EISENSTEIN SERIES AND CARTAN GROUPS

BY

Isaac Efrat ${ }^{1}$

Introduction

The principal congruence subgroup $\Gamma(N)$ acts discontinuously on the upper half plane \mathscr{H}, to give a non-compact fundamental domain of finite volume. Given such a group, one can associate to each cusp κ_{i} an Eisenstein series $E_{i}(z, s)$, where $z \in \mathscr{H}$ and $s \in \mathbf{C}$. This Eisenstein series admits a Fourier expansion at each cusp κ_{j}. The zero Fourier coefficient involves a meromorphic function $\phi_{i j}(s)$, so that one obtains a matrix $\Phi(s)=\left(\phi_{i j}(s)\right)_{i, j}$ (see §1 for precise definitions).

The determinant $\phi(s)=\operatorname{det} \Phi(s)$ plays a key role in the theory, mostly due to its appearance in the Selberg trace formula for the group in question. Of particular importance are the poles of $\phi(s)$, whose analysis is connected with the study of cusp forms for the group (see [11], [1]).

The problem of computing $\phi(s)$ for $\Gamma(N)$ was first addressed by Hejhal (see [4]), who treated the case of square free and odd N by some rather involved methods. Huxley [5] has recently solved the problem using other ingenious arguments, and gave an expression for $\phi(s)$ for any N. As for other groups, we mention the work in [2] where we compute these determinants for Hilbert modular groups, and in [1], where they are partially analyzed for congruence subgroups of Hilbert modular groups. Other relevant references are [3], [8], [9].

Our aim in this paper is to introduce the Cartan group $C(N)$ into the study of the Eisenstein series for $\Gamma(N)$, and to use it in order to give a short and simple proof of the precise formula for $\phi(s)$, for any N. Our main theorem (§3) shows that $\phi(s)$ is naturally expressed in terms of the L-functions on $C(N)$. These L-functions also come up in the work of Kubert and Lang on modular units [7].

1. The Eisenstein series

Let

$$
\Gamma=\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbf{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv I(\bmod N)\right.\right\}
$$

[^0]be the principal congruence subgroup of level $N>2$, and choose a set of representatives for the cusps
$$
\kappa_{i}=-\frac{\delta_{i}}{\gamma_{i}}, \quad i=1, \ldots, h
$$
with $\left(\gamma_{i}, \delta_{i}\right)=1$. Thus, if $1 \leq \gamma_{i}^{\prime}, \delta_{i}^{\prime} \leq N$ with $\gamma_{i}^{\prime} \equiv \gamma_{i}(N), \delta_{i}^{\prime} \equiv \delta_{i}(N)$, then $\left(\gamma_{i}^{\prime}, \delta_{i}^{\prime}\right), i=1, \ldots, h$, are the primitive pairs $\bmod N$ (i.e., $\left(\gamma_{i}^{\prime}, \delta_{i}^{\prime}, N\right)=1$), identified $\bmod \pm 1$. Also,
$$
h=\frac{N^{2}}{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)
$$

For these standard facts, see [10] for example.
Let Γ_{i} be the stabilizer of κ_{i} in Γ, and choose $\alpha_{i}, \beta_{i} \in \mathbf{Z}$ with $\alpha_{i} \delta_{i}-\beta_{i} \gamma_{i}=1$. Then

$$
\rho_{i}=\left(\begin{array}{cc}
\alpha_{i} & \beta_{i} \\
\gamma_{i} & \delta_{i}
\end{array}\right) \in S L_{2}(\mathbf{Z})
$$

sends κ_{i} to ∞. Let

$$
z^{(i)}=\rho_{i} z=\left(x^{(i)}, y^{(i)}\right)
$$

Then the Eisenstein series at κ_{i} is defined in general as

$$
E_{i}(z, s)=\sum_{\tau \in \Gamma_{i} \backslash \Gamma} y^{(i)}(\tau z)^{s}, \quad z \in \mathscr{H}, \operatorname{Re}(s)>1
$$

