
ILLINOIS JOURNAL OF MATHEMATICS
Volume 31, Number 3, Fall 1987

DEGREES AND TRANSFER THEOREMS

BY

R.G. DOWNEY

1. The main goal of this paper is to demonstrate how weak troth table/
Turing degree "transfer" techniques may be used to obtain information about
the A2 (Turing) degrees. Such techniques have previously been applied by
Ladner-Sasso [13], Stob [18] and others to obtain information about R, the r.e.
T-degrees. The best known example of this phenomenon is Ladner and Sasso’s
[13] use of contiguous degrees to show that every nonzero r.e. degree has a
predecessor with the anticupping property.

Let D denote the degrees, W the r.e. weak truth table (W-)degrees and Dw
the weak truth table degrees. Modifying the Ladner-Sasso analysis to A2
degrees, we shall give a new and relatively easy proof of a result independently
proved by Cooper [5] and Slaman and Steel [16] about structural interactions
of R and D:

THEOREM A. :la, b R(0 < b < a and Vc D(c u b a c a))

Such a degree a is said to have the strong anticupping property with witness b.
Actually, we get a slight improvement by constructing a with witnesses that
are "downward dense" in R. To prove Theorem A, we first analyse how D and
W interact and then prove some results about Dw and W. In particular, one
result we shall establish is that every nonzero r.e. weak truth table degree has
the global anticupping property, that is:

THEOREM B.

Va W(a * 0 --> :lb W(O < b < a and Vc Dw(a < c tj b a < c))).

Theorem B also implies that the elementary theory of (for example) the
weak truth table degrees below 0, and the A2 degrees are different (since
Posner and Robinson [15] have shown that the nonzero T-degrees below 0’ all
cup to 0’).
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Finally, we shall give a couple of other examples to indicate some further
applications of A2 transfer theorems. For example, we show that there exist
nonzero r.e. degrees a that split in a very strong way over all lesser A2 degrees;
namely, if b < a and b D then there exists an r.e. splitting ax U a2 a of a
with b t2 a, b a 2 < a.
Our notation is standard and follows Soare ^[17]. T-reductions will be

denoted by (, F,... ) and those with "hats" (, F,... ) will denote W-reduc-
tions. The recursive use corresponding to the latter will be the corresponding
lower case greek letter (e.g., use ()ffi p, use (’)--,,...). Unless stated
otherwise, we denote T-degrees by lower case boldface letters (a,b,...).
Finally all computations, etc., are bounded by s at stage s.
The author wishes to thank Carl Jockusch for helpful discussions regarding

this material.

2. We shall first construct an r.e. degree with the strong anticupping
property. To do this we modify the transfer analysis of Ladner and Sasso [13]
which gave a new proof of Lachlan’s result [10] that there is an r.e. degree with
the anticupping property. The Ladner-Sasso analysis is summarized by the
combination of (2.1) and (2.2) below.

(2.1) There exists a nonzero contiguous r.e. degree, namely a nonzero r.e.
degree a consisting of a single r.e. W-degree; meaning that if A and B are r.e.
and of degree a, then A --w B.

Va W(a 0 ---, :ib W(O < b < a and Vc W(c U b > a ---, c >

We shall replace (2.1) and (2.2) by:
(2.1)’ There exists an r.e. degree a 0 such that all (not necessarily r.e.)

sets A, B of degree a are of the same W-degree. We call such a degree strongly
contiguous.

(2.2)’ (Theorem B) Every nonzero r.e. W-degree has the global anticupping
property.

Then we see that--in the same way as [13]--(2.1)’ and (2.2)’ imply
Theorem A.
We now turn to the proof of (2.1)’, namely the construction of a strongly

contiguous degree. For convenience, we modify the presentation of Ambos-
Spies [1]. We satisfy the following requirements.

Pe:A,We.
N: (A) total {and (0,1)-valued, by convention) and I’((A))--A

imp)ies A <w Oe(A).
N: (A) total and I’(,(A)) A implies ,(A) <w A.
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Here (, F) denotes a standard enumeration of all pairs of T-reductions.
Both N and/ are met by similar (completely compatible) techniques.
Due to the similarity of our method of satisfying N (and N) with the case

where (A) is r.e., it will suffice (in each case) to discuss the strategy for a
single requirement, and then to leave the details of coordination of the
requirements to the reader.

