AFFINE SURFACES FIBERED BY AFFINE LINES OVER THE PROJECTIVE LINE

David Wright

0. Pinchuk's example and Peretz' follow-up

The classical Jacobian conjecture asserts that if k is a field of characteristic zero and $\varphi: \mathbb{A}_{k}^{2} \rightarrow \mathbb{A}_{k}^{2}$ is a polynomial map whose Jacobian determinant is a non-zero constant, then φ has a polynomial inverse. A related conjecture, the "real Jacobian conjecture", asserted that if $k=\mathbb{R}$ and the Jacobian determinant of φ is non-vanishing, then φ is a global homeomorphism on \mathbb{R}^{2}. This latter statement was shown by S. Pinchuk to be false by virtue of the following counter-example:

Pinchuk's example. Let X and Y be variables, and let

$$
\begin{aligned}
t & =X Y-1 \\
h & =t(X t+1) \\
f & =(X t+1)^{2}\left(\frac{h+1}{X}\right)
\end{aligned}
$$

Furthermore, let $p, q \in \mathbb{R}[X, Y]$ be defined by

$$
\begin{aligned}
& p=f+h \\
& q=-t^{2}-6 t h(h+1)-170 f h-91 h^{2}-195 f h^{2}-69 h^{3}-75 h^{3} f-\frac{75}{4} h^{4}
\end{aligned}
$$

Then

$$
\begin{equation*}
\frac{\partial(p, q)}{\partial(X, Y)}=t^{2}+[t+(13+15 h) f]^{2}+f^{2} \tag{1}
\end{equation*}
$$

(This equation can be verified by a symbolic algebra computer program.) One quickly sees that $X f \equiv 1(\bmod t)$, hence $\partial(p, q) / \partial(X, Y)$ has no real zeros; i.e., the map $\varphi: \mathbb{A}_{\mathbb{R}}^{2} \rightarrow \mathbb{A}_{\mathbb{R}}^{2}$ defined by (p, q) is unramified at all real points. The locus $p=0$ contains the component $X t+1=0$, which can be written as $Y=(X-1) / X^{2}$, which is disconnected. It follows that $p=0$ is not both smooth and connected, hence φ is not a diffeomorphism on \mathbb{R}^{2}. Thus this polynomial map is a counter-example to the "real Jacobian conjecture." The reader is referred to [11] for details.

Follow-up by Peretz. In [10], Ronen Peretz observed that the polynomials p and q in Pinchuk's example lie in the subring $\mathbb{R}[t, h, f] \subset \mathbb{R}\left[Y, X Y, X^{2} Y-X\right]$. He recognized the latter ring with \mathbb{R} replaced by \mathbb{C} as "merely a special case of the type of rings that arise in the theory of assymptotics of polynomials" [10, §2]. Peretz showed there does not exist a pair of polynomials $p, q \in \mathbb{C}\left[Y, X Y, X^{2} Y-X\right]$ with $\partial(p, q) / \partial(X, Y)$ non-vanishing (i.e., constant) on $\mathbb{A}_{\mathbb{C}}^{2}$. This fact is essentially the special case $m=2$ of the following more general theorem, which appears as Theorem 4 in [10]:

Theorem 0.1 (PERETZ). There does not exist a pair of polynomials

$$
p, q \in \mathbb{C}\left[Y, X Y, X^{2} Y+\alpha X, X^{3} Y+\alpha X^{2}, \ldots, X^{m} Y+\alpha X^{m-1}\right]
$$

where $\alpha \in \mathbb{C}^{*}$,with $\frac{\partial(p, q)}{\partial(X, Y)}$ non-vanishing (i.e., constant) on $\mathbb{A}_{\mathbb{C}}^{2}$.
In §3 of this paper we will generalize Peretz' theorem by giving a larger class of subrings of $\mathbb{C}[X, Y]$ which could not contain such p and q (Theorem 3.3). We will furthermore show that the rings in this larger class are precisely the affine coordinate rings of affine surfaces which are $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{P}_{\mathbb{C}}^{1}$, which are studied in §2. In $\S 4$ we provide some evidence that such objects are significant in the study of the Jacobian conjecture.

1. Geometric interpretation of the case $m=2$

Let k be a field of characteristic zero. We first consider the ring $k\left[Y, X Y, X^{2} Y-X\right]$, which, for $k=\mathbb{R}$, contains the polynomials p and q of Pinchuk's example. For $k=\mathbb{C}$ this is the ring that appears in the above theorem of Peretz, for $m=2$. We will give geometric reasons why no polynomials p, q from this ring could have constant nonzero jacobian determinant.

Proposition 1.1. Let k be a field, and let $V=\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}-\Delta$, where Δ is the diagonal. V is an affine variety, and the ring $k\left[Y, X Y, X^{2} Y-X\right]$ can be realized as its coordinate ring in such a way that the containment $k[X, Y] \supset k\left[Y, X Y, X^{2} Y-X\right]$ corresponds to the open embedding of \mathbb{A}_{k}^{2} in V which identifies \mathbb{A}_{k}^{2} with the complement of a fiber of one of the standard projections $V \rightarrow \mathbb{P}^{1}$.

Proof. We will appeal to two facts which will be proved later in this paper. That V is affine follows from Theorem 2.3. ${ }^{1}$ Realizing $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ as $\left\{\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right\}$,

[^0]the diagonal Δ is defined by $x_{1} y_{0}-x_{0} y_{1}=0$. Let U_{0} be the complement in $V=\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}-\Delta$ of $x_{0}=0$, and let U_{1} be the complement in V of $x_{1}=0$. Then $V=U_{0} \cup U_{1}$. This is all depicted in the following diagram.

Let $X=\frac{x_{1}}{x_{0}}$, and let $A_{0}=k[X]$. The complement of $x_{0}=0$ in $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ is $\operatorname{Proj} A_{0}\left[y_{0}, y_{1}\right]$, and Δ is defined here by the equation $y_{0} X-y_{1}=0$ (homogeneous in y_{0}, y_{1}). Note that U_{0} is the complement of Δ in $\operatorname{Proj} A_{0}\left[y_{0}, y_{1}\right]$, and since $A_{0}\left[y_{0}, y_{1}\right]=A_{0}\left[y_{0}, y_{0} X-y_{1}\right]$ we have

$$
\begin{aligned}
U_{0} & =\operatorname{Spec} A_{0}\left[\frac{y_{0}}{y_{0} X-y_{1}}\right] \\
& =\operatorname{Spec} k[X, Y], \quad \text { where } \quad Y=\frac{y_{0}}{y_{0} X-y_{1}}
\end{aligned}
$$

Setting $X^{\prime}=\frac{x_{0}}{x_{1}}=X^{-1}$ and $A_{1}=k\left[X^{\prime}\right]$, we similarly have

$$
\begin{aligned}
U_{1} & =\operatorname{Spec} A_{1}\left[\frac{y_{1}}{y_{0}-y_{1} X^{\prime}}\right] \\
& =\operatorname{Spec} k\left[X^{\prime}, Y^{\prime}\right], \quad \text { where } \quad Y^{\prime}=\frac{y_{1}}{y_{0}-y_{1} X^{\prime}}
\end{aligned}
$$

An easy computation shows $Y^{\prime}=X^{2} Y-X$. Since $V=U_{0} \cup U_{1}$, we have

$$
\begin{aligned}
\Gamma(V) & =\Gamma\left(U_{0}\right) \cap \Gamma\left(U_{1}\right)=k[X, Y] \cap k\left[X^{\prime}, Y^{\prime}\right] \\
& =k[X, Y] \cap k\left[X^{-1}, X^{2} Y-X\right] .
\end{aligned}
$$

From Theorem 3.1, with $m=2$, we obtain $\Gamma(V)=k\left[Y, X Y, X^{2} Y-X\right]$, and $V=\operatorname{Spec} k\left[Y, X Y, X^{2} Y-X\right]$. The containment $k[X, Y] \supset k\left[Y, X Y, X^{2} Y-X\right]$ obviously corresponds to the embedding $U_{0}\left(\cong \mathbb{A}_{k}^{2}\right) \subset V$, so the proposition is proved.

