HOMOLOGY OF FUNCTION SPECTRA

BY

DANIEL S. KAHN¹

1. Introduction

The purpose of this paper is the investigation of the singular homology groups of F(X, Y), the space of base-point preserving maps from X to Y endowed with the compact-open topology [7]. We restrict ourselves to the case where X is compact and Y has the homotopy type of a countable CW-complex.

This problem was investigated by Borsuk [2] who studied the first nonzero Betti number of $F(X, S^m)$. Later, Moore [16] calculated the reduced singular integral homology groups $\tilde{H}_n(F(X, S^m))$ in the stable range. (We suppress notation of the coefficient group in case of integer coefficients.) Moore's result as restated by Spanier [20] in the language of spectra [13] says that $\tilde{H}_{-n}(\mathbf{F}(X, \mathbf{S})) \approx \tilde{H}^n(X)$, where **S** is the spectrum of spheres.

The crucial part of Moore's proof is that the homology of $F(X, S^m)$ defines a cohomology theory on X in the stable range. It is shown here that if **E** is a spectrum, the groups $\tilde{H}^n(X) = \tilde{H}_{-n}(\mathbf{F}(X, \mathbf{E}))$ define a generalized cohomology theory [24] for finite complexes X. From a theorem of Brown [3], it follows that there is a spectrum **F** such that $\tilde{H}^n(X) \approx \tilde{H}^n(X; \mathbf{F})$, the *n*th cohomology group of X with coefficients in the spectrum **F**. This implies that the homotopy groups of **F** are isomorphic to the homology groups of **E**. This suggests that **F** might be the infinite symmetric product of **E** and this is indeed the case. A final calculation arrives at the formula (Theorem (7.8)):

$$\widetilde{H}_n(\mathbf{F}(X, \mathbf{E})) \approx \sum_r \widetilde{H}^{r-n}(X; \widetilde{H}_r(\mathbf{E})).$$

It is assumed that the reader is familiar with the results and notation of Sections 1 through 5 of [24] which present the basic notions of spectra and generalized cohomology theories.

Sections 2 and 3 present elementary results on spectra and generalized cohomology theories. In Section 4 it is proved that the groups $\tilde{H}^n(X)$ define a generalized cohomology theory for finite complexes. Section 5 introduces the notion of the infinite symmetric product $SP^{\infty}\mathbf{E}$ of a spectrum \mathbf{E} and in Section 6 it is proved that $\tilde{H}^n(X) \approx \tilde{H}^n(X; SP^{\infty}\mathbf{E})$. Sections 7 and 8 are devoted to the calculation of $\tilde{H}^n(X; SP^{\infty}\mathbf{E})$. In the final section, the results are applied to function spaces (rather than function spectra) and to the case where X is an arbitrary compact space.

This paper is essentially Part II of the author's doctoral thesis written

Received February 27, 1964.

¹ This research was partially supported by U. S. Army Research Office (Durham) and the National Science Foundation.

under the direction of Professor G. W. Whitehead to whom the author would like to express his deep appreciation. The author is also indebted to Professors E. H. Brown, D. M. Kan and F. P. Peterson for many helpful discussions.

2. Preliminaries

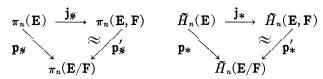
In this section we discuss some elementary properties of spectra that will be of use in the sequel.

In this paper, space will mean Hausdorff space with base-point and map will mean continuous, base-point preserving map. In fact, unless otherwise noted, spaces and maps will be assumed to belong to the category \mathfrak{W}_0 whose objects are spaces having the homotopy type of a countable CW-complex with base-vertex and whose morphisms are all base-point preserving maps. Further, all *n*-ads will be assumed to have the homotopy type of CW-*n*-ads. The properties of this category have been discussed in [15]. We will say that a spectrum $\mathbf{E} = \{E_n, \varepsilon_n\}$ is in $\mathfrak{W}_0(\mathbf{E} \in \mathfrak{W}_0)$ if each $E_n \in \mathfrak{W}_0$. The full subcategory of \mathfrak{W}_0 whose objects are countable CW-complexes is denoted by C_0 .

We first sketch a proof of an analogue of the theorem of J. H. C. Whitehead [25] for maps of spectra. This is an unpublished "folk theorem", proved by D. M. Kan among others.

