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VERTICAL ORDER IN THE HILBERT CUBE
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DENNIS J. GARITY AND DAVID G. WRIGHT

1. Introduction

The relation between the vertical order of a compact set X in E n and the
tameness of the set X has been investigated by F. Tinsley, J. Walsh, and D.
Wright ([9], [10] and [8]). The results obtained when n 3 differ from the
results obtained for n > 3. In particular, a wild one dimensional subset of E 3

must have uncountable vertical order whereas there are wild compacta of any
dimension less than n 1 in E n, n > 3, of finite vertical order.

In the Hilbert Cube, the concept of a Z set takes the place of the concept of
tameness, at least for sets with infinite codimension. For details, see [1] and [2].
We investigate the role that vertical order plays in the Hilbert Cube. For a
large class of subsets of the Hilbert Cube with infinite codimension, namely
the weakly infinite dimensional subsets, we show that such subsets are Z sets if
they have countable vertical order. Thus, vertical order in the Hilbert Cube
seems to be similar to vertical order in E 3.

In Section 3 we set forth the known results on Z sets, weakly infinite
dimensional sets, and codimension that we will need. Section 4 is devoted to
the proof that subsets of the Hilbert Cube with finite codimension are strongly
infinite dimensional. Section 5 contains the main results on vertical order.

2. Definitions and notation

The k-cell I will be represented as the product I Ik where each 1
is the dosed interval [-1,1]. We let Int(Ik) denote {x lkl for each
i, lxl < I) and we let 01k denote the boundary of lk, lk\Int(lk). We
identify I’ I with I’+" by identifying

((Xl,"’, Xm),(Yl,’", Yn))

with

(xl,...,xm, Yl,..., Y).

For a fixed k, A represents the face of Ik determined by x -1 and B
represents the face determined by x 1. We let X"-t, 1 < m < k, denote the
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(m- 1) sphere in Ik-- I’x Ig-m given by OI’ (0,...,0). We also let
,k-1 Oik. Let Bn Bn be the n-cells defined by taking all points of E for
which the (n + 1)-st coordinate x+ > 0, x+ < 0, respectively.
We represent the Hilbert Cube, Q, as FIi.xli and we let Qk rli+k i. The

opposite faces A and Bi of Q are defined in the same way that they are
defined in Ik. Let Ek- denote the subset of Q Ik X Qk+ given by
OIk X (0,0,...).

All spaces will be subsets of Ik or of Q. A collection ((Ci, D)li J) of
pairs of disjoint closed subsets of a space is an essential family in X if
whenever (Sli J} is a collection of closed subsets of X such that S
separates C from D in X, then IqS . A space is strongly infinite
dimensional if it has a countably infinite essential family. A space is weakly
infinite dimensional if it is not strongly infinite dimensional. (Notice that by
our definition, finite dimensional sets are weakly infinite dimensional. This is
not standard but helps us to concisely state our results.) A space is countable
dimensional if it is a countable union of finite dimensional subsets. For more
information, see [5] and [4].
A dosed subset of A of Q is said to have codimension >_ k if Hq(U, U\ A)
0 for 0 _< q < k and for all open subsets U of Q. The homology is taken

with integer coefficients. The subset A has codimension k if it has codimension
>_ k, but does not have codimension > k + 1. The subset A has infinite
codimension if it has codimension > k for all k. For a discussion of codimen-
sion, see [2].
A closed subset A of Q is a z set if there exist maps from Q to Q \A that

are arbitrarily close to the identity [1]. Let p be the projection from Q onto
Q2. A subset X of Q has oertical order k if the cardinality of p-l(x) N X is

k for each x Q2. The subset X of Q has countable oertical order ooer a
subset A of Q2 if p-(a) N X is countable for each a A. X has countable
oertical order if it has countable vertical order over all of Q2.

3. Z Sets infinite codimension and countable to one closed maps

Results in [1] show that Z sets are standardly embedded in the Hilbert
Cube. That is, if X and X2 are subsets of Q that are homeomorphic and are
Z sets, then there is a homeomorphism h: Q - Q so that h(X1) X2. The
following result of Daverman and Walsh gives one method of detecting Z sets.

TH]OIM 3.1 [2, p. 419]. A closed subset A of an ANR X is a Z set if and
only ifA has infinite codimension and is a 1-LCC subset of X.

The subset A of X is 1-LCC if for each a A and for each neighborhood U
of a in X there exists a neighborhood 1/of a such that every map f:
S 1/\A extends to a map f’." B 2 U\A.
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In investigating sets X with countable vertical order in Q, we will need to
know what the projection p’ X Q2 does to such sets. The following
theorem gives the results we will need.