(see [11]). It has a Fourier expansion at κ_{j} of the form

$$
\delta_{i j} y^{(j)^{s}}+\phi_{i j}(s) y^{(j)^{1-s}}+\text { non-zero coefficients }
$$

for some meromorphic function $\phi_{i j}(s)$. Let $\Phi(s)=\left(\phi_{i j}(s)\right)_{i, j=1, \ldots, h}$. Our goal is to compute the determinant

$$
\phi(s)=\operatorname{det} \Phi(s)
$$

To this end, we begin by observing that for

$$
\tau=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

we have

$$
y^{(i)}(\tau z)=y\left(\rho_{i} \tau z\right)=\frac{y^{s}}{\left|\left(\gamma_{i} a+\delta_{i} c\right) z+\left(\gamma_{i} b+\delta_{i} d\right)\right|^{2 s}}=\frac{y^{s}}{\left|c^{\prime} z+d^{\prime}\right|^{2 s}}
$$

and $c^{\prime} \equiv \gamma_{i}(N), d^{\prime} \equiv \delta_{i}(N)$. Conversely, for such c^{\prime}, d^{\prime} we have $\alpha_{i} d^{\prime}-\beta_{i} c^{\prime}$ $\equiv 1(N)$, so that (see [10, p. 74]) there exist $a^{\prime}, b^{\prime} \in \mathbf{Z}, a^{\prime} \equiv \alpha_{i}(N), b^{\prime} \equiv \beta_{i}(N)$ with $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$. Let

$$
\tau=\left(\begin{array}{rr}
\delta_{i} & -\beta_{i} \\
-\gamma_{i} & \alpha_{i}
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \in \Gamma(N) .
$$

Then

$$
\rho_{i} \tau=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

and any other τ with this property is in the same coset of $\Gamma_{i} \backslash \Gamma$. We conclude that

$$
E_{i}(z, s)=E_{\gamma_{i}, \delta_{i}}(z, s)=\sum_{\substack{(c, d)=1 \\ c \equiv \gamma_{i}, d=\delta_{i}(\bmod N)}} \frac{y^{s}}{|c z+d|^{2 s}} .
$$

To simplify further, we let

$$
F_{i}(z, s)=\sum_{c \equiv \gamma_{i}, d \equiv \delta_{i}(\bmod N)} \frac{y^{s}}{|c z+d|^{2 s}} .
$$

Then

$$
\begin{aligned}
F_{i}(z, s) & =\sum_{\substack{k=1 \\
(k, N)=1}}^{\infty} \sum_{\substack{(c, d)=k \\
c \equiv \gamma_{i}, d \equiv \delta_{i}(N)}} \frac{y^{s}}{|c z+d|^{2 s}} \\
& =\sum_{\substack{k=1 \\
(k, N)=1}}^{\infty} \frac{1}{k^{2 s}} \sum_{\substack{(c, d)=1 \\
c \equiv k^{-1} \gamma_{i}, d \equiv k^{-1} \delta_{i}(N)}} \frac{y^{s}}{|c z+d|^{2 s}} .
\end{aligned}
$$

Here k^{-1} is the inverse of $k \bmod N$. Let k_{1}, \ldots, k_{r} be representatives of

$$
\mathbf{Z}(N)^{ \pm}=(\mathbf{Z} / N \mathbf{Z})^{\times} / \pm 1, \quad r=\frac{1}{2} \phi(N)
$$

Then the above becomes

$$
\sum_{\nu=1}^{r} \zeta\left(2 s, \pm k_{\nu}\right) E_{k_{\nu}^{-1} \gamma_{i}, k_{\nu}^{-1} \delta_{i}}(z, s)
$$

where

$$
\zeta\left(2 s, \pm k_{\nu}\right)=\sum_{\substack{k=1 \\ k=k_{\nu}(N)}}^{\infty} \frac{1}{k^{2 s}}+\sum_{\substack{k=1 \\ k \equiv-k_{\nu}(N)}}^{\infty} \frac{1}{k^{2 s}}
$$