Let $\mathbf{E} = \{E_n, \varepsilon_n\}$ be a spectrum and let $\mathbf{F} = \{F_n, \varphi_n\}$ be a subspectrum of \mathbf{E} , that is, (E_n, F_n) is a pair in \mathfrak{W}_0 and $\varphi_n = \varepsilon_n \mid (S \land F_n)$. One has the usual exact homotopy and homology sequences for the pair (\mathbf{E}, \mathbf{F}) [23]. The maps ε_n determine maps $\psi_n : S \land (E_n/F_n) \to E_{n+1}/F_{n+1}$ which makes $\{E_n/F_n, \psi_n\}$ into a spectrum \mathbf{E}/\mathbf{F} . Let $\mathbf{p} : \mathbf{E} \to \mathbf{E}/\mathbf{F}$ and $\mathbf{p}' : (\mathbf{E}, \mathbf{F}) \to \mathbf{E}/\mathbf{F}$ be the maps of spectra induced by the projections $p_k : E_k \to E_k/F_k$ and let $\mathbf{j} : \mathbf{E} \to (\mathbf{E}, \mathbf{F})$ be the inclusion.

PROPOSITION (2.1). The diagrams



are commutative and both $\mathbf{p}'_{\mathbf{*}}$ and $\mathbf{p}'_{\mathbf{*}}$ are isomorphisms.

Proof. Commutativity is obvious as is the fact that \mathbf{p}'_* is an isomorphism. That \mathbf{p}' is an isomorphism can be proved using the Blakers-Massey triad theorem [1] and the technique used in the proof of (4.1) below.

PROPOSITION (2.2). Let **E** be a spectrum. Then if $\pi_n(\mathbf{E}) = 0$ for all n, $\tilde{H}_n(\mathbf{E}) = 0$ for all n.

Proof. It may be assumed that **E** is a semi-simplicial group spectrum [11]. The hypothesis that $\pi_*(\mathbf{E}) = 0$ then implies that E_n has as a deformation

retract the subcomplex generated by the base-point. It follows that $\tilde{H}_n(\mathbf{E}) = 0$ for all n.

Remark. The converse of (2.2) holds when **E** is convergent [24, p. 242], but not in general. D. M. Kan has supplied a counter-example (unpublished). Hurewicz theorems describing the first non-zero homotopy and homology groups of a spectrum have also been proved with a similar caution about convergence.

PROPOSITION (2.3). Let $\mathbf{f} : \mathbf{E} \to \mathbf{F}$ be a map of spectra in \mathfrak{W}_0 . Then if $\mathbf{f}_{\mathbf{f}} : \pi_n(\mathbf{E}) \to \pi_n(\mathbf{F})$ is an isomorphism for every $n, \mathbf{f}_* : \tilde{H}_n(\mathbf{E}) \to \tilde{H}_n(\mathbf{F})$ is an isomorphism for every n.

Proof. This follows from (2.1) and (2.2) using standard mapping cylinder techniques [25] as adapted to spectra.

We conclude this section with a discussion of loop spectra. Let $\mathbf{E} = \{E_n, \varepsilon_n\}$ be a spectrum $\epsilon \mathfrak{W}_0$. The spectrum E may be described equally well using the adjoint maps [10] $\tilde{\varepsilon}_n : E_n \to \Omega E_{n+1}$ associated to the maps $\varepsilon_n : S \land E_n \to E_{n+1}$. $\Omega \mathbf{E} = \mathbf{F}(S, \mathbf{E})$ is the loop-spectrum of \mathbf{E} [24, p. 242]. $\Omega \mathbf{E}$ has maps

$$\tilde{\varphi}_k: F(S, E_k) \to F(S, F(S, E_{k+1})) = \Omega^2 E_{k+1}$$

defined by $\tilde{\varphi}_k(\lambda)(s)(t) = \tilde{\varepsilon}_k(\lambda(t))(s)$, where $\lambda \in F(S, E_k)$ and $s, t \in S$.

Let $g: Y \to Z$. We write $\Omega g = F(1, g) : \Omega Y \to \Omega Z$. The following lemma is easily proved.