Remark. For the case $k=\mathbb{R}$, we have

$$
V=\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}-\Delta=\operatorname{Spec} \mathbb{R}\left[Y, X Y, X^{2} Y-X\right]
$$

Identifying $\mathbb{A}_{\mathbb{R}}^{2}$ with U_{0} as above, we see that Pinchuk's map $\varphi=(p, q)$ extends to a $\operatorname{map} \tilde{\varphi}: V \rightarrow \mathbb{A}_{\mathbb{R}}^{2}$. The following proposition shows that the extended map $\widetilde{\varphi}$ "folds" (i.e., has vanishing jacobian determinant) along the complement $V-U_{0}$.

PROPOSITION 1.2. The map $\tilde{\varphi}: V \rightarrow \mathbb{A}_{\mathbb{R}}^{2}$ defined by Pinchuk's polynomials (p, q) has jacobian determinant zero at all points (real or complex) of $V-U_{0}$.

Proof. In the notation of the previous proof, we have $V-U_{0} \subset U_{1}=\operatorname{Spec} \mathbb{R}\left[X^{\prime}, Y^{\prime}\right]$, where we calculate the jacobian determinant with respect to the variables X^{\prime} and Y^{\prime}. Since $X=X^{\prime-1}$ and $Y=X^{\prime 2} Y^{\prime}+X^{\prime}$, we have

$$
\begin{align*}
\frac{\partial(p, q)}{\partial\left(X^{\prime}, Y^{\prime}\right)} & =\frac{\partial(p, q)}{\partial(X, Y)} \cdot \frac{\partial(X, Y)}{\partial\left(X^{\prime}, Y^{\prime}\right)} \quad \text { (by the chain rule) } \tag{2}\\
& =\frac{\partial(p, q)}{\partial(X, Y)} \cdot \frac{\partial\left(X^{\prime-1}, X^{\prime 2} Y^{\prime}+X^{\prime}\right)}{\partial\left(X^{\prime}, Y^{\prime}\right)} \\
& =\frac{\partial(p, q)}{\partial(X, Y)} \cdot\left|\begin{array}{cc}
-\frac{1}{X^{\prime 2}} & 0 \\
2 X^{\prime} Y^{\prime}+1 & X^{\prime 2}
\end{array}\right| \\
& =\frac{\partial(p, q)}{\partial(X, Y)} \cdot(-1) \\
& =-\left(t^{2}+[t+(13+15 h) f]^{2}+f^{2}\right) \quad(\text { by }(1))
\end{align*}
$$

Writing t and f in terms of X^{\prime} and Y^{\prime}, we get

$$
t=X^{\prime} Y^{\prime}, \quad f=\left(Y^{\prime}+1\right)^{2}\left[X^{\prime} Y^{\prime}\left(Y^{\prime}+1\right)+1\right] X^{\prime}
$$

which shows that X^{\prime} divides t and f in $k\left[X^{\prime}, Y^{\prime}\right]$. Therefore $X^{\prime 2}$ divides $\partial(p, q) / \partial\left(X^{\prime}\right.$, $\left.Y^{\prime}\right)$. Since $X^{\prime}=0$ defines the complementary fiber in U_{1}, we see that $\partial(p, q) / \partial\left(X^{\prime}, Y^{\prime}\right)$ vanishes along it.

In light of Proposition 1.1, Peretz' Theorem (0.1) is equivalent to the following unpublished theorem:

ThEOREM 1.3 (KUMAR-MURTHY-NORI). There does not exist $\widetilde{\varphi}: \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}-$ $\Delta \rightarrow \mathbb{A}_{\mathbb{C}}^{2}$ such that $\left.\widetilde{\varphi}\right|_{U_{0}}$ is étale.

Sketch of proof. The statement $\left.\widetilde{\varphi}\right|_{U_{0}}$ is étale is equivalent to the assertion that $\partial(p, q) / \partial(X, Y)$ is a non-zero constant, i.e., $\left.\widetilde{\varphi}\right|_{U_{0}}$ is unramified; flatness is automatic under this hypothesis [2, Ch. V, Prop. 3.5]. Therefore, by Proposition 1.1, this theorem
is the $m=2$ case of Theorem 3.3, so we only sketch the proof as conceived by Kumar, Murthy, and Nori. Let $V=\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}-\Delta, A=\mathbb{C}\left[Y, X Y, X^{2} Y-X\right]=\Gamma(V)$, and let $X^{\prime}, Y^{\prime}, U_{0}$, and U_{1} be as in the proof of Proposition 1.1. Such a $\widetilde{\varphi}$ is given by $p, q \in A$ with $\partial(p, q) / \partial(X, Y) \in \mathbb{C}^{*}$. Kumar-Murthy-Nori observed that $\widetilde{\varphi}$ must in fact be étale on all of V. This results from the fact that $\partial(p, q) / \partial\left(X^{\prime}, Y^{\prime}\right)=$ $-\partial(p, q) / \partial(X, Y)$ (as in (2) of the proof of Proposition 1.2). This also shows that $d p \wedge d q=d X \wedge d Y=-d X^{\prime} \wedge d Y^{\prime}$, and this 2-form is a generator for $\Omega_{A / \mathbb{C}}^{2}$, since it generates on both of the open sets U_{0} and U_{1}. Hence $\Omega_{A / \mathbb{C}}^{2}$ is free. The containment $\mathbb{C}[p, q] \subset A$ induces from the De Rham sequences of $\mathbb{C}[p, q]$ and A the commutative diagram

in which we have

for some $\omega \in \Omega_{A / \mathbb{C}}^{1}$. It is then shown that the equation $d \omega=d X \wedge d Y$ is impossible because $d X \wedge d Y$ is not integrable. This uses the graded structure on $A=\mathbb{C}\left[Y, X Y, X^{2} Y-X\right]$ and $\Omega_{A / \mathbb{C}}$ determined by setting $\operatorname{deg} X=-1, \operatorname{deg} Y=1$. Since $d X \wedge d Y$ is homogeneous of degree 0 , if it is integrable it should lift to a homogeneous 1-form of degree zero, which can be shown by a direct argument not to be the case.

We conclude this section by again pointing out that $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}-\Delta$ is an affine variety, by Theorem 2.3 , and observing that it is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}$ (via either of its two canonical projections onto $\mathbb{P}_{\mathbb{C}}^{1}$). In the next section we will describe the coordinate rings of all affine $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{P}_{\mathbb{C}}^{1}$, and see that these include rings of the type which appear in Theorem 0.1 , i.e. those of the form $\mathbb{C}\left[Y, X Y, X^{2} Y+\right.$ $\alpha X, X^{3} Y+\alpha X^{2}, \ldots, X^{m} Y+\alpha X^{m-1}$], $m \geq 2$. We will then prove Theorem 3.3, which includes Theorem 0.1 and generalizes Theorem 1.3, replacing $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}-\Delta$ by a larger class of $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{P}_{\mathbb{C}}^{1}$.

2. $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{P}_{\mathbb{C}}^{1}$

We begin with some preliminaries. Let V be a variety over \mathbb{C} (which in this discussion includes being reduced, irreducible, and separated). Given another variety X and a morphism $\pi: V \rightarrow X$, we say that V is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over X (via π) if X
has a cover $\left\{X_{i}\right\}$ such that $\pi^{-1}\left(X_{i}\right)$ is compatibly isomorphic to $X_{i} \times \mathbb{A}_{\mathbb{C}}^{1}$ for all i. An obvious weaker condition is that π is a flat morphism and for each point $p \in X$, the scheme-theoretic fiber $\pi^{-1}(p)$ is isomorphic to $\mathbb{A}_{k(p)}^{1}, k(p)$ being the residue field at p, in which case we say V is an \mathbb{A}^{1}-fibration over X. In turn, a stronger condition is that V is a rank one vector bundle, or line bundle, over X. The main result of [7] asserts that if V is an \mathbb{A}^{1}-fibration over X, then it is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle. ${ }^{2}$ Let us also note that if X is 1-dimensional, as in the case $X=\mathbb{P}_{\mathbb{C}}^{1}$, flatness is automatic, so that V is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle if and only if each fiber of π is an \mathbb{A}^{1}. The main result of [3] says that n-space bundles are vector bundles in the case where X is affine. The following easy theorem futher clarifies the relationship between $\mathbb{A}_{\mathbb{C}}^{1}$-bundles and line bundles:

Lemma 2.1. Let V be a variety with a map $\pi: V \rightarrow X$ making V an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over X. Then V is a line bundle if and only if π admits a section.