THEOREM 3.2. IfX is a closed subset of Q with countable vertical order and if
X is countable dimensional (weakly infinite dimensional), then p(X) is countable
dimensional (weakly infinite dimensional).

This theorem follows directly from results in [6] and [7] which show that
countable dimensionality and weak infirfite dimensionality are preserved by
countable to one maps on compacta.

4. Finite codimension subsets in Q

The main result of this section is that closed subsets of Q that have finite
codimension are strongly infinite dimensional. This, combined with results
from Section 3, shows that the infinite codimension of weakly infinite dimen-
sional closed subsets of Q is preserved under projection onto Q2 if the original
subset has countable vertical order.

LEMMA 4.1.
m<k,

Let X be a closed subset of Ik SO that for some positive integer

X c (Int Im) Ik-m.

Furthermore, suppose that inclusion induced homomorphism

Hm_l(,m-1)-.Hm_l(Ik\X)

is non-trivial. If S is a closed subset of X so that X N Am+ and X Bm+ are
separated in X by S, then the inclusion induced homomorphism Hm(,m)
Hm(Ik \ S) is non-trivial.

Proof Since X f’) Am+ and X t3 Bm+ are separated in X by S, X\ S
can be written as the union of two disjoint sets Ux, U2 that are open in X and
such that

XnAm+ c e and XOBm+ c Ug..

Set F1 Ut t3 S and F2 U2 t3 S. Then Ft and F2 are closed subsets of Ik
so that X=FttdF2, FttqF2=S, FtOB= , and F2taB_m= .The
proof now follows easily from the following commutative diagram using the
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Mayer-Vietoris Theorem and redticed homology.

m H m Hm(Zm) " Hm I(Zm-l)--*00 Hm(B+)e re(B_)---’-)

H(Ik\ F) Hm(I/’\ F2) Hm(Ik\ S) ")H_x(I/’\ X)

THEOREM 4.2. Let X be a compactum contained in Int Im Ik-m such that
the inclusion induced homomorphism Hm_ (Xm-l) H,_ (Ik \ X) is non-triv-
ial. Then setting A A n X and B[ B X, the collection {(A, B/’)Im <
< k } is an essential (k- m) family for X.

Proof Let S be closed sets in X that separate A and B/in X, m < < k.
The lemma implies that the inclusion induced homomorphism

Hm(m) Hm(Ia\+)

is non-trivial. Since Sm+2 separates A+2 from B+2, Sm+ n A+ 2 and
Sm+ n B,+ 2 are separated in Sm+ by Sm+ n Sm+ 2. The lemma then shows
that the inclusion induced homomorphism

Hm+(ym+) --) Hm+t(I\ (Sm+ Sm+:))

is non-trivial. Continuing in this manner and using induction we find that the
inclusion induced homomorphism

i--m+1

is non-trivial. But nk_l(Ik) is trivial. So f’l-_m+xS .
THv.OM 4.3. Let X be a compactum in Int ImX Qm+t such that the

inclusion induced homomorphism Hm_t(,m-t) Hm_t(Q \ X) is non-trivial.
Then X is strongly infinite dimensional.

Proof Let A[ A n X and B[ Bi n X. We will show that ((A, B/)li
> m } is an essential family for X. Let { Sli > m } be a collection of closed
subsets of X such that Si separates A[ from B[ in X. Let n be an integer
greater than m. Set 1 to be the subset of Q I" Q,+x given by I
(0, 0, 0,... ). Let X’ X n I and S{ S n I. Applying the previous theo-
rem to X’ in I we have

n{s/Im < < .} = .
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Therefore, f’l{ Slm < < n }, . The compactness of Q then implies that

n(sli > m} ,
and the theorem is proved.

LEMMA 4.4. Let X be a nowhere dense compactum in Q. If 1-I,(U\ X) is
trivial for all contractible open sets U in Q and all nonnegative integers n, then X
has infinite codimension.

Proof. It will suffice to show that a map from a finite polyhedron into Q
can be approximated by a map whose image misses X. This fact follows easily
by induction on the skeleta of the polyhedron.

THEOREM 4.5. If X is a compactum in the Hilbert Cube that has finite
codimension, then X is strongly infinite dimensional.