Let l(e,s)= max{x: Vy < x(I’,,(,(A); y)=A(y))}. We meet N
(and/) by essentially the same cancellation procedure as for the case (A)
r.e. in a contiguous degree construction. The only difficulty is to see that it also
works for (A) only A2. Specifically each follower x of Ps for j > e is
equipped with a guess as to whether or not l(e, s) ---, oo. If a follower x is
guessing that l(e, s)- oo then if

l(e, s) > ml(e, s) --’df max{ l(e, t): t < s }

we shall cancel x. The other key follower rules are:

(2.4) If x is appointed at stage s then x s, and if l(e, s) > ml(e, s) we
give x a guess that l(e, s) ---, oo; otherwise x guesses l(e, s) - .(2.5) If x < y and x and y are followers and if x enters A, then x cancels
y.

(2.6) If x and y are followers and y > x (so that, by (2.4) y is appointed
after x) and x is uncancelled at stage y, then y has lower priority than x.

The basic idea for N is this. For each follower x following some Ps for
j > e guessing l(e, s) oo, we wait for the first stage when l(e, s) > x. At
this stage (with x least) we declare x as e-confirmed and cancel all followers y
for y > x. This gives the situation in Figure 1.

,-

A

FIG. 1

Now the crucial points are that for this situation to occur x must be
guessing that l(e, s) --, oo, and there are no followers left alive between x and
s. We claim that this insures that A <u, (A) as follows: Let u
max{ u(O,,,(A,; y)): y < x}. To determine whether x A compute the least
stage t > s with l(e, t) > ml(e, t) and

..,(a,)[.]
(Notice here we are not asking that Yt’> t((b,,t,(At,)[u Ce, t(At)[u]) as
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would occur in the r.e. case). We claim that x A iff x At. There are two
cases to consider.

Case 1. O,,(A,)[u] dOe, t(ht)[u]. In this case the situation of Figure 1 is
unchanged and because u measures a use function it. must be that A[x]
atx] A,[xl.

Case 2. Otherwise. Since there were no numbers z alive at stage s with
x < z < s, by (2.4) the only way this can occur is if some follower y < x
enters A A,. By (2.5) such a follower either cancels x or equals x. In either
case x A iff x Ar
As with the case where ,(A) is r.e; the cancdlation/confirmation proce-

dure implemented for Ne also meets Ne. To see this, we must show that the
cancellation of numbers between x and s in Figure 1 also allows A to
-compute (A). Let z be given. To compute whether z (A) first find
the least stage s where l(e, si) > z and l(e, s) > ml(e, si). Now A can only
change (allowing ,,,(A,)(z) to change) due to the entry of followers. At
stage s the only such followers g left alive must be guessing that l(e, s) --,

By the way we appoint followers (2.4), if no follower < s enters A after stage
Sl it must be that

If (I)e, sx(A; z) is to change, it follows that some follower g alive at stage S

must enter A A,. Suppose g is the first such, and gx enters at stage t. Let
s2 be the least stage > with l(e, s_) > ml(e, s2). Let 1 be the least follower
that enters at any stage t’ with < t’ < s2. Then < g and gx was present
at stage sl (by (2.4)).
The crucial observation is:

(2.8) There are no followers x left alive with x < s2 at stage s2.

To see this first observe that by (2.5), when g enters A--say at stage/’--it
must cancel all followers p with g p < ’. By choice of s2 as the least stage
> with l(e, s2)> ml(e, s2), any follower q appointed after stage /’ but
before stage s2 must be guessing that l(e, s)- oo (by (2.4)). But then we
automatically cancel such q at stage s2. These observations give (2.8).
Now, we see that after stage $2 either As2[l]--A[I] and so by (2.8),

A,[s2 -1] A[s2 -1] implying that Oe,,_(A2; z)= ,(A; z) or some
number < x must enter A after stage s2.