LEMMA (2.4). The following diagrams are anti-commutative:

where η_* is the homology suspension for path fibrations.

In addition to the usual definition of the groups $\tilde{H}_n(\mathbf{E})$ [24, p. 245], they are also given as the direct limit of sequences

$$\cdots \to \tilde{H}_{n+k}(E_k) \xrightarrow{\tilde{\mathcal{E}}_{k*}} \tilde{H}_{n+k}(\Omega E_{k+1}) \xrightarrow{\eta_*} \tilde{H}_{n+k+1}(E_{k+1}) \to \cdots.$$

From (2.4) it follows that the maps

$$\psi_k: \tilde{H}_{n+k}(\Omega E_{k+1}) \to \tilde{H}_{n+k}(\Omega E_{k+1}),$$

470

where $\psi_k(z) = (-1)^{k+1} \cdot z$, define an isomorphism $\sigma : \tilde{H}_n(\mathbf{E}) \approx \tilde{H}_{n-1}(\Omega \mathbf{E})$. σ is also defined by the homomorphisms

$$(-1)^{k+1} \cdot \tilde{\varepsilon}_{k*} : \tilde{H}_{n+k}(E_k) \to \tilde{H}_{n+k}(\Omega E_{k+1}).$$

Similarly, the maps

$$(-1)^{k+1} \cdot \tilde{\varepsilon}_{k\#} : \pi_{n+k}(E_k) \to \pi_{n+k}(\Omega E_{k+1})$$

define an isomorphism $\theta : \pi_n(\mathbf{E}) \approx \pi_{n-1}(\Omega \mathbf{E})$. It is easily shown that θ^{-1} coincides with the isomorphism $\omega : \pi_{n-1}(\Omega \mathbf{E})\pi_n(\mathbf{E})$ defined by G. W. White-head [24, p. 245].

3. Cohomology theories

We recall the definition of a generalized cohomology theory [24]. Let \mathcal{O}_0 be the category of finite CW-complexes with base-vertex and base-point preserving maps. A generalized cohomology theory \mathfrak{K}^* on \mathcal{O}_0 consists of a sequence of contravariant functors

$$\widetilde{H}^n: \mathfrak{G}_0 \to \mathfrak{A},$$

where α is the category of abelian groups and homomorphisms, and a sequence of natural transformations

$$\sigma^n: \tilde{H}^{n+1} \circ S \to \tilde{H}^n,$$

S being the suspension functor on \mathcal{P}_0 , satisfying the following axioms:

(C₁). If f_0 , $f_1 \in \mathcal{P}_0$ are homotopic maps, then

$$\tilde{H}^n(f_0) = \tilde{H}^n(f_1).$$

(C₂). If $X \in \mathcal{P}_0$, then

$$\sigma^n(X): \tilde{H}^{n+1}(SX) \approx \tilde{H}^n(X).$$

(C₃). If (X, A) is a pair in \mathcal{O}_0 , $i : A \subset X$, and if $p : X \to X/A$ is the identification map, then the sequence

$$\widetilde{H}^{n}(X/A) \xrightarrow{\widetilde{H}^{n}(p)} \widetilde{H}^{n}(X) \xrightarrow{\widetilde{H}^{n}(i)} \widetilde{H}^{n}(A)$$

is exact.

Generalized cohomology theories frequently arise as follows: Let **E** be a spectrum and let $X \in \mathcal{O}_0$. Define

$$\widetilde{H}^n(X; \mathbf{E}) = \pi_{-n}(\mathbf{F}(X, \mathbf{E}))$$

where $\mathbf{F}(X, \mathbf{E})$ is the function spectrum of base-point preserving maps of X into the spaces E_n [24, §4, Ex. 6]. If $f: X \to Y$, then the maps

$$F(f, 1) : F(Y, E_k) \to F(X, E_k)$$

define a map $\mathbf{f}' : \mathbf{F}(Y, \mathbf{E}) \to \mathbf{F}(X, \mathbf{E})$. Define

$$\widetilde{H}^{n}(f) = \mathbf{f}'_{\#} : \pi_{-n}(\mathbf{F}(Y, \mathbf{E})) \to \pi_{-n}(\mathbf{F}(X, \mathbf{E})).$$