We rewrite these relations as

$$
\left[\begin{array}{c}
F_{1}(z, s) \\
\vdots \\
F_{h}(z, s)
\end{array}\right]=\left[\begin{array}{cccc}
B & & & \\
& B & & \\
& & \ddots & \\
& & & B
\end{array}\right]\left[\begin{array}{c}
E_{1}(z, s) \\
\vdots \\
E_{h}(z, s)
\end{array}\right]
$$

where each block B is the matrix

$$
B=\left[\zeta\left(2 s, \pm k_{\nu}^{-1} k_{\mu}\right)\right]_{\nu, \mu=1, \ldots, r}
$$

This essentially reduces the study of $\Phi(s)$ to that of the corresponding matrix for the F_{i} 's, so we now turn to the computation of the zero Fourier coefficient of F_{i} at κ_{j}. We have

$$
\begin{aligned}
F_{i}(z, s) & =F_{i}\left(\rho_{j}^{-1} z^{(j)}, s\right) \\
& =\sum_{c \equiv \gamma_{i}, d \equiv \delta_{i}(N)} \frac{y^{(j)^{s}}}{\left|\left(c \delta_{i}-d \gamma_{j}\right) z^{(j)}+\left(-c \beta_{j}+d \alpha_{j}\right)\right|^{2 s}} \\
& =\sum_{c \equiv \lambda, d \equiv \mu(N)} \frac{y^{(j)^{s}}}{\left|c z^{(j)}+d\right|^{2 s}}, \quad \lambda=\gamma_{i} \delta_{j}-\delta_{i} \gamma_{j} \quad \mu=-\gamma_{i} \beta_{j}+\delta_{i} \alpha_{j}
\end{aligned}
$$

A term with $c=0$ will come up iff $\lambda \equiv 0(N)$, in which case we get

$$
y^{(j)^{s}} \sum_{d \equiv \mu(N)} \frac{1}{d^{2 s}}
$$

Now, fixing $c \neq 0$, by the Poisson summation formula we have

$$
\sum_{d=\mu(N)} \frac{1}{|c z+d|^{2 s}}=\sum_{t \in \mathbf{Z}} \frac{1}{|c z+\mu+t N|^{2 s}}=\sum_{t \in \mathbf{Z}} \int_{-\infty}^{\infty} \frac{e^{2 \pi i u t} d u}{|c z+\mu+u N|^{2 s}}
$$

and a change of variables gives

$$
\frac{1}{N} \frac{1}{|c|^{2 s-1}} \sum_{t \in \mathbf{Z}} \int_{-\infty}^{\infty} \frac{e^{2 \pi i c u t / N}}{|z+u|^{2 s}} d u e^{-2 \pi i \mu t / N}
$$

For the zero coefficient we put $t=0$ and use

$$
\int_{\infty}^{\infty} \frac{d u}{|z+u|^{2 s}}=\pi^{1 / 2} \frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} y^{1-2 s}
$$

to obtain:
Proposition 1. The zero Fourier coefficient of F_{i} at κ_{j} is

$$
\begin{aligned}
& \iota \cdot \zeta\left(2 s, \pm\left(-\gamma_{i} \beta_{j}+\delta_{i} \alpha_{j}\right)\right) y^{(j)^{s}} \\
& \quad+\pi^{1 / 2} \frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{1}{N} \zeta\left(2 s-1, \pm\left(\gamma_{i} \delta_{j}-\delta_{i} \gamma_{j}\right)\right) y^{(j)^{1-s}}
\end{aligned}
$$

By comparing the zero coefficients of the E_{i} 's and the F_{i} 's we get:
Corollary.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\boxed{B} & & \\
& \boxed{B} & \\
& \ddots & \\
& & \boxed{B}
\end{array}\right]\left[\phi_{i j}(s)\right]} \\
& \quad=\pi^{1 / 2} \frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{1}{N}\left[\zeta\left(2 s-1, \pm\left(\gamma_{i} \delta_{j}-\delta_{i} \gamma_{j}\right)\right)\right]
\end{aligned}
$$

We shall identify the matrix on the right as essentially a group matrix for the Cartan group.