Proof. A line bundle has a zero section (and possibly other global sections), so one implication is trivial. Conversely, assume V is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle and let $\left\{X_{i}\right\}$ be a cover of X such that $\pi^{-1}\left(X_{i}\right) \cong X_{i} \times \mathbb{A}_{\mathbb{C}}^{1}$. Then $\pi^{-1}\left(X_{i}\right)$ is the trivial line bundle over X_{i}, since its coordinate ring is a polynomial ring in one variable over $\Gamma\left(X_{i}\right)$, and any section of $\left.\pi\right|_{X_{i}}$ gives rise to a choice of variable, unique up to multiplication by a unit in $\Gamma\left(X_{i}\right)$. We can view the $\mathbb{A}_{\mathbb{C}}^{1}$-bundle V as being constructed from gluing data over intersections $X_{i} \cap X_{j}$. The existence of a section provides a compatible choice of variable (i.e., a canonical "origin"), giving rise to sheaf of rank one projective \mathcal{O}_{X}-modules making V is a line bundle over X.

The following is a well-known fact about on ruled surfaces.
Lemma 2.2. Let S be a non-singular projective surface, B a non-singular curve. Let $\tilde{\pi}: S \rightarrow B$ be a morphism making S a birationally ruled surface, i.e., S is birationally equivalent to $B \times \mathbb{P}_{\mathbb{C}}^{1}$ with $\tilde{\pi}$ being compatible with the projection $B \times$ $\mathbb{P}_{\mathbb{C}}^{1} \rightarrow$ B. Then the general fiber of $\tilde{\pi}$ is isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$. Every fiber not isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ is singular. Every singular fiber is a connected union of curves isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$. In each singular fiber there exists a component having self-intersection -1 . If E is a component having multiplicity one in a singular fiber, then there exists a component $E^{\prime} \neq E$ of the same fiber with $\left(E^{\prime 2}\right)=-1$.

Proof. Compatibility of $\tilde{\pi}$ with the projection onto B implies that each exceptional curve for the birational map from S to $B \times \mathbb{P}_{\mathbb{C}}^{1}$ must be contained in some fiber of $\tilde{\pi}$. If we take remove from B the finite set of points whose fibers contain exceptional curves and/or fundamental points, we get an open set $B_{0} \subset B$ such that

[^1]$\tilde{\pi}^{-1}\left(B_{0}\right) \cong B_{0} \times \mathbb{P}_{\mathbb{C}}^{1} ;$ hence the general fiber of $\tilde{\pi}$ is isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$. Thus $\tilde{\pi}$ satisfies the hypothesis of [9, Lemma 2.2, p. 115], which tells us all the facts asserted above (and more) regarding singular fibers. Finally, a non-singular fiber must have arithmetic genus zero, since arithmetic genus is constant amongst fibers of a flat morphism, hence it is isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$.

THEOREM 2.3. Let V be a variety with a map $\pi: V \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ making V an $\mathbb{A}_{\mathbb{C}^{-}}^{1}$ bundle over $\mathbb{P}_{\mathbb{C}}^{1}$. Then V can be embedded as an open subvariety in a NagataHirzebruch surface \mathcal{F}_{n} in such a way that $V=\mathcal{F}_{n}-T$ where T is a section, and the canonical projection $\mathcal{F}_{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ extends π. In this situation, $T \sim D_{n}+k F\left(D_{n}\right.$ being the special section in \mathcal{F}_{n}, F a fiber). Moreover, the following conditions are equivalent:
(1) V is affine.
(2) V is not a line bundle (i.e., by virtue of Lemma 2.1, π does not admit a section).
(3) $k \geq n+1$.

The integers n and k are uniquely determined by V and π.

Proof. We assume the reader is familiar with the Nagata-Hirzebruch surfaces and their properties, as well as basic surface theory. We may embed V as an open subvartiety of a projective surface S, and by blowing up some points not in V we may assume π extends to a map $\tilde{\pi}: S \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$, putting us in the situation of Lemma 2.2.

We claim that each reducible fiber of $\widetilde{\pi}$ has a component not intersecting V with self-intersection -1 . Let F be a reducible fiber, and let E be the (unique) component intersecting V. Since V is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle, E has multiplicity one in F, and Lemma 2.2 asserts the existence of another component with self-intersection -1 , proving the claim.

We can contract the component whose existence is established above, and continue until this fiber, and every fiber, is irreducible, thus isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$, by Lemma 2.2. The resulting surface S is then a $\mathbb{P}_{\mathbb{C}}^{1}$-bundle, ${ }^{3}$ hence is isomorphic to one of the Nagata surfaces \mathcal{F}_{n}. Recall that the Picard group of \mathcal{F}_{n} is freely generated by the classes of D_{n} (the special section) and F (a fiber), and that $\left(D_{n}^{2}\right)=-n$, $\left(F \cdot D_{n}\right)=1$, and of course $\left(F^{2}\right)=0$. This determines the intersection theory in \mathcal{F}_{n}. One sees that the complement $T=\mathcal{F}_{n}-V$ has one point in each fiber of $\tilde{\pi}$, hence it maps isomorphically to $\mathbb{P}_{\mathbb{C}}^{1}$. Clearly $(T, F)=1$, and from this and the above information, one deduces that $T \sim D_{n}+k F$ for some integer k. Note, then, that $\left(T \cdot D_{n}\right)=\left(\left(D_{n}+k F\right) \cdot D_{n}\right)=\left(D_{n}^{2}\right)+k\left(F \cdot D_{n}\right)=-n+k$.

If V is affine it cannot contain a subvariety isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$, hence π does not admit a section. Hence $(1) \Longrightarrow(2)$.

[^2]Assume $k \leq n$. Then $\left(T \cdot D_{n}\right) \leq 0$. If $\left(T \cdot D_{n}\right)<0$, then $T=D_{n}$ (since both are prime divisors). Therefore $V=\mathcal{F}_{n}-D_{n}$, which is known to be a line bundle. If $\left(T \cdot D_{n}\right)=0$, then $D_{n} \subset V$, which shows that π admits a section. This establishes (2) \Longrightarrow (3).

Assume $k \geq n+1$. We know that V is affine if its complement T is the support of an ample divisor, ${ }^{4}$ which, since T is irreducible, means T itself is ample. By the Nakai-Moishezon Criterion [8, Ch. V, Thm. 1.10, p. 365], we must show ($T \cdot C$) >0 for all irreducible curves C. Since $T \sim D_{n}+k F$, we have $\left(T^{2}\right)=-n+2 k>0$, so the condition holds for $C=T$. Also, $\left(T \cdot D_{n}\right)=-n+k>0$ and $(T \cdot F)=1$, verifying the condition when C is D_{n} or any fiber. Any other C must have positive intersection with a fiber and non-negative intersection with D_{n}. From this it follows that $(T \cdot C)>0$. Therefore V is affine. This shows $(3) \Longrightarrow$ (1), completing the circle.