For $X \in \mathcal{O}_0$, $\sigma^n(X) : \tilde{H}^{n+1}(SX; \mathbf{E}) \approx \tilde{H}^n(X; \mathbf{E})$ is defined to be the composition

 $\pi_{-n-1}(\mathbf{F}(SX,\mathbf{E})) \xrightarrow{\Psi \not s} \pi_{-n-1}(\Omega \mathbf{F}(X,\mathbf{E})) \xrightarrow{\theta^{-1} = \omega} \pi_{-n}(\mathbf{F}(X,\mathbf{E})),$

where ψ : $\mathbf{F}(SX, \mathbf{E}) \to \Omega \mathbf{F}(X, \mathbf{E})$ is the natural isomorphism [24, §4, Ex. 6].

PROPOSITION (3.1). $\mathfrak{K}^*(E) = {\mathfrak{H}^n, \sigma^n}$ is a generalized cohomology theory on \mathfrak{G}_0 .

Proof. [24]. We remark that the blanket assumption made in [24] that all the spaces E_k have the homotopy type of a CW-complex was not necessary for the proof of this particular result. The spaces E_k may be arbitrary.

Remark. A theorem of E. H. Brown [3] states that any generalized cohomology theory $\tilde{\mathcal{K}}^*$, for which $\tilde{H}^*(S^0)$ is countable, is naturally equivalent with $\tilde{\mathcal{K}}^*(\mathbf{E})$ for some spectrum \mathbf{E} .

The following is a well-known "folk-theorem."

PROPOSITION (3.2). Let \mathfrak{K}^* and \mathfrak{F}^* be two generalized cohomology theories on \mathfrak{P}_0 and let $T: \mathfrak{K}^* \to \mathfrak{F}^*$ be a natural transformation of cohomology theories. Then, if $T^n(S^0)$ is an isomorphism for every n, T is a natural equivalence.

Proof. To show that T(X) is an isomorphism, one proceeds by induction on the number of cells in X. The proof is similar to Moore's proof of Theorem 3 in [16].

Example (3.3). Let **E** and **E**' be spectra and let $\mathbf{g} : \mathbf{E} \to \mathbf{E}'$ be a weakly continuous (w.c.) map of spectra (each g_k is w.c., that is, continuous on compact subsets). Then **g** induces a natural transformation of cohomology theories via

$$\mathbf{F}(1, \mathbf{g})_{\#} : \pi_{*}(\mathbf{F}(X, \mathbf{E})) \to \pi_{*}(\mathbf{F}(X, \mathbf{E}'))$$

since w.c. maps induce homomorphisms of homotopy groups. In this case $T(S^0)$ may be identified with $\mathbf{g}_{\mathbf{g}} : \pi_*(\mathbf{E}) \to \pi_*(\mathbf{E}')$.

PROPOSITION (3.4). Let $\mathbf{g} : \mathbf{E} \to \mathbf{E}'$ be a map of spectra $\epsilon \mathfrak{W}_0$ such that $\mathbf{g}_{\sharp} : \pi_{\ast}(\mathbf{E}) \approx \pi_{\ast}(\mathbf{E}')$. Then

$$\mathbf{F}(1, \mathbf{g})_* : \tilde{H}_*(\mathbf{F}(X, \mathbf{E})) \approx \tilde{H}_*(\mathbf{F}(X, \mathbf{E}')) \quad \text{for all } X \in \mathcal{P}_0.$$

Proof. By (3.2) and (3.3), $\mathbf{F}(1, \mathbf{g})_{\#} : \pi_{*}(\mathbf{F}(X, \mathbf{E})) \to \pi_{*}(\mathbf{F}(X, \mathbf{E}'))$ is an isomorphism. By [15], $\mathbf{F}(X, \mathbf{E})$ and $\mathbf{F}(X, \mathbf{E}')$ are in \mathfrak{W}_{0} . The proposition now follows from (2.3).

4. $\bar{H}^*(X)$ as a generalized cohomology theory

We have already made the definition $\tilde{H}^n(X) = \tilde{H}_{-n}(\mathbf{F}(X, \mathbf{E}))$. In this section we shall show that the functors \tilde{H}^n determine a generalized cohomology theory $\tilde{\mathcal{R}}^*(E)$ on \mathcal{O}_0 .