2. The Cartan groups

In this section we describe the basic aspects of these groups, essentially following [6]. We let

$$
G(N)=G L_{2}(\mathbf{Z} / N \mathbf{Z})
$$

Then a primitive pair $\bmod N(c, d)$ can be extended to an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G(N)$, and two such elements will differ on the left by an element of the subgroup

$$
G_{\infty}(N)=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \in G(N)\right\}
$$

It follows that the cusps can be represented by the cosets in $G_{\infty}(N) \backslash G(N)$. We wish to establish a unique decomposition

$$
G(N)=G_{\infty}(N) \cdot C(N)
$$

where $C(N)$ is an abelian group, called the Cartan group of level N. This will
imply that the cusps correspond naturally to the elements of $C(N)$, in that $C(N)$ acts on them simply and transitively.
Write $N=\Pi_{p \mid N} p^{n(p)}$ and fix p. Let $R=[1, u]$ be the ring of integers of the unramified quadratic extension of \mathbf{Q}_{p}. Let $C_{p}=R^{\times}$be the group of units of R. Then C_{p} consists of the primitive elements of R, i.e., those $d+c u \in R$ for which c and d are not both divisible by p. Since C_{p} is a group, it acts simply transitively on the primitive elements.

Next we embed C_{p} in $G L_{2}\left(\mathbf{Z}_{p}\right)$ by the regular representation over \mathbf{Z}_{p} :

$$
d+c u \mapsto\left(\begin{array}{ll}
d & c u^{2} \\
c & d
\end{array}\right)
$$

Proposition 2. Let

$$
G_{\infty}, p=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathbf{Z}_{p}, a \in \mathbf{Z}_{p}^{*}\right\} \subset G L_{2}\left(\mathbf{Z}_{p}\right) .
$$

Then we have a unique decomposition

$$
G L_{2}\left(\mathbf{Z}_{p}\right)=G_{\infty, p} \cdot C_{p}
$$

Proof. We show that the multiplication map

$$
G_{\infty, p} \times C_{p} \rightarrow G L_{2}\left(\mathbf{Z}_{p}\right)
$$

is a bijection.
Since $G_{\infty, p} \cap C_{p}=\{1\}$ it is one-to-one. To prove that it is onto, let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}\left(\mathbf{Z}_{p}\right) .
$$

For an element in C_{p} take

$$
\left(\begin{array}{ll}
d & c u^{2} \\
c & d
\end{array}\right) .
$$

By the transitive action of C_{p} on the primitive pairs, there is a pair $\left(a^{\prime}, b^{\prime}\right)$ so that

$$
\left(a^{\prime}, b^{\prime}\right)\left(\begin{array}{ll}
d & c u^{2} \\
c & d
\end{array}\right)=(a, b)
$$

Hence

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
d & c u^{2} \\
c & d
\end{array}\right) .
$$

Note that $G\left(p^{n}\right)$ is the restriction of $G L_{2}\left(\mathbf{Z}_{p}\right) \bmod p^{n}$, and similarly for $G_{\infty}\left(p^{n}\right)$. Thus if we let $C\left(p^{n}\right)$ be the restriction of $C_{p} \bmod p^{n}$, we obtain a unique decomposition

$$
G\left(p^{n}\right)=G_{\infty}\left(p^{n}\right) \cdot C\left(p^{n}\right)
$$

Finally, let $C(N)=\Pi_{p \mid N} C\left(p^{n(p)}\right)$. Then we have a unique decomposition $G(N)=G_{\infty}(N) \cdot C(N)$, and since we identify primitive pairs mod ± 1, we actually need

$$
G^{ \pm}(N)=G_{\infty}(N) \cdot C^{ \pm}(N)
$$

where

$$
G^{ \pm}(N)=G(N) / \pm 1, C^{ \pm}(N)=C(N) / \pm 1
$$

3. The main theorem

We recall the method of group determinants: If $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is an abelian group and f is a complex function on A, then the determinant of the "group matrix" $\left[f\left(a_{i}^{-1} a_{j}\right)\right]_{i, j=1, \ldots, n}$ is given by

