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AFFINE SURFACES FIBERED BY AFFINE LINES
OVER THE PROJECTIVE LINE

DAVID WRIGHT

0. Pinchuk’s example and Peretz’ follow-up

The classical Jacobian conjecture asserts that ifk is a field ofcharacteristic zero and
o" A ---> A is a polynomial map whose Jacobian determinant is a non-zero constant,
then o has a polynomial inverse. A related conjecture, the "real Jacobian conjecture",
asserted that if k and the Jacobian determinant of o is non-vanishing, then o is
a global homeomorphism on I2. This latter statement was shown by S. Pinchuk to
be false by virtue of the following counter-example:

Pinchuk’s example. Let X and Y be variables, and let

t=XY-1

h t(Xt + 1)

f (Xt+l)2(h+l)
Furthermore, let p, q JR[X, Y] be defined by

p=f+h

75h4q -t2 -6th(h + 1)- 170fh- 91h2- 195fh2 -69h3- 75haf- 4

Then

O(p, q) t2 + [t + (13 + 15h)f]2 + f2.(1)
0(X, Y)

(This equation can be verified by a symbolic algebra computer program.) One quickly
sees that Xf (mod t), hence O(p, q)/(X, Y) has no real zeros; i.e., the map
o: A ---> A defined by (p, q) is unramified at all real points. The locus p 0
contains the component Xt + 0, which can be written as Y (X 1)/X2, which
is disconnected. It follows that p 0 is not both smooth and connected, hence o is
not a diffeomorphism on -. Thus this polynomial map is a counter-example to the
"real Jacobian conjecture." The reader is referred to 11 for details.
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Follow-up by Peretz. In 10], Ronen Peretz observed that the polynomials p and
q in Pinchuk’s example lie in the subring [t, h, f] C [Y, XY, X2y X]. He
recognized the latter ring with replaced by C as "merely a special case of the type
of rings that arise in the theory of assymptotics of polynomials" [10, 2]. Peretz
showed there does not exist a pair of polynomials p, q 6 C[Y, XY, X2y X] with
O(p, q)/O(X, Y) non-vanishing (i.e., constant) on A. This fact is essentially the spe-
cial case rn 2 of the following more general theorem, which appears as Theorem 4
in [10]:

THEOREM 0.1 (PERETZ). There does not exist a pair ofpolynomials

p, q C[Y, XY, X2y + otX, X3y + otX2 xmy + oxm-1]

where ot C*,with O(P’q) non-vanishing (i.e., constant) on AO(X,Y)

In 3 of this paper we will generalize Peretz’ theorem by giving a larger class of
subrings of C[X, Y] which could not contain such p and q (Theorem 3.3). We will
furthermore show that the rings in this larger class are precisely the affine coordinate
rings of affine surfaces which are A-bundles over I?, which are studied in 2. In
4 we provide some evidence that such objects are significant in the study of the
Jacobian conjecture.

1. Geometric interpretation of the case m 2

Let k be a field ofcharacteristic zero. We first consider the ring k[Y, XY, X2Y-X],
which, for k , contains the polynomials p and q ofPinchuk’s example. For k C
this is the ring that appears in the above theorem of Peretz, for rn 2. We will give
geometric reasons why no polynomials p, q from this ring could have constant non-
zero jacobian determinant.

PROPOSITION 1.1. Let k be a field, and let V 1 x A, where A is the
diagonal. V is an affine variety, and the ring k[Y, XY, xEy X] can be realized as
its coordinate ring in such a way that the containment k[X, Y] D k[Y, XY, xEy X]
corresponds to the open embedding ofA2 in V which identifiesA with the complement
ofafiber ofone ofthe standard projections V - I?

Proof We will appeal to two facts which will be proved later in this paper. That
V is affine follows from Theorem 2.3. Realizing/?k x I? as {(x0 Xl), (Y0 Yl)},

In this case, V is embedded in x l?,which is the Nagata-Hirzebruch surface .To. In the notation
of Theorem 2,3, we have T A Do + F. This tells us n 0 and k 1, so the affineness of V follows
from (3) == (1).
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the diagonal A is defined by xlYO xoyl 0. Let U0 be the complement in
V x I? A of xo 0, and let UI be the complement in V of xl 0.
Then V U0 U Ul. This is all depicted in the following diagram.

Xl =0

l x ]P [(x0" Xl), (Yo Yl)}

yo=O

0=0

Let X xt and let Ao k[X]. The complement ofxo 0in I? x is
X0

Proj Ao[Yo, Yl], and A is defined here by the equation yoX Yl 0 (homoge-
neous in Yo, yl). Note that Uo is the complement of A in Proj Ao[Yo, Yl], and since
Ao[Yo, Yl] Ao[Yo, yoX Yl] we have

yoX- Yl

Speck[X, Y], where Y Yo
yoX Yl

Setting X’ xo X-I and A1 k[X’], we similarly have
XI

Yo Yl X’

Speck[X’, Y’], where Y’ Yl

Yo Yl X’

An easy computation shows Y’ X2y X. Since V U0 U Ul, we have

l"(V) l-’(U0) fq F(UI) k[X, Y] fq k[X’, Y’]
k[X, Y] f-) k[X-1, xEy X].