We assume $\mathbf{E} \in \mathfrak{W}_0$. The natural transformations of functors

$$\bar{\sigma}^n: \bar{H}^{n+1} \circ S \to \bar{H}^n$$

472

are defined by the composites

$$\tilde{H}_{-n-1}(\mathbf{F}(SX,\mathbf{E})) \xrightarrow{\Psi^*} \tilde{H}_{-n-1}(\Omega \mathbf{F}(X,\mathbf{E})) \xrightarrow{\sigma^{-1}} H_{-n}(\mathbf{F}(X,\mathbf{E}))$$

where σ is the isomorphism described in Section 2. Naturality of $\bar{\sigma}^n$ is clear.

THEOREM (4.1). $\mathfrak{K}^*(\mathbf{E}) = \{ \tilde{H}^n, \, \tilde{\sigma}^n \}$ is a generalized cohomology theory on \mathcal{P}_0 .

Proof. Axioms (C₁) and (C₂) are easily verified. It remains to prove that the exactness axiom (C₃) is satisfied. Let (X, A) be a pair in \mathcal{P}_0 and let $i: A \subset X$ and $p: X \to X/A$ be the canonical maps.

LEMMA (4.2). $\bar{\imath}_k = F(i, 1) : F(X, E_k) \to F(A, E_k)$ is a fibre map in the sense of Serre [19] and $\bar{p}_k = F(p, 1) : F(X/A, E_k) \to F(X, E_k)$ is the inclusion of the fibre into the total space.

Proof. [16, pp. 200–201].

LEMMA (4.3). Suppose $d \ge \dim X$ and that Y is (n-1)-connected, where n > d. Then F(X, Y) is (n - d - 1)-connected.

Proof. We use the fact that $\pi_k(F(X, Y) \approx \pi_0(F(S^k \land X, Y)))$. If $(\dim X) + k < n$, then $\pi_k(F(X, Y)) \approx \pi_0(F(S^k \land X, Y)) = 0$ by standard obstruction theory.

 $\tilde{H}^{n}(i) \circ \tilde{H}^{n}(p) = 0$ since $p \circ i$ is the constant map. To complete the proof of (4.1) it remains to be shown that if $\mathbf{u} \in \tilde{H}_{-n}(\mathbf{F}(X, \mathbf{E}))$ is in the kernel of $\tilde{H}^{n}(i)$, then \mathbf{u} is in the image of $\tilde{H}^{n}(p)$. Let $u \in \tilde{H}_{k-n}(F(X, E_{k}))$ be a representative of \mathbf{u} . We may assume k is chosen so large that $\bar{\imath}_{k*} u = 0$.

Define a new spectrum $\mathbf{E}' = \{E'_r, \varepsilon'_r\}$ by

- (4.4) $E'_i = E_i$ for all $i \leq k$,
- (4.5) $E'_{k+j} = S^j \wedge E_k$ for all j > 0,
- (4.6) $\varepsilon'_i = \varepsilon_i \text{ for all } i < k,$
- (4.7) ε'_{k+j} = identity for all $j \ge 0$.

It is easy to verify that the maps $g_r: E'_r \to E_r$ given by

- (4.8) g_i = identity for $i \leq k$
- (4.9) g_{k+j} for j > 0 is the composite

$$S^{j} \wedge E_{k} \xrightarrow{S^{j-1}\varepsilon_{k}} S^{j-1} \wedge E_{k+1} \longrightarrow \cdots \longrightarrow S \wedge E_{k+j-1} \xrightarrow{\varepsilon_{k+j-1}} E_{k+j}$$

determine a map of spectra $\mathbf{g} : \mathbf{E}' \to \mathbf{E}$. The maps $\bar{g} = F(1, g_r)$ define a map of spectra $\bar{\mathbf{g}} : \mathbf{F}(Y, \mathbf{E}') \to \mathbf{F}(Y, \mathbf{E})$.