$$
\prod_{\chi \in \hat{A}} \sum_{a \in A} \chi(a) f(a)
$$

We wish to relate our

$$
\left[\frac{1}{N} \zeta\left(2 s-1, \pm\left(\gamma_{i} \delta_{j}-\delta_{i} \gamma_{j}\right)\right)\right]_{i, j=1, \ldots, h}
$$

to such a group matrix.
Now we saw in $\S 2$ that the cusp $\kappa=(\gamma, \delta)=-\delta / \gamma$ can be identified with the following element of $C(N)^{ \pm}$:

$$
\prod_{p \mid N}\left(\begin{array}{cc}
\delta\left(\bmod p^{n}\right) & \gamma u^{2}\left(\bmod p^{n}\right) \\
\gamma\left(\bmod p^{n}\right) & \delta\left(\bmod p^{n}\right)
\end{array}\right)
$$

abbreviated by

$$
\left(\begin{array}{ll}
\delta & \gamma u^{2} \\
\gamma & \delta
\end{array}\right)
$$

For such a κ we let

$$
N(\kappa)=\delta^{2}-\gamma^{2} u^{2} \in \mathbf{Z}(N)^{ \pm}
$$

and define

$$
\kappa^{\prime}=\left(\gamma^{\prime}, \delta^{\prime}\right)=\left(N(\kappa)^{-1} \gamma, N(\kappa)^{-1} \delta\right)=N(\kappa)^{-1} \kappa
$$

(again we use the fact that $\mathbf{Z}(N)^{ \pm}$acts on the cusps). Then

$$
\left(\begin{array}{cc}
\delta & -\gamma u^{2} \\
-\gamma & \delta
\end{array}\right)=\frac{1}{N\left(\gamma^{\prime}, \delta^{\prime}\right)}\left(\begin{array}{cc}
\delta^{\prime} & -\gamma^{\prime} u^{2} \\
-\gamma^{\prime} & \delta^{\prime}
\end{array}\right)=\kappa^{\prime-1}
$$

and therefore

$$
\kappa_{i}^{\prime-1} \cdot \kappa_{j}=\left(\begin{array}{cc}
\delta_{i} & -\gamma_{i} u^{2} \\
-\gamma_{i} & \delta_{i}
\end{array}\right)\left(\begin{array}{cc}
\delta_{j} & \gamma_{j} u^{2} \\
\gamma_{j} & \delta_{j}
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
-\gamma_{i} \delta_{j}+\delta_{i} \gamma_{j} & *
\end{array}\right),
$$

so that if we define a function on the cusps by

$$
f(\kappa)=f(\gamma, \delta)=\frac{1}{N} \zeta(2 s-1, \pm \gamma)
$$

our matrix above becomes $\left[f\left(\kappa_{i}^{\prime-1} \cdot \kappa_{j}\right)\right]_{i, j=1, \ldots, h}$. This is not quite a group matrix, but if we multiply it by the permutation matrix $P=\left(p_{i j}\right)$ defined by

$$
p_{i j}= \begin{cases}1 & \text { if } \kappa_{j}^{\prime}=\kappa_{i} \\ 0 & \text { otherwise }\end{cases}
$$

then we get the group matrix $\left[f\left(\kappa_{i}^{-1} \cdot \kappa_{j}\right)\right]_{i, j-1, \ldots, h}$.
We can finally compute the determinant $\phi(s)$. To the map $T(\gamma, \delta)=\gamma$ and the character χ of $C(N)^{ \pm}$we associate the L-function

$$
L(s, \chi, T)=\frac{1}{N} \sum_{\kappa \in C(N)} \chi(\kappa) \zeta(s, T \kappa)
$$

where

$$
\zeta(s, \gamma)=\sum_{\substack{k=1 \\ k \equiv \\ k=\gamma(N)}}^{\infty} \frac{1}{k^{s}}
$$

Then by the method of group determinants,

$$
\operatorname{det}\left[f\left(\kappa_{i}^{-1} \kappa_{j}\right)\right]=\prod_{\chi \in C^{\prime}(N) \pm} L(2 s-1, \chi, T)
$$