From Theorem 3.1, with m 2, we obtain F(V) k[Y, XY, xEy X], and
V Spec k[Y, XY, xEy X]. The containment k[X, Y] D k[Y, XY, xEy X]
obviously corresponds to the embedding U0 (- A2) c V, so the proposition is
proved.
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Remark. For the case k JR, we have

V I x/’ A = Spec IRtY, XY, xEy X]

Identifying A with U0 as above, we see that Pinchuk’s map tp (p, q) extends to a
map ’" V - A. The following proposition shows that the extended map " "folds"
(i.e., has vanishing jacobian determinant) along the complement V U0.

PROPOSITION 1.2. Themap: V -- A definedbyPinchuk’spolynomials(p, q)
hasjacobian determinant zero at all points (real or complex) of V Uo.

Proof. In the notation ofthe previous proof, wehave V-Uo C Ul Spec ]R[X’, Y’],
where we calculate the jacobian determinant with respect to the variables X’ and Y’.
Since X X’- and Y X’2y + X’, we have

O(p,q) O(p,q)
(2)

O(X’,Y’) O(X,Y)

O(p,q)

(by the chain rule)
o(x’, r’)

0(X’-1, x’Ey d- X’)
o(x’,r’)

-2z; 0
2X’Y’ + X’2

O(p,q)
.(-1)

O(X,Y)
--(t2 -I- [t d- (13 + 15h)fiE d- f2) (by (1)).

Writing and f in terms of X’ and Y’, we get

--X’Y’, f (Y’+ 1)2[X’Y’(Y’+ l)d- 1]X’,

which shows that X’ divides and f ink[X’, Y’]. ThereforeX’2 divides O(p, q)/O(X’,
Y’). Since X’ 0defines the complementary fiberin Ul, we see that O(p, q)/O(X’, Y’)
vanishes along it. E!

In light of Proposition 1. l, Peretz’ Theorem (0. l) is equivalent to the following
unpublished theorem:

THEOREM 1.3 (KUMAR-MURTHY-NORI).
A - A such that lVo is dtale.

There does not exist : ] x ]

Sketch ofproof. The statement lu0 is 6tale is equivalent to the assertion that
O(p, q)/O(X, Y) is a non-zero constant, i.e., ’lu0 is unramified; flatness is automatic
under this hypothesis [2, Ch. V, Prop. 3.5]. Therefore, by Proposition 1.1, this theorem
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is the rn 2 case ofTheorem 3.3, so we only sketch the proof as conceived by Kumar,
Murthy, andNod. Let V IP xI? A,A C[Y, XY, X2y-x] F(V),
and let X’, Y’, U0, and U be as in the proof of Proposition 1.1. Such a ’ is given
by p, q A with O(p, q)/(X, Y) C*. Kumar-Murthy-Nori observed that " must
in fact be 6tale on all of V. This results from the fact that O(p, q)/O(X’, Y’)
-O(p, q)/O(X, Y) (as in (2) of the proof of Proposition 1.2). This also shows that
dp/x dq dX/x dY -dX’/x dY’, and this 2-form is a generator for g22A/C since it

generates on both of the open sets U0 and Ul. Hence f22A/C is free. The containment
C[p, q] c A induces from the De Rham sequences ofC[p, q] and A the commutative
diagram

d
2,’1

C[p,q]/C
adb damdb

d

in which we have

p dq dp A dq

to dX A d

for some to flt/c. It is then shown that the equation dto dX/x dY is im-
possible because dX /x dY is not integrable. This uses the graded structure on
A C[Y, XY, X2 X] and f2A/C determined by setting deg X -l, deg Y I.
Since dX m dY is homogeneous of degree 0, if it is integrable it should lift to a
homogeneous l-form of degree zero, which can be shown by a direct argument not
to be the case. E!