By (4.4) and (4.8) there is an element $u' \in \tilde{H}_{k-n}(F(X, E'_k))$ representing an element $\mathbf{u}' \in \tilde{H}_{-n}(\mathbf{F}(X, \mathbf{E}'))$ for which $\bar{g}_{k*}u' = u$ and hence, $\bar{\mathbf{g}}_*\mathbf{u}' = \mathbf{u}$. Let v' be the image of u' in $\tilde{H}_{k-n+N}(F(X, E'_{k+N}))$ where we choose $N > \frac{1}{2}(n + k + 3 + 3d)$, with $d > \dim X$. v' also represents \mathbf{u}' . By (4.2), (4.3) and [19, III, Prop. 5] the sequence

(4.10)
$$\begin{split} \widetilde{H}_{k-n+N}(F(X/\mathcal{A},E'_{k+N})) & \xrightarrow{\widetilde{p}'_{k+N^*}} \\ \widetilde{H}_{k-n+N}(F(X,E'_{k+N})) & \xrightarrow{\widetilde{\imath}'_{k+N^*}} \widetilde{H}_{k-n+N}(F(\mathcal{A},E'_{k+N})) \end{split}$$

is exact. Since $\bar{i}'_{k*} u' = 0$, we have $\bar{i}'_{k+N*} v' = 0$. By the exactness of (4.10), there is an element $w' \in \tilde{H}_{k-n+N}(F(X/A, E'_{k+N}))$ such that $\bar{p}'_{k+N*} w' = v'$. Let \mathbf{w}' be the class of w' in $\tilde{H}_{-n}(\mathbf{F}(X/A, \mathbf{E}'))$. Then $\mathbf{\bar{p}}'_{*} \mathbf{w}' = \mathbf{u}'$. From the commutativity of

$$\begin{array}{cccc} \widetilde{H}_{-n}(\mathbf{F}(X/\mathbf{A},\mathbf{E}')) & \longrightarrow & \widetilde{H}_{-n}(\mathbf{F}(X,\mathbf{E}')) \\ & & & & & & \\ & & & & & & \\ \widetilde{\mathbf{g}}_{*} & & & & & \\ & & & & & & \\ \widetilde{H}_{-n}(\mathbf{F}(X/\mathbf{A},\mathbf{E})) & \longrightarrow & & & \\ & & & & & & \\ \end{array}$$

it follows that $\mathbf{w} = \bar{\mathbf{g}}_* \mathbf{w}'$ is a class such that $\bar{\mathbf{p}}_* \mathbf{w} = \mathbf{u}$. Hence, \mathbf{u} is in the image of $\bar{H}^n(p)$, completing the proof of (4.1).

5. Infinite symmetric products

In this section, we introduce the notion of the infinite symmetric product $SP^{\infty}\mathbf{E}$ of a spectrum \mathbf{E} . We show that the well-known theorem of Dold and Thom [4] that $\tilde{H}_n(X) \approx \pi_n(SP^{\infty}X)$ for "nice" spaces may be used to obtain an isomorphism $\tilde{H}_n(\mathbf{E}) \approx \pi_n(SP^{\infty}\mathbf{E})$.

We review the basic material about infinite symmetric products. For details see [4], [21]. Let $E \in W_0$ and let e_0 be its base-point. The *n*-fold symmetric product SP^nE , n > 0, of E is the identification space E^n/G_n , where E^n is the *n*-fold cartesian product of E with itself and G_n , the symmetric group on *n* letters, acts on E^n by permuting coordinates. Thinking of the points of SP^nE as unordered *n*-tuples $\langle e_1, \dots, e_n \rangle$ of points of $e_i \in E$, SP^nE may be imbedded as a closed subspace of $SP^{n+1}E$ by identifying $\langle e_1, \dots, e_n \rangle$ with $\langle e_0, e_1, \dots, e_n \rangle$. Writing $SP^0E = e_0$, we have

$$e_0 = SP^0E \subset SP^1E \subset \cdots \subset SP^nE \subset SP^{n+1}E \subset \cdots$$