Lastly we establish the essential uniqueness the embedding $V \hookrightarrow \mathcal{F}_{n}$ extending π, from which will follow the uniqueness of n and k. Suppose V is also embedded in \mathcal{F}_{m}, as in the theorem, with $V=\mathcal{F}_{m}-T^{\prime}, T^{\prime}$ being a section, with $T^{\prime} \sim D_{m}+\ell F^{\prime}$ (D_{m} the special section in $\mathcal{F}_{m}, F^{\prime}$ a fiber). This determines a π-compatible birational $\operatorname{map} \phi: \mathcal{F}_{n} \longrightarrow \mathcal{F}_{m}$. The fact that ϕ is π-compatible implies that T (being a section for π) is not an exceptional curve for ϕ; i.e., T does not collapse. Hence T maps to T^{\prime}, and π is an isomorphism at all but finitely many points of T. These points are precisely the fundamental points of ϕ. We show no such fundamental points exist. Assuming x were such a point, we proceed to minimally resolve ϕ at x by blowing up x and its infinitely near exceptional points; the birational map that ϕ.induces on this surface will again be called ϕ. Let E denote the union of rational curves obtained in the process and note that ϕ must collapse E to a single point x^{\prime} on T^{\prime}. (This follows from the π-compatibility and the fact that all other points in the fiber of x^{\prime} lie in V, as embedded in \mathcal{F}_{m}.) This shows that, in fact, the last blow-up was redundant, contradicting the minimality of the resolution. Hence ϕ is an isomorphism (so $m=n$), and $\phi(T)=T^{\prime}$ (so $\ell=k$), concluding the proof.

3. Coordinate rings of affine $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{P}_{\mathbb{C}}^{1}$

The connection between Theorem 0.1 and affine varieties which are $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{P}_{\mathbb{C}}^{1}$ is illuminated when we examine the "gluing data" which patches together two copies of $\mathbb{A}_{\mathbb{C}}^{2}$ to construct such a bundle V as their union. This leads to an explicit description of $\Gamma(V)$ as a subring of $\mathbb{C}[X, Y]$, corresponding to the containment of one of the $\mathbb{A}_{\mathbb{C}}^{2} \sin V$.

Let V be an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}$ with structure map $\pi: V \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$. Choose X such that the function field of $\mathbb{P}_{\mathbb{C}}^{1}$ is $\mathbb{C}(X)$, and let $U_{0}=\pi^{-1}(\operatorname{Spec} \mathbb{C}[X]), U_{1}=$

[^3]$\pi^{-1}\left(\operatorname{Spec} \mathbb{C}\left[X^{-1}\right]\right)$. Then $V=U_{0} \cup U_{1}$. Both U_{0} and U_{1} are $\mathbb{A}_{\mathbb{C}}^{1}$-bundles over $\mathbb{A}_{\mathbb{C}}^{1}$, and since these are known to be trivial, we have $U_{0} \cong \mathbb{A}_{\mathbb{C}}^{2}$ and $U_{1} \cong \mathbb{A}_{\mathbb{C}}^{2}$.

THEOREM 3.1. Let $V=U_{0} \cup U_{1}$ and X be as above and assume further that V is affine. There exists $Y \in \Gamma(V)$ such that

$$
\begin{equation*}
U_{0}=\operatorname{Spec} \mathbb{C}[X, Y] \quad U_{1}=\operatorname{Spec} \mathbb{C}\left[X^{\prime}, Y^{\prime}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
X^{\prime}=X^{-1}, \quad Y^{\prime}=X^{m} Y+\alpha_{1} X^{m-1}+\alpha_{2} X^{m-2}+\cdots+\alpha_{m-1} X \tag{4}
\end{equation*}
$$

where $m \geq 2$ and $\alpha_{1}, \ldots, \alpha_{m-1} \in \mathbb{C}$, not all zero. Moreover, letting $A=\Gamma(V)$, we have

$$
A=\mathbb{C}\left[t_{0}, t_{1}, \ldots, t_{m}\right]
$$

where

$$
\begin{align*}
t_{0} & =Y \tag{5}\\
t_{1} & =X Y \\
t_{2} & =X^{2} Y+\alpha_{1} X \\
t_{3} & =X^{3} Y+\alpha_{1} X^{2}+\alpha_{2} X \\
& \vdots \\
t_{m} & =X^{m} Y+\alpha_{1} X^{m-1}+\alpha_{2} X^{m-2}+\cdots+\alpha_{m-1} X\left(=Y^{\prime}\right)
\end{align*}
$$

In fact, A is a free module over $\mathbb{C}\left[t_{0}, t_{m}\right]$ with basis $\left\{1, t_{1}, \ldots, t_{m-1}\right\}$.
Conversely, given t_{0}, \ldots, t_{m} as in (5) with $\alpha_{1}, \ldots, \alpha_{m-1} \in \mathbb{C}$, not all zero, then letting $A=\mathbb{C}\left[t_{0}, \ldots, t_{m}\right]$, and letting X^{\prime} and Y^{\prime} be defined by (4), we have $\operatorname{Spec} A=$ $U_{0} \cup U_{1}$, where U_{0} and U_{1} are as in (3), and $\operatorname{Spec} A$ is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}=$ Spec $\mathbb{C}[X] \cup \operatorname{Spec} \mathbb{C}\left[X^{\prime}\right]$ by virtue of the containments $\mathbb{C}[X] \subset \mathbb{C}[X, Y], \mathbb{C}\left[X^{\prime}\right] \subset$ $\mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$.

Proof. Certainly we can choose $Y \in \Gamma\left(U_{0}\right), Y^{\prime} \in \Gamma\left(U_{1}\right)$ such that $U_{0}=$ Spec $\mathbb{C}[X, Y], U_{1}=\operatorname{Spec} \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$, where $X^{\prime}=X^{-1}$. These preliminary choices, however, will need to be modified. Note that $U_{0} \cap U_{1}=\operatorname{Spec} \mathbb{C}\left[X, X^{-1}, Y\right]=$ Spec $\mathbb{C}\left[X, X^{-1}, Y^{\prime}\right]$, whence $\mathbb{C}\left[X, X^{-1}, Y\right]=\mathbb{C}\left[X, X^{-1}, Y^{\prime}\right]$ (both viewed as subrings of the function field $\mathbb{C}(V))$. From this it follows that $Y^{\prime}=\beta X^{m} Y+f\left(X, X^{-1}\right)$, where $\beta \in \mathbb{C}^{*}, m \in \mathbb{Z}$, and $f\left(X, X^{-1}\right)=\sum \nu_{i} X^{i}$ is a Laurant polynomial in X with coefficients in \mathbb{C}. If $f\left(X, X^{-1}\right)=0$, the retractions $\mathbb{C}[X, Y] \rightarrow \mathbb{C}[X]$, $\mathbb{C}\left[X^{\prime}, Y^{\prime}\right] \rightarrow \mathbb{C}\left[X^{\prime}\right]$ sending Y and Y^{\prime}, respectively, to 0 are compatible and determine a section for the structure map π. Since V is affine, this violates Theorem 2.3's condition (2) for affineness; hence $f\left(X, X^{-1}\right) \neq 0$. Replacing Y by βY, we may
assume $\beta=1$. Now replace Y by $Y+\sum_{i \geq 0} \nu_{i+m} X^{i}$ (a legitimate replacement for Y in $\mathbb{C}[X, Y]$) to effect $v_{i}=0$ for $i \geq m$. In similar fashion, after replacing Y^{\prime} by $Y^{\prime}-\sum_{i \leq 0} \nu_{i} X^{i}=Y^{\prime}-\sum_{i \leq 0} \nu_{i} X^{\prime-i}$ we have $\nu_{i}=0$ for $i \leq 0$. Note that if $m \leq 1$ all coefficients v_{i} are zero, i.e., $f\left(X, X^{-1}\right)=0$, which is impossible, as shown above. Hence $m \geq 2$ and, letting $\alpha_{i}=v_{m-i}$, we have arranged (4).