We conclude this section by again pointing out that x ]P A is an affine
variety, by Theorem 2.3, and observing that it is an A-bundle over ]P (via either
of its two canonical projections onto IP). In the next section we will describe the
coordinate rings of all affine A-bundles over I?, and see that these include rings
of the type which appear in Theorem 0.1, i.e. those of the form C[Y, XY, xEy +
otX, xay + olX2 xmy -- oxm-l], rn > 2. We will then prove Theorem 3.3,
which includes Theorem 0.1 and generalizes Theorem 1.3, replacing x ]P A
by a larger class of A-bundles over

2. A-bundles over

We begin with some preliminaries. Let V be a variety over C (which in this
discussion includes being reduced, irreducible, and separated). Given another variety
X and a morphism zr" V ---> X, we say that V is an A-bundle over X (via r) if X
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has a cover {X such that zr- (Xi) is compatibly isomorphic to Xi x A for all i. An
obvious weaker condition is that zr is a flat morphism and for each point p X, the
scheme-theoretic fiber zr -1 (p) is isomorphic to A(p), k(p) being the residue field at

p, in which case we say V is an Al-fibration over X. In turn, a stronger condition
is that V is a rank one vector bundle, or line bundle, over X. The main result of [7]
asserts that if V is an Al-fibration over X, then it is an A-bundle.2 Let us also note
that if X is 1-dimensional, as in the case X , flatness is automatic, so that V is
an A-bundle if and only if each fiber of zr is an A The main result of [3] says that
n-space bundles are vector bundles in the case where X is affine. The following easy
theorem futher clarifies the relationship between A-bundles and line bundles:

LEMMA 2.1. Let V be a variety with a map re" V -- X making V an A-bundle
over X. Then V is a line bundle ifand only ifzr admits a section.

Proof. A line bundle has a zero section (and possibly other global sections), so
one implication is trivial. Conversely, assume V is an A-bundle and let {Xi} be a
cover of X such that 7r-l(xi) X )< t. Then Yl’-l(xi) is the trivial line bundle
over Xi, since its coordinate ring is a polynomial ring in one variable over F (Xi), and
any section of zrlx, gives rise to a choice of variable, unique up to multiplication by a
unit in F (Xi). We can view the A-bundle V as being constructed from gluing data
over intersections Xi N Xj. The existence of a section provides a compatible choice
of variable (i.e., a canonical "origin"), giving rise to sheaf of rank one projective
Ox-modules making V is a line bundle over X. E!

The following is a well-known fact about on ruled surfaces.

LEMMA 2.2. Let S be a non-singularprojective surface, B a non-singular curve.
Let " S -- B be a morphism making S a birationally ruled surface, i.e., S is
birationally equivalent to B x I? with being compatible with the projection B x

B. Then the generalfiberof is isomorphic to. Everyfiber not isomorphic
to I? is singular. Every singularfiber is a connected union ofcurves isomorphic to

I?. In each singular fiber there exists a component having self-intersection --1.

If E is a component having multiplicity one in a singular fiber, then there exists a
component E’ E ofthe samefiberwith (E’2) -1.

Proof. Compatibility of with the projection onto B implies that each excep-
tional curve for the birational map from S to B x It must be contained in some
fiber of . If we take remove from B the finite set of points whose fibers contain
exceptional curves and/or fundamental points, we get an open set Bo C B such that

2This result is not known to be true for n-space fibrations for n >_ 2, except when n 2 and zr is an
affine morphism 12].
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--1 (B0) B0 x I?; hence the general fiber of is isomorphic to I?. Thus
satisfies the hypothesis of [9, Lemma 2.2, p. 115], which tells us all the facts as-
serted above (and more) regarding singular fibers. Finally, a non-singular fiber must
have arithmetic genus zero, since arithmetic genus is constant amongst fibers of a fiat
morphism, hence it is isomorphic to/?, r-1

THEOREM 2.3. Let V be a variety with a map zr" V - making V an A-
bundle over . Then V can be embedded as an open subvariety in a Nagata-
Hirzebruch surface n in such a way that V n T where T is a section, and
the canonical projection n -’ extends 7r. In this situation, T Dn d- kF Dn
being the special section in n, F a fiber). Moreover, the following conditions are
equivalent:

(1) V is affine.
(2) V is not a line bundle (i.e., by virtue ofLemma 2.1, zr does not admit a section).
(3) k > n + 1.

The integers n and k are uniquely determined by V and zr.

Proof. We assume the reader is familiar with the Nagata-Hirzebruch surfaces
and their properties, as well as basic surface theory. We may embed V as an open
subvartiety of a projective surface S, and by blowing up some points not in V we may
assume zr extends to a map if" S I?, putting us in the situation of Lemma 2.2.
We claim that each reducible fiber of ff has a component not intersecting V with

self-intersection 1. Let F be a reducible fiber, and let E be the (unique) component
intersecting V. Since V is an A-bundle, E has multiplicity one in F, and Lemma
2.2 asserts the existence of another component with self-intersection 1, proving the
claim.
We can contract the component whose existence is established above, and continue

until this fiber, and every fiber, is irreducible, thus isomorphic to , by Lemma
2.2. The resulting surface S is then a II-bundle, hence is isomorphic to one of
the Nagata surfaces ’n. Recall that the Picard group of .T’n is freely generated
by the classes of Dn (the special section) and F (a fiber), and that (Dn2) -n,
(F Dn) 1, and of course (F2) 0. This determines the intersection theory in
.T’,. One sees that the complement T .T’,, V has one point in each fiber of ,
hence it maps isomorphically to. Clearly (T, F) 1, and from this and the above
information, one deduces that T Dn -[- kF for some integer k. Note, then, that
(T Dn) ((Dn d- kF) Dn) (D2n) + k(F Dn) -n + k.