In the latter case, repeating the above process, we eventually arrive at a 2
and s (say) etc. Combining all the above ideas, we get to our desired
w-reduction: To compute ,(A; z), find the least stage g > s, with

l(e, ) > ml(e, .) and A[Sl] A[sxl.
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Then it must be that O,,(A; z) O,(A; z) since the only followers below
u(a#e,(A; z)) alive at stage g were already present at stage Sl.
The remaining details of the full construction are to organize the above

strategies with the usual rz-guessing tree. Should the reader be unfamiliar with
this, we refer him to [1] for further details.
We now turn to the proof of Theorem B.
(2.3)’ Every nonzero r.e. W-degree has the global anticupping property.

Proofi Let A be a given r.e. nonrecursive set. We construct a coinfinite r.e.
set B t.J,B in stages to satisfy the following.

P: Wl oo implies
Ne: If C is any set and I’e(B C)= A then A <w C.
We remind the reader that here 1 denotes the e-th W-reduction with use ?.

This particular result gives a nice demonstration of the way some results for
DW can be obtained using techniques not applicable in the r.e. case. The
reader should note that in this construction we cannot know C since there may
be 2so possibilities. The key point, though, is that no matter which C pertains
the use is the same. There are several ways to satisfy condition N above,
but it seems easiest to use a construction similar to one of Ladner and Sasso
[13]. We shall use an "almost monotone" restraint r(e, s) which only drops
when the "A-side" changes. To do this, we define a marking function a(e, s)
as follows" Let o, ,... denote strings. Define a(e, 0) 0. Set a(e, s + 1) as
the least x such that one of the following holds:

(i) x < a( e, s) and x
(ii) x > a(e, s)and l(e, s)= x + 1 where

l(e, s) max{y" :loVz < y(L,s(Bs o; z) A,(z)));

(iii) (ii) does not apply and x a(e, s).
We shall then define

and

r(e,s) 1 + max{,,s(z )" z < a(e,s)}

R(e, s) max(r(j, s)" j < e }.

There are two crucial observations regarding the relationship of a, r and A.

(2.7) If l(e, s)> x, tl, 2 > S and a(e, ti) a(e,/2) X then r(e,/1)
r(e, t2). That is, once we see l(e, s) > x we always know what r(e, t) "will
be", should x be the least number to occur in At+ At for t > s. We denote
this by m(e, x), that is, we define m(e, x) r(e, t) 1 + max{,e(Z): t < x}
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(2.8) Note that y a(e, s + 1) a(e, s) iff y #z(z As+ As) <
a(e, s). In particular, we ignore the B-side when it comes to dropping a.

Construction, stage s + 1. If We, s+ 3 B then put x Bs+ Bs if
x > 2e, x > R(e, s + 1), As+l[X As[x and x W, and x is least with
these properties.

Verification. We only sketch some points due to their similarities with [13].
The reader should note that (2.7) allows us to show that all the P are met, by
a permitting argument" For suppose Pe fails to be met. Let z to be given.
Let s be a stage such that

/t 7> Sl(a(j t) a(j, Sl)) for j < e with l(j, s)

To decide if z A or not find a stage s s(z) > st such that l(j, s) > z for
all j with j < e and l(j, s) ---) 0 (so that m(j, z) of (2.7) is defined) and
such that y W,, with y > max{2e, st, m( j, z): j < e ). By the observation
(2.7) should ever z A A the restraints all drop so that we will be free to
add y to A meeting Pc. Hence As[z A[z] and so A is recursive, a
contradiction.

Finally we verify N. Suppose C is any set with (B C) A. Notice that
appropriate o exist to satisfy (ii) of the definition of a(e, s) and so l(e, s) ---)

Let z be given. Let o(z) denote C[,/e(z)]. To C-recursively compute A(z) find
the least stage s s(z) such that

(i) all the Pj for j < e cease activity, and
(ii) a(e, s) > z and y < z(,,(B, o(z); y) A,(y)).

We claim that As[z A[z]: For suppose otherwise. Let < z be the least
number with A A. By (2.8) we see that for all > s, a(e, t) , and
furthermore by (2.7), r(e, t) > m(e, ). In particular, Bs[,/e()] B[’/e()].
But now we see that ’s entry into A causes the (preserved) disagreement

I(B C; 2) 0 4:1 A(e).

We get the following slightly strengthened form of Theorem A:

THEOREM A. There exists an r.e. degree a 0 such that for all r.e. degrees
b 0 with b < a there exists c < b with c a strong anticupping witness for a.
That is, strong anticupping witnesses are downward dense below a.