Proof We assume that X has finite codimension in the Hilbert Cube Q4.
By identifying Q4 with ((0, 0,0)} x Q4 c 13 X Q4 Q, we obtain an embed-
ding of X in Q. The codimension of X in Q is still finite (but larger by three)
and has the properties that X is nowhere dense and II(U\ X) is trivial for
every contractible open set U and n 0,1. Since X has finite codimension, we
know by Lemma 3.1 that there is a contractible open set U and an integer
n > 1 so that rI(U\ x) is not trivial. We assume that n is minimal so that
Hk(U\ X) is trivial for k < n. By the Hurewicz Isomorphism Theorem, the
contractibility of U, and the Z-set approximation theorem [1], there is a map
f: I"+ - U so that f is a Z-embedding f(aI"+ t) misses X and is nontrivial
homologically in U\ X.

Identifying I"+ with I"+ (0, 0, 0,... ) in I+ Q,+ 2 Q, it is easy to
extend f to an embedding h: Q U so that h(OI"+t Q+2) x . By
Theorem 4.3, h(Q) X is strongly infinite dimensional, and we see that X
itself is strongly infinite dimensional.

Note. If we are content to work with compact countable dimensional
subsets of Q instead of weakly infinite dimensional subsets, there is an
inductive argument that shows directly that such subsets have infinite codi-
mension. As in [2], finite dimensional subsets of Q have infinite codimension.
Any compact countable dimensional space X has large transfinite inductive
dimension trlnd [3]. An inductive argument shows that X has a countable
basis { U } so that the boundary of each U/, Bd(U/) has infinite codimension.
This together with Corollary 2.4 from [2] shows that X has infinite codimen-
sion.
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5. Vertical order

LEMMA 5.1. If a compact subset X of Q2 has codimension > k in Q2, then
X I has codimension > k in Q.

Proof. This follows in exactly the same way as the proof of Lemma 2.2 in
[2] where the result is proved when X has infinite codimension. The proof uses
a Mayer-Vietoris argument.

THOM 5.2. Let X be a compact subset of Q andp: Q --> Q2 be projection.
If p(X) has codimension 2 in Q2 and if dim(X p-(q)) _< 0 for each
q Q2, then X is 1-LCC in Q.

Proof. Let f be a map of B2 into Q. It suffices to show that f can be
approximated arbitrarily closely by a map f so that f(B 2) X . Since
p(x) has eodimension > 2 in Q2, P(X) x I has codimension > 2 in Q by the
previous lemma. We may thus assume without loss of generality that
f-7 l(p(X) I) is a Cantor set C in the interior of B 2.

For each point p C we find a small contractible open set U in Q2 so that
I U contains f(p) and ((w} x U)X= for some wI with w
differing from (f(p)) by a small preassigned number. Using compactness, we
find a finite number of pairwise disjoint disks D, DE,..., Dk in B E whose
interiors cover C so that the diameters of f(D) are small, f(D) c I x Ur for
some p C.

Let f equal f on the complement of the D. Extend F to each D by using a
vertical homotopy to the level (w } QE, where w is as above, and then
sending the rest of Di into U (w }.

THEOREM 5.3. Let X be a weakly infinite, dimensional compact subset of Q
that has countable vertical order. Then X is a Z set.

Proof. By Theorem 3.1, it suffices to show that X has infinite codimension
and is 1-LCC. By theorem 3.2, p(X) is weakly infinite dimensional and thus
Theorem 4.5 implies both p(X) has infinite codimension in Q2 and X has
infinite codimension in Q. Theorem 5.2 now implies that X is 1-LCC in Q.

COROLLARY 5.4. Suppose X is a weakly infinite dimensional compact subset
of Q. Let F (x QEIX has uncountable vertical order over x ). If F is a
countable union of Z sets, then X is a Z set.

Proof. Let p: Q 02 be projection. Let f: B2 Q be a map. By a slight
adjustment, we may assume p o f(B2) lies in a Hilbert Cube Q in Q2 \ F. Let
Q’ I Q, and let X’ X tq Q’. By the previous theorem, X’ is a Z set in
Q’. Since f(B2) c Q’, f can be approximated arbitrarily closely by a map fso



DENNIS J. GARITY AND DAVID G. WRIGHT

that

c Q"\x’ c Q\x.

Thus X is 1-LCC in Q and is a Z set.

COROLLARY 5.5. If X is a wild finite dimensional subset of Q, then X has
uncountable order over an uncountable subset of Q2.

If X is a compact subset of Q that has infinite codimension and countable
vertical order, it is not necessarily true that p(X) must have codimension > 2
in Q2. For example, choose X A or Bt. Hence, the technique of Theorem
5.3 will not apply to any such subset of Q. However, the following conjecture
still seems reasonable.

Conjecture. Let X be a compact subset of Q that has infinite codimension
and countable vertical order (or vertical order two). Then X is a Z set.
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