Similarly, if we go back to the corollary of $\S 1$, we see that the matrix B is a group matrix for $\mathbf{Z}(N)^{ \pm}$, so that

$$
\operatorname{det}(B)=\prod_{\chi \in \mathbf{Z}^{\wedge}(N)^{ \pm}} L(2 s, \chi)
$$

where $L(2 s, \chi)$ is a Dirichlet L-function.
Turning finally to the permutation matrix, we see that

$$
\operatorname{det}(P)=(-1)^{\left(h-h_{0}\right) / 2}
$$

where h_{0} is the number of cusps κ for which $N(\kappa)=1$. Thus

$$
h_{0}=\frac{\left|C(N)^{ \pm}\right|}{\left|\mathbf{Z}(N)^{ \pm}\right|}=\frac{h}{r}=N \prod_{p \mid N}\left(1+\frac{1}{p}\right)
$$

Putting all these results together, we obtain our main theorem:
Theorem.

Remarks. The L-function $L(s, \chi, T)$ above are exactly the ones that appear in [7] where it is shown how they can be related to ordinary Dirichlet L-functions. Assume first that χ is primitive, and let

$$
S(\chi, T)=\sum_{\kappa \in C(N)} \chi(\kappa) e^{2 \pi i T \kappa / N}
$$

be its Gauss sum of $C(N)$ with respect to T. Furthermore, let $\chi_{\mathbf{z}}$ be the restriction of χ to $\mathbf{Z}(N)$ (of conductor c, say), and let $S_{\mathbf{Z}}\left(\chi_{\mathbf{z}}\right)$ be its standard Gauss sum. Then

$$
L(s, \chi, T)=\frac{1}{N} \frac{S(\chi, T)}{S_{\mathbf{Z}}\left(\chi_{\mathbf{z}}\right)} \prod_{\substack{p \mid N \\ p+c}}\left(1-\frac{\bar{\chi}(p)}{p^{1-s}}\right) L\left(s, \chi_{\mathbf{z}}\right)
$$

Finally, if χ is not primitive, so that it factors through $C(M)$ for some $M \mid N$, then

$$
L(s, \chi, T)=\prod_{\substack{p \mid N \\ p+M}}\left(1-\frac{\chi_{M}(p)}{p^{s+1}}\right) L\left(s, \chi_{M}, T_{M}\right)
$$

References

1. I. Efrat, Cusp forms and higher rank, preprint, 1984.
2. I. Efrat and P. Sarnak, The determinant of the Eisenstein matrix and Hilbert class fields, Trans. Amer. Math. Soc., vol. 290 (1985), pp. 815-824.
3. L. Goldstein, Dedekind sums for a Fuchsian group, I, II, Nagoya Math. J., vol. 50 (1973), pp. 21-47; vol. 53 (1974), pp. 171-187.
4. D. Hejhal, The Selberg trace formula for $\mathrm{PSL}_{2}(\mathbf{R})$, vol. II, Lecture Notes in Mathematics, no. 1001, Springer Verlag, N.Y., 1983.
5. M. Huxley, "Scattering matrices for congruence subgroups" in Modular forms, (R. Rankin, ed.), Halsted Press, 1985.
6. D. Kubert and S. Lang, Units in the modular function field, II. A full set of units, Math Ann., vol. 218 (1975), pp. 175-189.
7. \qquad , Cartan-Bernoulli numbers as values of L-series, Math. Ann., vol. 240 (1979), pp. 21-26.
8. C. Moreno, Explicit formulas in the theory of automorphic forms, Lecture Notes in Mathematics, no. 626, Springer Verlag, N.Y., 1977.
9. A. Orihara, On the Eisenstein series for the principal congruence subgroup, Nagoya Math. J., vol. 34 (1969), pp. 129-142.
10. B. Schoenberg, Elliptic modular functions, Springer Verlag, N.Y., 1974.
11. A. Selberg, Harmonic analysis, 2. Teil, Lecture Notes, Göttingen, 1954.

Massachusetts Institute of Technology
Cambridge, Massachusetts
Columbia University
New York

[^0]: Received October 11, 1985
 ${ }^{1}$ Partially supported by a grant from the National Science Foundation.