Proof Let A be r.e. and of strongly contiguous degree. Let B be r.e. with

<r B <r A. By contiguity, B <w A. Now by (2.3)’ let C be an r.e. set

<w B such that for all sets D if C D >w B, D >w B. Now suppose for
some set E we have E $ C --r A. By strong contiguity, E D -=w A w> B.
Hence by choice of C, E >w B and so E --w A.
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There are various other applications of the above approach. One must
decide whether or not the permitting-type reductions built in the appropriate
r.e. W-degree constructions may be replaced by A2 permitting. Obviously, not
all results on W may be changed in this way. For example Lachlan [La2] has
shown that not every degree in W bounds a minimal pair (in W) (strictly
speaking this is a T-degree result that also must work in W), yet well known
cone-avoidance full approximation arguments show that

Va, bW(O<a<b---,::lcDee(ca---O and O<c<b)).

In fact we may choose c of minimal T-degree. We refer the reader to [12]
and [9]. One nice corollary of (2.3)’ is:

(2.9) TH.OREM. Suppose a and b are W-degrees with a > b > 0 and b r.e.
Suppose that e is a T-degree with c > 0’. Then the elementary theories of the
upper semilattices [0, a] and [0, c] are different. In the language L( <, v, 0,1)
the difference occurs by the two quantifier level.

Proof. By Posner and Robinson [15, Theorem 3] the following sentence
is not satisfiable in [0, c]:

t --df 3X(X = 0 and Vy(y v x > 1 y > 1)).
However, by (2.3)’, -/is satisfiable in [0, a].

To close this paper, we shall briefly point out a couple of further applica-
tions of A2 transfer techniques. One example--transferring "backwards"-con-
ceres the structure of W-degrees in a given degree. An r.e. degree a is strongly
W-bottomed if there is an r.e. set A of degree a such that for all sets B of
degree a, A -<v B. It is unknown whether there is a nice characterization of
such degrees. It is conjectured that they all must be low2, since all contiguous
degrees are low2 (Cohen [4]). We prove a weaker result.

(2.10) TI-IV.OREM. No high degree is strongly W-bottomed.

Proof. Let A of degree a be the r.e. strong W-bottom. Let B <w A be a
global anticupping witness for A given by (2.3)’. Notice B <r A. Now by
Epstein’s theorem [9] there is an A2 set C such that C <r A and C B =-r A.
Now A <w C B by choice of A. But then A <w C by choice of B, a
contradiction.
As our last example we again modify a construction from [13]

(2.11) TrI.OlM. Every strongly contiguous r.e. degree a strongly splits over
all lesser A2 degrees in the sense that if b is a A2 degree < a then there exist
r.e. degrees a1, a 2 with a t3 a 2 a and b t3 al, b t3 a 2 < a.
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This result follows from:

(2.12)
W-degrees.

All r.e. W-degrees strongly split as abooe ooer all lesser A2

Proof. We briefly indicate how to modify the proof from [13] using a
marking function a(e, i, s) as in (2.3)’. Let A UAs and B lira,B, be
given recursive enumerations with B <w A. We need to construct a r.e.
splitting A A0 U A satisfying

Now we define a(e, i, s). Let a(e, i, s) 0 and let a(e, i, s + 1) be the least
y such that one of the following holds:

(i) y < a(e, i, s) and y Ai_x,,+ A_,.
(ii) y > a(e, i, s) and l(e, i, s) y where

l(e,i,s) max{z’Vz <y(, ,+(B,+x A, ,+; y)=A,_, +(y))}

(iii) (ii) does not pertain and y a(e, i, s).
Let r(e, i, s) be 1 + E
Now one performs the usual Sacks splitting construction, but with r(e, i, s)

in place of the usual Sacks restraints. Then a permitting argument ensures that
all the R, above are eventually met by a finite restraint (or else A <re B).
We refer the reader to [13] for further details.

The famous nonsplitting result of Lachlan [11] shows that (2.11) fails for
arbitrary r.e. a (even for b r.e.). We do not know if theorem (2.11) is valid if we
replace "a strongly contiguous" by "a low2". The relevant result here is
Bickford and Mills’ [3] and Harrington’s (unpublished) result that all r.e. low2
degrees split over all lesser ones.
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