The union of the $SP^{n}E$ is called $SP^{\infty}E$, the infinite symmetric product of E, assigned the base-point $\langle e_0 \rangle$ and topologized by calling a set $C \subset SP^{\infty}E$ closed if and only if $C \cap SP^{n}E$ is closed for every $n \geq 0$. The multiplication $SP^{\infty}E \times SP^{\infty}E \to SP^{\infty}E$ defined by

$$(\langle e_1, \cdots, e_m \rangle, \langle e_{m+1}, \cdots, e_{m+n} \rangle) \rightarrow \langle e_1, \cdots, e_{m+n} \rangle$$

makes $SP^{\infty}E$ into a weak abelian monoid (WAM), that is, an abelian monoid whose product is weakly continuous. $SP^{\infty}E$ is free in the sense that if W is a WAM with unit w_0 and $g: E \to W$ such that $f(e_0) = w_0$, then f extends

uniquely to w.c. homomorphism $\bar{g}: SP^{\infty}E \to W$. In particular,

$$g: E \to F \subset SP^{\infty}F$$

determines a map

$$SP^{\infty}g: SP^{\infty}E \to SP^{\infty}F,$$

which in this case is continuous.

PROPOSITION (5.1). SP^{∞} is a functor which preserves homotopy and which takes \mathfrak{W}_0 to \mathfrak{W}_0 .

Proof. The only part of (5.1) not proved in [4] is the observation that if $E \in \mathfrak{W}_0$, $SP^{\mathfrak{P}}E \in \mathfrak{W}_0$. If $E \in \mathfrak{W}_0$, then E has the homotopy type of a locally finite simplicial complex K [15]. By [4], [12] $SP^{\mathfrak{P}}E$ can be given the structure of a countable CW-complex. Since $SP^{\mathfrak{P}}$ is a functor which preserves homotopy, it follows that $SP^{\mathfrak{P}}E \in \mathfrak{W}_0$.

PROPOSITION (5.2). If $E \in \mathfrak{W}_0$ is connected, there is a natural isomorphism

$$\tau: \hat{H}_q(E) \approx \pi_q(SP^{\infty}E)$$

for all q.

Proof. Use (5.1) and [21, (7.5)].

We now define the functor SP^{∞} for a spectrum $\mathbf{E} = \{E_k, \varepsilon_k\}$. We define maps

$$\rho_k : SSP^{\infty}E_k \to SP^{\infty}SE_k ,$$

$$\tilde{\rho}_k : SP^{\infty}E_k \to \Omega SP^{\infty}SE_k$$

$$\rho_k(t \land \langle e_1, \cdots, e_n \rangle) = \langle t \land e_1, \cdots, t \land e_n \rangle ,$$

$$\tilde{\rho}_k(\langle e_1, \cdots, e_n \rangle)(t) = \langle t \land e_1, \cdots, t \land e_n \rangle .$$

We then define maps

$$\alpha_k : SSP^{\infty}E_k \to SP^{\infty}E_{k+1}$$
 and $\tilde{\alpha}_k : SP^{\infty}E_k \to \Omega SP^{\infty}E_{k+1}$
by the compositions

$$\alpha_k : SSP^{\infty}E_k \xrightarrow{\rho_k} SP^{\infty}SE_k \xrightarrow{SP^{\infty}\varepsilon_k} SP^{\infty}_k E_{\pm 1},$$

$$\tilde{\alpha}_k : SP^{\infty}E_k \xrightarrow{\tilde{\rho}_k} \Omega SP^{\infty}SE_k \xrightarrow{\Omega SP^{\infty}\varepsilon_k} \Omega SP^{\infty}E_{k+1}.$$

Then the α_k and $\tilde{\alpha}_k$ are adjoint maps which define a spectrum

$$SP^{\infty}\mathbf{E} = \{SP^{\infty}E_k, \alpha_k\}.$$

If **E**, **F** are spectra, then a map $\mathbf{g} : \mathbf{E} \to \mathbf{F}$ induces a map

$$SP^{\infty}\mathbf{g}: SP^{\infty}\mathbf{E} \to SP^{\infty}\mathbf{F}.$$

LEMMA (5.3). Let $E \in W_0$ such that every E_k is connected. Then commutativity holds in the diagrams

$$\begin{split} & \tilde{H}_{q}(E_{k}) \xrightarrow{\sigma_{*}} \tilde{H}_{q+1}(SE_{k}) \\ & \approx \int \tau \qquad \approx \int \tau \\ & \pi_{q}(SP^{\infty}E_{k}) \xrightarrow{S_{*}} \pi_{q+1}(SSP^{\infty}E_{k}) \xrightarrow{\rho_{k}} \pi_{q+1}(SP^{\infty}SE_{k}) \end{split}$$

and

$$\begin{split} & \tilde{H}_q(E_k) \xrightarrow{\sigma_*} \tilde{H}_{q+1}(SE_k) \\ & \approx \int \tau \qquad \approx \int \tau \\ & \pi_q(SP^{\infty}E_k) \xrightarrow{k} \pi_q(\Omega SP^{\infty}SE_k) \xrightarrow{\eta_{\#}} \pi_{q+1}(SP^{\infty}SE_k) \,. \end{split}$$

Proof. [21, (10.1)].