Since $V=U_{0} \cup U_{1}$, we have $A=\Gamma\left(U_{0}\right) \cap \Gamma\left(U_{1}\right)=\mathbb{C}[X, Y] \cap \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$. Clearly the elements t_{0}, \ldots, t_{m} as defined in (5) lie in $\mathbb{C}[X, Y]$. The equations $t_{m}=Y^{\prime}, t_{i-1}=$ $X^{\prime} t_{i}-\alpha_{i}, i=1, \ldots, m$, and $t_{0}=X^{\prime} t_{1}$ show that $t_{0}, \ldots, t_{m} \in \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$ as well. So letting $R=\mathbb{C}\left[t_{0}, \ldots, t_{m}\right]$ we have $R \subseteq A$ and thus the following series of ring containments:

$$
\begin{equation*}
\mathbb{C}\left[t_{0}, t_{m}\right] \subseteq R \subseteq A \subseteq \mathbb{C}[X, Y] \tag{6}
\end{equation*}
$$

We claim that R is a free C-module with basis $\left\{1, t_{1}, \ldots, t_{m-1}\right\}$. Toward proving this, we first calculate the rank of R as a $\mathbb{C}\left[t_{0}, t_{m}\right]$-module by adjoining $1 / t_{0}$ to all the rings in (6). Since $X=t_{1} / t_{0}, R\left[t_{0}^{-1}\right]$ contains X, Y, and Y^{-1} and we have

$$
\begin{equation*}
\mathbb{C}\left[t_{0}, t_{0}^{-1}, t_{m}\right] \subseteq R\left[t_{0}^{-1}\right]=A\left[t_{0}^{-1}\right]=\mathbb{C}\left[X, Y, Y^{-1}\right] \tag{7}
\end{equation*}
$$

Note that $\mathbb{C}\left[t_{0}, t_{0}^{-1}, t_{m}\right]=\mathbb{C}\left[Y, Y^{-1}, t_{m}\right]$ and that t_{m} has degree m as a polynomial in X over the ring $\mathbb{C}\left[Y, Y^{-1}\right]$, the leading coefficient being Y, a unit. It follows that the rank of $\mathbb{C}\left[X, Y, Y^{-1}\right]$ over $\mathbb{C}\left[t_{0}, t_{0}^{-1}, t_{m}\right]$, and hence the rank of R over $\mathbb{C}\left[t_{0}, t_{m}\right]$, is m. To prove the claim it suffices to show that $\left\{1, t_{1}, \ldots, t_{m-1}\right\}$ generate R as a $\mathbb{C}\left[t_{0}, t_{m}\right]$ module. Since R is generated as a $\mathbb{C}\left[t_{0}, t_{m}\right]$-module by monomials in $\left\{1, t_{1}, \ldots, t_{m-1}\right\}$, it suffices to show that for $i, j \in\{1, \ldots, m-1\}, t_{i} t_{j}=\sum_{\ell} h_{\ell} t_{\ell}$ with $h_{\ell} \in \mathbb{C}\left[t_{0}, t_{m}\right]$. This, in turn will follow if we can show $t_{i} t_{j}=t_{i-1} t_{j+1}+\sum_{\ell} h_{\ell} t_{\ell}$ with $h_{\ell} \in \mathbb{C}\left[t_{0}, t_{m}\right]$. Note from (5) that $t_{i}=X\left(t_{i-1}+\alpha_{i-1}\right)$ (setting $\left.\alpha_{0}=0\right)$ and $t_{j+1}=X\left(t_{j}+\alpha_{j}\right)$, whence $t_{i}\left(t_{j}+\alpha_{j}\right)=t_{j+1}\left(t_{i-1}+\alpha_{i-1}\right)$. This can be written as $t_{i} t_{j}=t_{i-1} t_{j+1}-\alpha_{j} t_{i}+\alpha_{i-1} t_{j}$, accomplishing the goal and proving the claim.

It remains to show $R=A$. By the first equality in (7), it suffices to show that if $f \in A$ and $t_{0} f \in R$, then $f \in R$. Given such an f, then using the basis $\left\{1, t_{1}, \ldots, t_{m-1}\right\}$, we write $t_{0} f=b_{0}+\sum_{i=1}^{m-1} b_{i} t_{i}$, where $b_{0}, b_{1}, \ldots, b_{m-1} \in \mathbb{C}\left[t_{0}, t_{m}\right]$. For $i=0, \ldots, m-1$, write $b_{i}=c_{i}+t_{0} d_{i}$ with $c_{i} \in \mathbb{C}\left[t_{m}\right], d_{i} \in \mathbb{C}\left[t_{0}, t_{m}\right]$, and set

$$
\begin{equation*}
f_{1}=f-d_{0}-\sum_{i=1}^{m-1} d_{i} t_{i} \tag{8}
\end{equation*}
$$

Then

$$
\begin{aligned}
t_{0} f_{1} & =t_{0} f-t_{0} d_{0}-\sum_{i=1}^{m-1} d_{i} t_{0} t_{i} \\
& =b_{0}+\sum_{i=1}^{m-1} b_{i} t_{i}-t_{0} d_{0}-\sum_{i=1}^{m-1} t_{0} d_{i} t_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(b_{0}-t_{0} d_{0}\right)+\sum_{i=1}^{m-1}\left(b_{i}-t_{0} d_{i}\right) t_{i} \\
& =c_{0}+\sum_{i=1}^{m-1} c_{i} t_{i}
\end{aligned}
$$

We restate the resulting equation:

$$
\begin{equation*}
t_{0} f_{1}=c_{0}+\sum_{i=1}^{m-1} c_{i} t_{i} \tag{9}
\end{equation*}
$$

Now we observe that $f_{1} \in A \subset \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$, and we view equation (9) as a polynomial equation in the indeterminants X^{\prime} and Y^{\prime}. From (5) we have $t_{m}=Y^{\prime}, t_{0}=X^{\prime m} Y^{\prime}$ $\alpha_{1} X^{\prime}-\alpha_{2} X^{\prime 2}-\cdots-\alpha_{m-1} X^{\prime m-1}$, and $t_{i}=X^{\prime m-i} Y^{\prime}-\alpha_{i}-\alpha_{i+1} X^{\prime}-\cdots-\alpha_{m-1} X^{\prime m-1-i}$ for $i=1, \ldots, m-1$. One sees that t_{0} has degree m as a polynomial in X^{\prime}, and, for $i=1, \ldots, m-1, t_{i}$ has degree $m-i$. Since $c_{1}, \ldots, c_{m-1} \in \mathbb{C}\left[t_{m}\right]=\mathbb{C}\left[Y^{\prime}\right]$, the left side of equation (7) has degree $\geq m$ while the right side of the equation has degree $\leq m-1$. It follows that $f_{1}=0$, i.e., $f=d_{0}+\sum_{i=1}^{m-1} d_{i} t_{i}$ (see (8)); hence $f \in R$ as desired.

We now prove the converse. Denoting by $\left(U_{0}\right)_{X}$ the principal open set in U_{0} defined by the function X, we have $\left(U_{0}\right)_{X}=\operatorname{Spec} \mathbb{C}\left[X, X^{-1}, Y\right]=\left(U_{1}\right)_{X^{\prime}}$. Hence a prevariety $V=U_{0} \cup U_{1}$ can be glued together. The containments $\mathbb{C}[X] \subset \mathbb{C}[X, Y]$ and $\mathbb{C}\left[X^{\prime}\right] \subset \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$ define a map $\pi: V \rightarrow \mathbb{P}_{\mathbb{C}}^{1}=\operatorname{Spec} \mathbb{C}[X] \cup \operatorname{Spec} \mathbb{C}\left[X^{\prime}\right]$ making V an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}$. This morphism shows that V is separated (i.e., a variety) since it separates points in $U_{0}-U_{1}$ from points in $U_{1}-U_{0}$. We claim that π does not admit a section. Such a section would give compatible ring retractions $\phi_{0}: \mathbb{C}[X, Y] \rightarrow \mathbb{C}[X], \phi_{1}: \mathbb{C}\left[X^{\prime}, Y^{\prime}\right] \rightarrow \mathbb{C}\left[X^{\prime}\right]$. This is impossible, for if $\phi_{0}(Y)=$ $h(X)$, then we would have $\phi_{1}\left(Y^{\prime}\right)=\phi_{1}\left(X^{m} Y+\alpha_{1} X^{m-1}+\alpha_{2} X^{m-2}+\cdots+\alpha_{m-1} X\right)=$ $X^{m} h(X)+\alpha_{1} X^{m-1}+\alpha_{2} X^{m-2}+\cdots+\alpha_{m-1} X$, which cannot lie within $\mathbb{C}\left[X^{\prime}\right]$. The claim is proved, and Theorem 2.3 tells us that V is affine. Just as before, we can show that $\Gamma\left(U_{0}\right) \cap \Gamma\left(U_{1}\right)=A=\mathbb{C}\left[t_{0}, \ldots, t_{m}\right]$. Therefore $V=\operatorname{Spec} A$.

