to the top or right side of an n× n grid. Then,

σ2
∞(µ̂Met(T )) ≤ {8

√
πn3/2 +O(n).}

To prove the last claim, use (2.3) to write

σ2
∞(µ̂Met) ≤

2
1− β1

Varπ(T ).

We have shown above that 1/(1− β0) ≤
√
πn+ o(1). Now,

Varπ(T ) = Eπ(T 2)−
(

2− 2
n+ 1

)2

n2,

Eπ(T 2) =
2n(
2n
n

) n−1∑
i=0

(n+ i)
(
n+ 1
n

)
.

By elementary calculations

4n2

(
1− 1

n

)(
n+ 1

2

n+ 1

)
≤ Eπ(T 2) ≤ 4n3

n+ 1
.

Hence, Varπ(T ) = 4n+O(1). Combing bounds gives the result.

Remark 5.10. Roughly Varπ(µ̂SIS) � n5/2

N while Varπ(µ̂MET ) � n3/2

N .
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