If V is affine it cannot contain a subvariety isomorphic to II, hence zr does not
admit a section. Hence (1) === (2).

3This is because S is geometrically ruled; see [8, Ch V, 2].
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Assume k < n. Then (T Dn) < O. If (T D,,) < 0, then T Dn (since both
are prime divisors). Therefore V .T’,, Dn, which is known to be a line bundle. If
(T Dn) 0, then Dn C V, which shows that zr admits a section. This establishes
(2) == (3).

Assume k > n + 1. We know that V is affine if its complement T is the support
of an ample divisor,4 which, since T is irreducible, means T itself is ample. By the
Nakai-Moishezon Criterion [8, Ch. V, Thm. 1.10, p. 365], we must show (T. C) > 0
for all irreducible curves C. Since T Dn + kF, we have (T2) -n + 2k > 0,
so the condition holds for C T. Also, (T. Dn) -n + k > 0 and (T. F) 1,
verifying the condition when C is D or any fiber. Any other C must have positive
intersection with a fiber and non-negative intersection with Dn. From this it follows
that (T C) > 0. Therefore V is affine. This shows (3) == (1), completing the
circle.

Lastly we establish the essential uniqueness the embedding V .T’n extending
zr, from which will follow the uniqueness of n and k. Suppose V is also embedded in
"m, as in the theorem, with V ."m T’, T’ being a section, with T’ Dm + eF’
(Dm the special section in .T’m, F’ a fiber). This determines a zr-compatible birational
map ,/i: .T’,, --, .T’m. The fact that is rr-compatible implies that T (being a section
for zr) is not an exceptional curve for ; i.e., T does not collapse. Hence T maps to
T’, and zr is an isomorphism at all but finitely many points of T. These points are
precisely the fundamental points of ,. We show no such fundamental points exist.
Assuming x were such a point, we proceed to minimally resolve , at x by blowing
up x and its infinitely near exceptional points; the birational map that . induces
on this surface will again be called ,/,. Let E denote the union of rational curves
obtained in the process and note that ,], must collapse E to a single point x’ on T’.
(This follows from the zr-compatibility and the fact that all other points in the fiber
of x’ lie in V, as embedded in ’m.) This shows that, in fact, the last blow-up was
redundant, contradicting the minimality ofthe resolution. Hence is an isomorphism
(so m n), and ,/,(T) T’ (so k), concluding the proof. I"l

3. Coordinate rings of afline A-bundles over

The connection between Theorem 0.1 and affine varieties which are A-bundles
over I? is illuminated when we examine the "gluing data" which patches together
two copies ofA-to construct such a bundle V as their union. This leads to an explicit
description of F(V) as a subring of C[X, Y], corresponding to the containment of
one of the A s in V.

Let V be an A-bundle over IP with structure map r" V ---> IP. Choose X
such that the function field of ]P is C(X), and let U0 r -1 (Spec C[X]), Ul

4According to Goodman’s criterion for surfaces [5, Thm. 2], this condition is also necessary for V to
be affine.
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rr -I (Spec C[X-I]). Then V Uo tO Ul. Both U0 and U are A-bundles over A,
and since these are known to be trivial, we have U0 A and Ul - A.

THEOREM 3.1. Let V Uo tO Ul and X be as above and assumefurther that V
is affine. There exists Y I’(V) such that

(3) Uo Spec C[X, Y] UI Spec C[X’, Y’]

where

(4) X’ X Y Xm Y + ot Xm- .+. Ol2xm 2 "F" "47 olm_ 1X

where m >_ 2 and Ol Olin_ C, not all zero. Moreover, letting A l-’(V), we
have

A C[t0, tl tin]

where

(5) to= Y

t XY

t2 X2y +tX
t3 X3y + 0/1 X2 "-F- o2X

xm-Im X Y + ot + ol2Xm 2
"at-... -1- Olin-1X (-- Y

Infact, A is afree module overC[to, tm] with basis {1, t tm- }.
Conversely, given to tm as in (5) with Ctl Ctm- 6 C, not all zero, then

letting A C[to t,, ], and letting X’ and Y’ be defined by (4), we have Spec A
Uo tO Ul, where Uo and U are as in (3), and Spec A is an A-bundle over I?
Spec C[X] tO Spec C[X’] by virtue of the containments C[X] C C[X, Y], C[X’] C
C[X’, Y’].