Relationship between Theorem 2.3 and Theorem 3.1. It is natural to ask: For V an affine $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}$, what is the relationship between the data of Theorem 3.1 (the integer m and the polynomial $\alpha_{1} X^{m-1}+\alpha_{2} X^{m-2}+\cdots+\alpha_{m-1} X$) and that of Theorem 2.3 (the integers n and k). The author has established that $m=n+2 d$, where $d=k-n$ (which is necessarily ≥ 1 by (1) $\Longrightarrow(3)$ of Theorem 2.3). The proof is a calculation and will not be given here. However, the author has not found a good way to recover n and k from m and the polynomial $\alpha_{1} X^{m-1}+\alpha_{2} X^{m-2}+\cdots+\alpha_{m-1} X$.

Peretz' Theorem (Thm. 0.1) is related to the following conjecture:
CONJECTURE 3.2 (GEOMETRIC FORMULATION). Let V be an affine variety which is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}, U=V-F$, where F is a fiber in V. There does not exist $f: V \rightarrow \mathbb{A}_{\mathbb{C}}^{2}$ such that $\left.f\right|_{U}$ is étale.

Equivalently, by virtue of Theorem 3.1:
CONJECTURE 3.2 (ALGEBRAIC FORMULATION). There does not exist a pair of polynomials

$$
p, q \in \mathbb{C}\left[t_{0}, t_{1}, \ldots, t_{m}\right] \subset \mathbb{C}[X, Y]
$$

where $t_{0}, t_{1}, \ldots, t_{m}$ are as in (5) of Theorem $3.1\left(\alpha_{1}, \ldots \alpha_{m-1} \in \mathbb{C}\right.$, not all zero), with $\frac{\partial(p, q)}{\partial(X, Y)}$ non-vanishing (i.e. constant) on $\mathbb{A}_{\mathbb{C}}^{2}$.

The following theorem proves a special case of the above conjecture.
THEOREM 3.3. Conjecture 3.2 holds in the case where the coefficient α_{1} is nonzero.

Remark. This statement may seem a bit peculiar, but it includes Peretz' result (Theorem 0.1), which is precisely the case $\alpha_{1} \neq 0, \alpha_{2}=\cdots=\alpha_{m-1}=0$.

Proof. Letting $A=\mathbb{C}\left[t_{0}, t_{1}, \ldots, t_{m}\right]$, we are in the situation of Theorem 3.1, and we will freely refer to its various notations. Suppose there exists $p, q \in A$ with $\frac{\partial(p, q)}{\partial(X, Y)} \in \mathbb{C}-\{0\}$. We can easily arrange that $\frac{\partial(p, q)}{\partial(X, Y)}=1$, so that in $\Omega_{\mathbb{C}[X, Y] / \mathbb{C}}^{2}$ we have $d p \wedge d q=d X \wedge d Y$. In the diagram below, the rows are from the De Rham sequence for A and $\mathbb{C}[X, Y]$, respectively. These sequences are exact by $\left[6\right.$, Thm. 1] ${ }^{5}$ (We will only need the exactness of the second row.) The fact that $A \hookrightarrow \mathbb{C}[X, Y]$ induces an open embedding of affine varieties insures that the vertical maps are injective (hence they are denoted as containments).

Since $d(X d Y-p d q)=d X \wedge d Y-d p \wedge d q=0$, there exists (by exactness) $h \in \mathbb{C}[X, Y]$ with $d h=X d Y-p d q$. Along the fiber $F=V-U_{0}, p d q$ is clearly holomorphic since p and q lie in A. However, we claim that $X d Y$ has a

[^4]pole of order 1 along F. This derives from the fact that F is defined by $X^{\prime}=0$ on $U_{1}=\operatorname{Spec} \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$, where X^{\prime} and Y^{\prime} are as in (4). One easily sees from (4) that $X=X^{\prime-1}$ and $Y=X^{\prime m} Y^{\prime}-\alpha_{1} X^{\prime}-\alpha_{2} X^{\prime 2}-\cdots-\alpha_{m-1} X^{\prime m-1}$, so that
\[

$$
\begin{aligned}
X d Y= & \frac{1}{X^{\prime}} d\left(X^{\prime m} Y^{\prime}-\alpha_{1} X^{\prime}-\alpha_{2} X^{\prime 2}-\cdots-\alpha_{m-1} X^{\prime m-1}\right) \\
= & \frac{1}{X^{\prime}}\left[\left(m X^{\prime m-1} Y^{\prime}-\alpha_{1}-2 \alpha_{2} X^{\prime}-\cdots-(m-1) \alpha_{m-1} X^{\prime m-2}\right) d X^{\prime}\right. \\
& \left.\quad-X^{\prime m} d Y^{\prime}\right] \\
= & \left(m X^{\prime m-2} Y^{\prime}-\alpha_{1} X^{\prime-1}-2 \alpha_{2}-\cdots-(m-1) \alpha_{m-1} X^{\prime m-3}\right) d X^{\prime} \\
& -X^{\prime m-1} d Y^{\prime} .
\end{aligned}
$$
\]

The presence of term $-\alpha_{1} X^{\prime-1}$ in the last expression together with the fact that $\alpha_{1} \neq 0$ shows that $X d Y$ has a pole of order 1 along F, establishing the claim. It follows that $X d Y-p d q=d h$ also has a pole of order 1 along F. Thus h must have a pole along F as well. Considering h as an element of $\mathbb{C}\left[X^{\prime}, X^{\prime-1}, Y^{\prime}\right]$, this says $h \notin \mathbb{C}\left[X^{\prime}, Y^{\prime}\right]$, i.e., as a Laurant polynomial in X^{\prime}, h has negative order. But then $\frac{\partial h}{\partial X^{\prime}}$ has order ≤-2, and since

$$
d h=\frac{\partial h}{\partial X^{\prime}} d X^{\prime}+\frac{\partial h}{\partial Y^{\prime}} d Y^{\prime}
$$

we see that $d h$ must have a pole of order ≥ 2 along F, contradicting our previous conclusion that the order of this pole is 1 .

Remark. Theorem 3.3 answers Conjecture 3.2 affirmatively in the case $m=2$ (since we must have $\alpha_{1} \neq 0$ in this case), so the simplest unresolved case is when $m=3, \alpha_{1}=0$. Here we can easily arrange that $\alpha_{2}=1$ (replace Y by $\alpha_{2} Y$), leading us to consider:

SIMPLEST UNRESOLVED CASE OF CONJECTURE 3.2. There does not exist a counterexample (p, q) to the Jacobian conjecture with $p, q \in \mathbb{C}\left[Y, X Y, X^{2} Y, X^{3} Y+X\right]$.

Note that, setting $\operatorname{deg} X=-1$ and $\operatorname{deg} Y=2$, the ring $\mathbb{C}\left[Y, X Y, X^{2} Y, X^{3} Y+X\right]$ is a graded ring, giving an action of the algebraic group \mathbb{G}_{a} on $V=\operatorname{Spec} \mathbb{C}\left[Y, X Y, X^{2} Y\right.$, $\left.X^{3} Y+X\right]$. This structure may be useful in solving this special case.

4. Connection to the Jacobian conjecture

The two-dimensional Jacobian conjecture, which asserts that an étale map $f=$ $(p, q): \mathbb{A}_{\mathbb{C}}^{2} \rightarrow \mathbb{A}_{\mathbb{C}}^{2}$ is an isomorphism, remains unproved, even (to the author's knowledge) in the case where the integral closure of $\mathbb{C}[p, q]$ in $\mathbb{C}[X, Y]$ is smooth. We will refer to this latter condition as the case of "smooth integral closure".

We begin by establishing a criterion for affineness which will be needed in the proof of Theorem 4.3.

Proposition 4.1. Let $W=\operatorname{Spec} A$ be an affine scheme, with A a normal Noetherian domain. Let Z be an irreducible subvariety of codimension one in W which is locally defined by one equation, set-theoretically. Then $W-Z$ is affine.