Proof Certainly we can choose Y 6 F(Uo), Y’ 6 I"(Ul) such that U0
Spec C[X, Y], Ul Spec C[X’, Y’], where X’ X-l. These preliminary choices,
however, will need to be modified. Note that U0 fq Ul Spec C[X, X-, ]
Spec C[X, X-, Y’], whence C[X, X-, Y] C[X, X-, Y’] (both viewed as sub-
rings ofthe function field C(V)). From this it follows that Y’ xmy+ f(X, X-),
where /5 6 C*, m 6 Z, and f(X, X-l) I)iX is a Laurant polynomial in
X with coefficients in C. If f(X, X-l) 0, the retractions C[X, Y] -- C[X],
C[X’, Y’] --+ C[X’] sending Y and Y’, respectively, to 0 are compatible and deter-
mine a section for the structure map zr. Since V is affine, this violates Theorem 2.3’s
condition (2) for affineness; hence f(X, X-l) # 0. Replacing by/3Y, we may
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assume/3 1. Now replace Y by Y + -,i>o l)i+mXi (a legitimate replacement for
Y in C[X, Y]) to effect vi 0 for > m. In similar fashion, after replacing Y’ by
yt Zi<0 I)i xi yt Zi<0 Pi xt-i we have vi 0 for < 0. Note that if rn < all
coefficients vi are zero, i.e., f(X, X-l) 0, which is impossible, as shown above.
Hence rn > 2 and, letting oti I)m-i, we have arranged (4).

Since V UotOU1, we have A F(U0)NI-’(U) C[X, Y]fqC[X’, Y’]. Clearly
the elements to t,, as defined in (5) lie in C[X, Y]. The equations tm Y’,ti-
X’ti oti, m, and to X’tl show that to tm C[X’, Y’] as well.
So letting R C[t0 tm] we have R

_
A and thus the following series of ring

containments:

(6) C[t0, tm] c_ R c_ A c_ C[X, Y].

We claim that R is a free C-module with basis 1, t tm- }. Toward proving this,
we first calculate the rank of R as a C[t0, tm ]-module by adjoining / to to all the rings
in (6). Since X tl/to, R[t contains X, Y, and y-I and we have

(7) C[to, t-l, tin] C_ R[t(1 A[tff 11 C[X, Y, y-1].

Note that C[t0, t- tm] C[Y, Y-, tm] and that tm has degree rn as a polynomial in
X over the ring C[Y, Y-], the leading coefficient being Y, a unit. It follows that the
rank of C[X, Y, Y-] over C[to, t-1 tm], and hence the rank of R over C[t0, tm] is rn
To prove the claim it suffices to show that{ 1, t tm- generate R as a C[t0, tm ]-
module. Since R is generated as a C[t0, tm ]-module by monomials in 1, t tm- },
it suffices to show that for i, j 6 rn }, titj _,e hete with he C[t0, tin].
This, in turn will follow if we can show titj ti-ltj+l + _,e hete with he C[t0, tin].
Note from (5) that ti X(ti_ +i-) (setting oto 0) and tj+ X(tj +cj), whence
ti(tj + t,2) tj+l (ti- + oti_l). This can be written as titj ti-ltj+l otjti -[-oti_ltj,
accomplishing the goal and proving the claim.

It remains to show R A. By the first equality in (7), it suffices to show that
if f 6 A and tof R, then f 6 R. Given such an f, then using the basis

m-I{1, t tm-}, we write t0f b0+Yi= biti, where bo, b bm-I C[t0, tm].
For 0 rn 1, write bi ci + todi with ci C[tm ], di C[t0, tm ], and set

(8)
m-1

f f do E di ti.
i=1

Then

m-1

tof tof todo di toti
i=1

m-I m-I

bo +

_
b todo todi ti

i=1 i=1
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m-I

(bo todo) + y(bi todi)ti
i=1

We restate the resulting equation:

(9)
m-1

toll Co 2t- citi.
i=l

Now we observe that f A C C[X’, Y’], and we view equation (9) as a polynomial
equation in the indeterminants X’ and Y’. From (5) we have tm= Y’, to X’m Y’

Xm-1 xm-iy X
_

Xtm-l-iOllXtmol2xt2 --Om_ andti -o oi+ Om_

for m 1. One sees that to has degree m as a polynomial in X’, and, for
m 1, ti has degree m i. Since c Cm- c:. C[tm] C[Y’], the left

side of equation (7) has degree >_ m while the right side of the equation has degree
_< m 1. It follows that fl 0, i.e., f do + im=- diti (see (8)); hence f 6 R as
desired.
We now prove the converse. Denoting by (Uo)x the principal open set in U0

defined by the function. X, we have (Uo)x Spec C[X, X-1, Y] (U)x,. Hence a
prevariety V U0 U U can be glued together. The containments C[X] c C[X, Y]
and C[X’] C C[X’, Y’] define a map rr" V ]P Spec C[X] U SpecC[X’]
making V an A-bundle over. This morphism shows that V is separated (i.e., a
variety) since it separates points in Uo U from points in U Uo. We claim that
zr does not admit a section. Such a section would give compatible ring retractions
qo: C[X, Y] -- C[X], 41" C[X’, Y’] -- C[X’]. This is impossible, for if 4o(Y)
h(X), then we would have4 (Y’) tPl (XmY+tXm- +ct2Xm-2 +... +Cm-I X)
Xmh(X) -i- Otl Xm-I -I- or2Xm-2 + -I- Otm-l X, which cannot lie within C[X’]. The
claim is proved, and Theorem 2.3 tells us that V is affine. Just as before, we can show
that l"(Uo) N 1-’(U1) A C[t0 tm]. Therefore V Spec A. r-!

Relationship between Theorem 2.3 and Theorem 3.1. It is natural to ask: For V
an affine A-bundle over , what is the relationship between the data of Theorem
3.1 (the integer m and the polynomial tXm-1 + ot2Xm-2 + + tm-X) and that
of Theorem 2.3 (the integers n and k). The author has established that m n + 2d,
where d k n (which is necessarily > by (1) =: (3) ofTheorem 2.3). The proof
is a calculation and will not be given here. However,the author has not found a good
way to recover n and k from m and the polynomial ct xm- _[_ Ol2xm-2 _.... "JI- Olin- 1X.

Peretz’ Theorem (Thm. 0.1) is related to the following conjecture:

CONJECTURE 3.2 (GEOMETRIC FORMULATION). Let V be an affine variety which
is an A-bundle over I?, U V F, where F is afiber in V. There does not exist

f: V - A such that fit: is tale.
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Equivalently, by virtue of Theorem 3.1"

CONJECTURE 3.2 (ALGEBRAIC FORMULATION).
nomials

There does notexistapairofpoly-

p, q C[t0, t t,,] c C[X, Y],

where to, t tm are as in (5) ofTheorem 3.1 (t am-I C, not all zero), with
O(p,q) non-vanishing (i.e. constant) on A(x,Y)

The following theorem proves a special case of the above conjecture.

THEOREM 3,3.

zero.
Conjecture 3.2 holds in the case where the coefficient a is non-

Remark. This statement may seem a bit peculiar, but it includes Peretz’ result
(Theorem 0.1), which is precisely the case Otl - 0, c2 C,n- 0.

Proof Letting A C[t0, t tin], we are in the situation of Theorem 3.1,
and we will freely refer to its various notations. Suppose there exists p, q A with

O(p,q) so that in ’22O(p,q)
( C {0}. We can easily arrange that a(x,r) ctx, rl/c we haveO(X,Y)

dp A dq dX A dY. In the diagram below, the rows are from the De Rham sequence
for A and C[X, Y], respectively. These sequences are exact by [6, Thin. ]5 (We will
only need the exactness of the second row.) The fact that A C[X, Y] induces an
open embedding of affine varieties insures that the vertical maps are injective (hence
they are denoted as containments).

h - XdY- pdq O.

Since d(XdY p dq) dX A dY dp /x dq 0, there exists (by exactness)
h 6 C[X,Y] withdh XdY-pdq. Along the fiber F V- Uo, pdq is
clearly holomorphic since p and q lie in A. However, we claim that X dY has a

5The theorem of Grothendieck quoted asserts that the cohomology in the middle positions calculate
the complex cohomology H (W, C), for W Spec A and W A respectively, so the exactness follows
from the simple-connectivity of W in each case. Simple-connectivity (in fact, contractibility) ofA is well
known. Although, as we point out above, exactness of the top row is not needed here, we note that simple-
connectivity of the bundle V Spec A follows from the surjectivity of the map of fundamental groups
rl (A) - zrl (V) arising from the open embedding A C V" this is surjective because complement of

A in V has real codimension two.
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pole of order along F. This derives from the fact that F is defined by X’ 0 on
U Spec C[X’, Y’], where X’ and Y’ are as in (4). One easily sees from (4) that
X X,-1 and Y x’my Ol X or2X,2 Om_ Xtin-l, so that

X dY
X’

x’my’ Oil Ol2Xr2 Olm-I

x,m_E)dxX--7[(mx’m-Iy -ot 2aEX’ (m 1)Otm-I

X’m d Y’]
(mx’m-2y OtlX’-1 -2a2 (m-1)am-lX’m-3)dX’
X’m-I dY’.