Proof. Set $V=W-Z$. Let \mathfrak{a} be the radical ideal in A defining Z, and let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}$ be the height one primes of A containing \mathfrak{a}; these correspond to the irreducible components of Z. Let $B=\Gamma\left(V, \mathcal{O}_{W}\right)$. Normality implies that

$$
B=\bigcap_{\substack{\text { quqq } \\ \mathfrak{q} \neq q_{1} \ldots, q_{r}}} A_{\mathfrak{q}} .
$$

We claim that $\mathfrak{a} B=B$. If not, choose a prime ideal \mathfrak{P} in B containing $\mathfrak{a} B$, and let $\mathfrak{p}=\mathfrak{P} \cap A$. Then $\mathfrak{p} \supseteq \mathfrak{a}$. We have a local containment $A_{\mathfrak{p}} \subset B_{\mathfrak{P}}$. Our assumption about Z says that there exists $f \in A_{\mathfrak{p}}$ such that $\sqrt{f A_{\mathfrak{p}}}=\mathfrak{a} A_{\mathfrak{p}}$. This says f has zeros only along the components Z in $\operatorname{Spec} A_{\mathfrak{p}}$, i.e, those divisors of $\operatorname{Spec} A_{\mathfrak{p}}$ corresponding to the height one primes $\mathfrak{q}_{i} A_{\mathfrak{p}}$ (for those \mathfrak{q}_{i} contained in \mathfrak{p}). Noting that all height one localizations of $B_{\mathfrak{P}}$ are height one localizations of B and of $A_{\mathfrak{p}}$, we see that f has no zeros in the divisors of $\operatorname{Spec} B_{\mathfrak{P}}$, hence $1 / f \in B_{\mathfrak{P}}$. But this is impossible since $f \in \mathfrak{a} A_{\mathfrak{p}} \subset \mathfrak{P} B_{\mathfrak{P}}$, establishing the claim.

Choose generators f_{1}, \ldots, f_{t} for \mathfrak{a}. The principal open sets $W_{f_{j}} \operatorname{cover} V=W-Z$ and $V_{f_{j}}=W_{f_{j}}$, so we have $V=V_{f_{1}} \cup \cdots \cup V_{f_{i}}$. It follows from [8, Ex. 2.28, p. 81] that V is affine.

COROLLARY 4.2. Let W be an irreducible normal affine surface over \mathbb{C} which contains $\mathbb{A}_{\mathbb{C}}^{2}$ as an open subvariety. Let Z be a subvariety of pure codimension one in W. Then $W-Z$ is affine.

Proof. By Proposition 4.1, we need only to show that all curves on W are locally defined by one equation, set-theoretically. We only need to check this property at the singular points of W, which are discrete. Let p be a singular point. According to [9 , Thm. 6.6 (1)], p is a rational singularity, which implies that the divisor class group of the local ring $\mathcal{O}_{p, W}$ is a torsion group [4, Thms. 1.4 and 1.5]. Hence $\mathcal{O}_{p, W}$ has the property that all height one primes are the radicals of principal ideals, which is the needed result.

Note. The assumption " W contains $\mathbb{A}_{\mathbb{C}}^{2}$ as an open subvariety" can be replaced by the assumption " W contains a cylinderlike open subvariety", since this is precisely what is needed to evoke [9, Thm. 6.6 (1)].

The following theorem shows that a counter-example to the Jacobian conjecture would lead to a situation resembling the one whose non-existence is asserted by Conjecture 3.2 (geometric formulation).

THEOREM 4.3. If the Jacobian conjecture is false, there exists a normal affine variety V containing $U=\mathbb{A}_{\mathbb{C}}^{2}$ as an open subvariety having the following properties: (1) $F=V-U$ is a rational curve whose normalization is $\mathbb{A}_{\mathbb{C}}^{1}$ and each singular point of F has a one-point desingularization; (2) there is a map $\pi: V \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ such that F is the set-theoretic fiber of a point $z \in \mathbb{P}_{\mathbb{C}}^{1}$, and the restriction map $\left.\pi\right|_{U}: U \rightarrow$ $\mathbb{P}_{\mathbb{C}}^{1}-\{z\}=\mathbb{A}_{\mathbb{C}}^{1}$ is the projection onto a coordinate line; and (3) there is a map $f: V \rightarrow \mathbb{A}_{\mathbb{C}}^{2}$ such that $\left.f\right|_{U}$ is étale; . If the Jacobian conjecture is false in the case of "smooth integral closure", V can be chosen to be smooth and $F \cong \mathbb{A}_{\mathbb{C}}^{1}$.

Proof. Let $f=(p, q): U \rightarrow U^{\prime}$, where $U=U^{\prime}=\mathbb{A}_{\mathbb{C}}^{2}$, be an étale morphism, and let $\tilde{f}: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be a minimal resolution of the birational map $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ determined by f. The minimality of the resolution assures that the only possible exceptional curve for \widetilde{f} having self-intersection -1 is the proper transform \widetilde{L} of the line at infinity L in $\mathbb{P}_{\mathbb{C}}^{2}$. One easily verifies that $S-U$ is a simply connected union of smooth rational curves, having normal crossings, and containing \widetilde{L}. Moreover, \widetilde{L} must map into the complement of U^{\prime}.

Let $W=\tilde{f}^{-1}\left(U^{\prime}\right)$. Note that W contains U as an open subvariety (because the resolution of $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ does not blow up any points of U), and that \widetilde{f} restricts to a proper morphism $W \rightarrow U^{\prime}$. The situation is depicted in the diagram below:

$$
\begin{aligned}
& \tilde{f}^{-1}\left(U^{\prime}\right)=W \subset S
\end{aligned}
$$

Let $\overline{U^{\prime}}$ be the normalization of U^{\prime} in W. Then $\overline{U^{\prime}}=\operatorname{Spec} B$, where B is the integral closure of $\mathbb{C}[p, q]$ in $\mathbb{C}[X, Y]$. We know that U is an open subvariety of $\overline{U^{\prime}}[12$, Prop. 3.1]. We have maps $\bar{f}: \overline{U^{\prime}} \rightarrow U^{\prime}$ extending f and $g: W \rightarrow \overline{U^{\prime}}$ such that $\left.\tilde{f}\right|_{W}=\bar{f} \circ g$. The map g is birational. Any curve collapsed by g must have the property that its closure in S lies entirely within W, since $W=\widetilde{f}^{-1}\left(U^{\prime}\right)$, and outside of U. Also, any such curve must map via \tilde{f} to a point in U^{\prime}, by the commutativity $\left.\tilde{f}\right|_{W}=\bar{f} \circ g$. Therefore, by the remarks above, \widetilde{L} is not among these curves. All such curves are exceptional curves for \widetilde{f} as well, hence have self-intersection ≤-2. It follows that the image of the exceptional locus of g is the singular locus of $\overline{U^{\prime}}$. In particular, the integral closure $\overline{U^{\prime}}$ is smooth if and only if g is an isomorphism (i.e., $\overline{U^{\prime}}=W$), and this holds precisely when W is affine, as affineness precludes the existence of any exceptional curves for g, since these are complete curves contained in W.

These considerations insure that the contractions which map W to $\overline{U^{\prime}}$ also map S to a complete surface \bar{S} containing $\overline{U^{\prime}}$, with $S-W$ mapping isomorphically to $\bar{S}-\overline{U^{\prime}}$. Since $\overline{U^{\prime}}$ is affine, $\bar{S}-\overline{U^{\prime}}$ is connected [5, Corollary to Thm. 1], hence so is $S-W$.