Xt-IThe presence ofterm -or in the last expression together with the fact that a - 0
shows that X d has a pole of order along F, establishing the claim. It follows that
Xd p dq dh also has a pole of order along F. Thus h must have a pole along
F as well. Considering h as an element of C[X’, X’-1 Y’], this says h C[X’, ’]

Ohi.e., as a Laurant polynomial in X’, h has negative order. But then has order
_< -2, and since

Oh
dX’

Oh
dY’dh OX---5 + --7

we see that dh must have a pole of order > 2 along F, contradicting our previous
conclusion that the order of this pole is 1. I-1

Remark. Theorem 3.3 answers Conjecture 3.2 affirmatively in the case m 2
(since we must have ct 0 in this case), so the simplest unresolved case is when
m 3, otl 0. Here we can easily arrange that c2 (replace Y by c2 Y), leading
us to consider:

SIMPLEST UNRESOLVED CASE OF CONJECTURE 3.2. There does not exista counter-
example(p, q) to the Jacobian conjecture with p, q C[Y, XY, X2y, X3y + X].

Note that, setting deg X -1 and deg Y 2, the ring C[Y, XY, X2y, X3y -t- X] is a
graded ring, giving an action of the algebraic group Ga on V Spec C[Y, XY, X2Y,
X3 Y + X]. This structure may be useful in solving this special case.

4. Connection to the Jacobian conjecture

The two-dimensional Jacobian conjecture, which asserts that an 6tale map f
(p, q)" A A is an isomorphism, remains unproved, even (to the author’s knowl-
edge) in the case where the integral closure of C[p, q] in C[X, Y] is smooth. We will
refer to this latter condition as the case of "smooth integral closure".
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We begin by establishing a criterion for affineness which will be needed in the
proof of Theorem 4.3.

PROPOSITION 4.1. Let W Spec A be an affine scheme, with A a normalNoethe-
rian domain. Let Z be an irreducible subvariety of codimension one in W which is
locally defined by one equation, set-theoretically. Then W Z is affine.

Proof Set V W Z. Let a be the radical ideal in A defining Z, and let
q qr be the height one primes of A containing a; these correspond to the
irreducible components of Z. Let B F(V, Ow). Normality implies that

B N Aq.
htq=

qql qr

We claim that aB B. If not, choose a prime ideal q3 in B containing aB, and let
p q3 fq A. Then p

___
a. We have a local containment Ap C B. Our assumption

about Z says that there exists f 6 Ap such that v/fAp aAo. This says f has zeros
only along the components Z in Spec Ao, i.e, those divisors of Spec Ap corresponding
to the height one primes qi Ap (for those qi contained in p). Noting that all height
one localizations of Bq are height one localizations of B and of Ao, we see thatf has
no zeros in the divisors of Spec B, hence 1/f Bq. But this is impossible since

f aAp C q3Bq3, establishing the claim.
Choose generators fl ft for a. The principal open sets Wh cover V W- Z

and Vh Wh, so we have V Vf, t_J.., t_J Vf,. It follows from [8, Ex. 2.28, p. 81]
that V is affine. 121

COROLLARY 4.2. Let W be an irreducible normal affine surface over C which
contains A as an open subvariety. Let Z be a subvariety ofpure codimension one
in W. Then W- Z is affine.

Proof By Proposition 4.1, we need only to show that all curves on W are locally
defined by one equation, set-theoretically. We only need to check this property at the
singular points of W, which are discrete. Let p be a singular point. According to [9,
Thm. 6.6 (1)], p is a rational singularity, which implies that the divisor class group
of the local ring Op.W is a torsion group [4, Thms. 1.4 and 1.5]. Hence Op,w has the
property that all height one primes are the radicals of principal ideals, which is the
needed result.

Note. The assumption "W contains A as an open subvariety" can be replaced
by the assumption "W contains a cylinderlike open subvariety", since this is precisely
what is needed to evoke [9, Thm. 6.6 (1)].

The following theorem shows that a counter-example to the Jacobian conjecture
would lead to a situation resembling the one whose non-existence is asserted by
Conjecture 3.2 (geometric formulation).
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THEOREM 4.3. If the Jacobian conjecture is false, there exists a normal affine
variety V containing U A as an open subvariety having thefollowing properties:
(1)F V U is a rational curve whose normalization is A and each singular
point of F has a one-point desingularization; (2) there is a map rt" V -- ]P such
that F is the set-theoreticfiber ofa point z E lP, and the restriction map rt Iv" U -]P {z} A is the projection onto a coordinate line; and (3) there is a map
f" V -- A such that flu is dtale; If the Jacobian conjecture is false in the case

of "smooth integral closure ", V can be chosen to be smooth and F A.

Proof. Let f (p, q)" U ---> U’, where U U’ A, be an 6tale morphism,
and let f" S ---> I? be a minimal resolution of the birational map ]P --. /?
determined by f. The...minimality of the resolution assures that the only lLossible
exceptional curve for f having self-intersection -1 is the proper transform L of the
line at infinity L in IP. One easily verifies that S U is a simply connected union
of smooth rational curves, having normal crossings, and containing L. Moreover, L
must map into the complement of U’.

Let W f"-i (U’). Note that W contains U as an open subvariety...(because the
resolution of I? --. I? does not blow up any points of U), and that f restricts to a
proper morphism W --> U’. The situation is depicted in the diagram below"

--l (U’) W C S

U U

U A f U’

C[X, Y] <- C[p,q].

Let U’ be the normalization of U’ in W. Then U’ Spec B, where B is the integral
closure of C[p, q] in C[X, Y]. We know that U is an open subvariety of 7 [12,
Prop. 3.1]._ We have maps f: U---7 U’ extending f and g" W ---> U---7 such that

f lw f o g. The map g is birational. Any curve collapsedby g must have the
property that its closure in S lies entirely within W, since W f-i (U’), and outside
of U. Also, any such curve must map via f to a ILoint in U’, by the commutativity
flw f o g. Therefore, by the remarks above, L is not among these curves. All
such curves are exceptional curves for f as well, hence have self-intersection < -2.
It follows that the image of the exceptional locus of g is the singular locus of U’.
In particular, the integral closure U’ is smooth if and only if g is an isomorphism
(i.e., U’ W), and this holds precisely when W is affine, as affineness precludes the
existence of any exceptional curves for g, since these are complete curves contained
in W.
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These considerations insure that the contractions which map W to U’ also map S
to a complete surface S containing U’, with S- W mapping isomorphically to S- U’.
Since U’ is affine, S U’ is connected [5, Corollary to Thm. ], hence so is S W.

Let Dl Dr be the connected components (note: not the irreducible compo-
nents) of W U. The removal of W U from S U leaves S W, which is
connected. From the simple-connectivity of S U we conclude that each Di has
precisely one point in its closure which is not in Di, and that point lies on S W.
Therefore Di contains precisely one non-complete component Fi, this component’s
closure containing the missing point. We must have Fi and all other com-
ponents of Di isomorphic to . It follows from the discussion above that Fi maps
birationally and injectively to an affine curve Fi (possibly singular) which is closed
in U’, and that all other components of Di contract to points of Fi which are singular
points of U-’7. These points are the only possible singularities of i. All singularities
of Fi have one-point desingularizations, and Fi has one point at infinity. We have
U--7- U LI//. Observe that in the case of "smooth integral closure" (U--7 W),
we have Di Fi, so that U’ U is the disjoint union of the curves Fi, which are
isomorphic to A.

Ifthe two-dimensional Jacobian conjecture is false there exists f (p, q) as above
which is not an isomorphism. It is well-known (see 13, Thm. 3.3], for example) that
this is equivalent to the condition C[X, Y] is not integral over C[p, q], i.e., the union
U--7 U t-Ji is non-empty. According to a theorem of Abhyankar 1, Cot. 8.15],
the polynomials p and q can be chosen so that the curves p 0 and q 0 eaclr have
two points at infinity in I?. These two points, call them x and y, must lie on both
curves. Let us note that these two points are precisely the points of indeterminacy for
the birational map f" I? --, ]F’, hence the resolution of f blows up only these two
points and "infinitely near" points above them. We conclude that each component Di
of W U maps entirely to one of these two points on II, since Di does not contain
L. Assume that D maps to y.

Let V be the surface U’ (F2 t3... t3 Fr). By Corollary 4.2, V is affine, and
V U U F. Without loss of generality we may assume that x and y are the points
at infinity on the lines X 0 and Y 0, respectively, and that the component D
of W U contracts to the point y. We may also assume that the first blow-up in the
resolution is centered at x. This blow-up resolves the "projection from x", giving
a morphism to extending the map U A corresponding to the containment
C[X] C[X, Y]. This morphism sends the proper transform of the line at infinity
L on lI to the point at infinity in I and induces morphisms from all subsequent
surfaces obtained in the resolution process to . In particular, we get a morphism
$" S /?. Since the component D of W U contracts to x on I?, it maps to
the point at infinity on . It follows that $ factors through the contractions which
collapse Dl to F--, giving a morphism zr" V /? with zr- (point at oo) -l, set-
theoretically. (The fiber may be reduced.) In the case of "smooth integral closure",
F Fl, and this curve is non-singular.
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Setting F Fl, we have:

F ---> ptato

V
U U

U --These observations conclude the proof of Theorem 4.3.

Remark. We do not know that F has multiplicity one in the fiber, even in the case
of "smooth integral closure". If, however, F is smooth and zr -l (point at o) F
scheme-theoretically, then V is an A-bundle over 1? via the map V - . Hence
we are in the situation of Conjecture 2.4, which would rule out this possibility.

Acknowledgment. The author is indebted to his friend and colleague Mohan
Kumar (who modestly declines co-authorship) for a number of helpful discussions
which produced many details in this paper, including the particulars of Theorems 2.3,
3.1, and and 3.3.
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