Let D_{1}, \ldots, D_{r} be the connected components (note: not the irreducible components) of $W-U$. The removal of $W-U$ from $S-U$ leaves $S-W$, which is connected. From the simple-connectivity of $S-U$ we conclude that each D_{i} has precisely one point in its closure which is not in D_{i}, and that point lies on $S-W$. Therefore D_{i} contains precisely one non-complete component F_{i}, this component's closure containing the missing point. We must have $F_{i} \cong \mathbb{A}_{\mathbb{C}}^{1}$ and all other components of D_{i} isomorphic to $\mathbb{P}_{\mathbb{C}}^{2}$. It follows from the discussion above that F_{i} maps birationally and injectively to an affine curve $\overline{F_{i}}$ (possibly singular) which is closed in $\overline{U^{\prime}}$, and that all other components of D_{i} contract to points of $\overline{F_{i}}$ which are singular points of $\overline{U^{\prime}}$. These points are the only possible singularities of $\overline{F_{i}}$. All singularities of $\overline{F_{i}}$ have one-point desingularizations, and \bar{F}_{i} has one point at infinity. We have $\overline{U^{\prime}}-U=U \overline{F_{i}}$. Observe that in the case of "smooth integral closure" $\left(\overline{U^{\prime}}=W\right)$, we have $D_{i}=F_{i}$, so that $\overline{U^{\prime}}-U$ is the disjoint union of the curves F_{i}, which are isomorphic to $\mathbb{A}_{\mathbb{C}}$.

If the two-dimensional Jacobian conjecture is false there exists $f=(p, q)$ as above which is not an isomorphism. It is well-known (see [13, Thm. 3.3], for example) that this is equivalent to the condition $\mathbb{C}[X, Y]$ is not integral over $\mathbb{C}[p, q]$, i.e., the union $\overline{U^{\prime}}-U=U \overline{F_{i}}$ is non-empty. According to a theorem of Abhyankar [1, Cor. 18.15], the polynomials p and q can be chosen so that the curves $p=0$ and $q=0$ each have two points at infinity in $\mathbb{P}_{\mathbb{C}}^{2}$. These two points, call them x and y, must lie on both curves. Let us note that these two points are precisely the points of indeterminacy for the birational map $f: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$, hence the resolution of f blows up only these two points and "infinitely near" points above them. We conclude that each component D_{i} of $W-U$ maps entirely to one of these two points on $\mathbb{P}_{\mathbb{C}}^{2}$, since D_{i} does not contain \widetilde{L}. Assume that D_{1} maps to y.

Let V be the surface $\overline{U^{\prime}}-\left(\overline{F_{2}} \cup \cdots \cup \overline{F_{r}}\right)$. By Corollary $4.2, V$ is affine, and $V=U \cup \overline{F_{1}}$. Without loss of generality we may assume that x and y are the points at infinity on the lines $X=0$ and $Y=0$, respectively, and that the component D_{1} of $W-U$ contracts to the point y. We may also assume that the first blow-up in the resolution is centered at x. This blow-up resolves the "projection from x ", giving a morphism to $\mathbb{P}_{\mathbb{C}}^{1}$ extending the map $U \rightarrow \mathbb{A}_{\mathbb{C}}^{1}$ corresponding to the containment $\mathbb{C}[X] \rightarrow \mathbb{C}[X, Y]$. This morphism sends the proper transform of the line at infinity L on $\mathbb{P}_{\mathbb{C}}^{2}$ to the point at infinity in $\mathbb{P}_{\mathbb{C}}^{1}$ and induces morphisms from all subsequent surfaces obtained in the resolution process to $\mathbb{P}_{\mathbb{C}}^{1}$. In particular, we get a morphism $\tilde{\pi}: S \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$. Since the component D_{1} of $W-U$ contracts to x on $\mathbb{P}_{\mathbb{C}}^{2}$, it maps to the point at infinity on $\mathbb{P}_{\mathbb{C}}^{1}$. It follows that $\tilde{\pi}$ factors through the contractions which collapse D_{1} to $\overline{F_{1}}$, giving a morphism $\pi: V \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with π^{-1} (point at $\left.\infty\right)=\overline{F_{1}}$, settheoretically. (The fiber may be reduced.) In the case of "smooth integral closure", $\overline{F_{1}}=F_{1}$, and this curve is non-singular.

Setting $F=\overline{F_{1}}$, we have:

$$
\begin{array}{rlll}
F & \rightarrow & \text { pt at } \infty \\
V & \xrightarrow{\pi} & \mathbb{P}_{\mathbb{C}}^{1} \\
U & & \cup \\
\mathbb{A}_{\mathbb{C}}^{2}=U & \xrightarrow{\pi} & \mathbb{A}_{\mathbb{C}}^{1} .
\end{array}
$$

These observations conclude the proof of Theorem 4.3.
Remark. We do not know that F has multiplicity one in the fiber, even in the case of "smooth integral closure". If, however, F is smooth and π^{-1} (point at ∞) $=F$ scheme-theoretically, then V is an $\mathbb{A}_{\mathbb{C}}^{1}$-bundle over $\mathbb{P}_{\mathbb{C}}^{1}$ via the map $V \xrightarrow{\pi} \mathbb{P}_{\mathbb{C}}^{1}$. Hence we are in the situation of Conjecture 2.4 , which would rule out this possibility.

Acknowledgment. The author is indebted to his friend and colleague Mohan Kumar (who modestly declines co-authorship) for a number of helpful discussions which produced many details in this paper, including the particulars of Theorems 2.3, 3.1 , and and 3.3.

REFERENCES

[1] S. Abhyankar, Expansion techniques in algebraic geometry, Tata Institute of Fundamental Research, Bombay, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[2] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., 146, Springer-Verlag, New York, 1970.
[3] H. Bass, E. H. Connell, and D. Wright, Locally polynomial algebras are symmetric algebras, Inventiones Math. 38 (1977), 279-299.
[4] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[5] J. E. Goodman, Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. 89 (1969), 160-183.
[6] A. Grothendieck, On the De Rham cohomology of algebraic varieties, Publ. Math. I. H. E. S. no. 31, 1966.
[7] T. Kambayashi and D. Wright, Flat families of affine lines are affine line bundles, Illinois J. Math. 29 (1985), 672-681.
[8] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
[9] M. Miyanishi, Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, Bombay, Springer-Verlag, New York, 1978.
[10] R. Peretz, On counterexamples to Keller's problem, Illinois J. of Math. 40 (1996), 293-303.
[11] S. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1-4.
[12] A. Sathaye, Polynomial ring in two variables over a D. V. R.: a criterion, Inventiones Math. 74 (1983), 159-168.
[13] D. Wright, On the Jacobian conjecture, Illinois J. Math. 25 (1981), 423-440.

Department of Mathematics, Washington University, St. Louis, MO 63130
wright@einstein.wustl.edu

[^0]: ${ }^{1}$ In this case, V is embedded in $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$, which is the Nagata-Hirzebruch surface \mathcal{F}_{0}. In the notation of Theorem 2,3, we have $T=\Delta \sim D_{0}+F$. This tells us $n=0$ and $k=1$, so the affineness of V follows from (3) \Longrightarrow (1).

[^1]: ${ }^{2}$ This result is not known to be true for n-space fibrations for $n \geq 2$, except when $n=2$ and π is an affine morphism [12].

[^2]: ${ }^{3}$ This is because S is geometrically ruled; see $[8, \mathrm{Ch} \mathrm{V}, \mathrm{§2]}$.

[^3]: ${ }^{4}$ According to Goodman's criterion for surfaces [5, Thm. 2], this condition is also necessary for V to be affine.

[^4]: ${ }^{5}$ The theorem of Grothendieck quoted asserts that the cohomology in the middle positions calculate the complex cohomology $H^{1}(W, \mathbb{C})$, for $W=\operatorname{Spec} A$ and $W=\mathbb{A}_{\mathbb{C}}^{2}$ respectively, so the exactness follows from the simple-connectivity of W in each case. Simple-connectivity (in fact, contractibility) of $\mathbb{A}_{\mathbb{C}}^{2}$ is well known. Although, as we point out above, exactness of the top row is not needed here, we note that simpleconnectivity of the bundle $V=\operatorname{Spec} A$ follows from the surjectivity of the map of fundamental groups $\pi_{1}\left(\mathbb{A}_{\mathbb{C}}^{2}\right) \rightarrow \pi_{1}(V)$ arising from the open embedding $\mathbb{A}_{\mathbb{C}}^{2} \subset V$; this is surjective because complement of $\mathbb{A}_{\mathbb{C}}^{2}$ in V has real codimension two.