Remark (5.4). Let **E** be a spectrum and let \mathbf{E}^0 be the subspectrum of **E** for which E_k^0 is the path-component of the base-point of E_k . Then, since

$$\varepsilon_k(SE_k) \subset E^0_{k+1}$$
 and $\alpha_k(SSP^{\infty}E_k) \subset SP^{\infty}E^0_{k+1}$,

the inclusions $\mathbf{i} : \mathbf{E}^0 \to \mathbf{E}$ and $j : SP^{\infty} \mathbf{E}^0 \to SP^{\infty} \mathbf{E}$ induce isomorphisms of homotopy and homology groups.

If $E \in W_0$ is a spectrum for which each E_k is connected, then the isomorphisms

$$\tau: \tilde{H}_{n+k}(E_k) \approx \pi_{n+k}(SP^{\infty}E_k)$$

define an isomorphism $\tau' : \tilde{H}_n(\mathbf{E}) \approx \pi_n(SP^{\infty}\mathbf{E})$. This follows from (5.3) and the commutativity of

$$\begin{split} \widetilde{H}_{q+1}(SE_k) & \xrightarrow{\mathcal{E}_{k^*}} \widetilde{H}_{q+1}(E_{k+1}) \\ \approx & \downarrow \tau \qquad \approx & \downarrow \tau \\ \pi_{q+1}(SP^{\infty}SE_k) & \xrightarrow{(SP^{\infty}\mathcal{E}_k)_{\#}} \pi_{q+1}(SP^{\infty}E_{k+1}) \end{split}$$

which follows from the naturality of τ . For any spectrum $\mathbf{E} \in W_0$, we define a natural isomorphism $\tau : \tilde{H}_n(\mathbf{E}) \approx \pi_n(SP^{\infty}\mathbf{E})$ by the composition of isomorphisms

$$\tilde{H}_n(\mathbf{E}) \xrightarrow{\mathbf{i}_*^{-1}} \tilde{H}_n(\mathbf{E}^0) \xrightarrow{\boldsymbol{\tau}'} \pi_n(SP^{\boldsymbol{\infty}}\mathbf{E}^0) \xrightarrow{\mathbf{j}_*} \pi_n(SP^{\boldsymbol{\infty}}\mathbf{E}).$$

THEOREM (5.5). For any spectrum $\mathbf{E} \in \mathfrak{W}_0$ there is a natural isomorphism

$$\tau: \widetilde{H}_n(\mathbf{E}) \approx \pi_n(SP^{\infty}\mathbf{E}).$$

6. A natural equivalence

In this section, we construct a natural transformation of cohomology theories $SP_{\#}: \overline{\mathfrak{K}}^{*}(\mathbf{E}) \to \widetilde{\mathfrak{K}}^{*}(SP^{\infty}E)$. The observation that $SP_{\#}(S^{0})$ is an isomorphism then implies that $SP_{\#}$ is a natural equivalence.

For $X \in \mathcal{O}_0$, $SP_{\#}(X) : \overline{H}^n(X) \to \widetilde{H}^n(X; SP^{\infty}\mathbf{E})$ is given by the composite

$$\widetilde{H}_{-n}(\mathbf{F}(X,\mathbf{E}) \xrightarrow{\mathbf{\tau}} \pi_{-n}(SP^{\infty}\mathbf{F}(X,\mathbf{E})) \xrightarrow{\mathbf{\gamma} \not \ast} \pi_{-n}(\mathbf{F}(X,SP^{\infty}\mathbf{E}))$$
$$= \widetilde{H}^{n}(X;SP^{\infty}\mathbf{E})$$

where the map $\gamma : SP^{\infty}\mathbf{F}(X, \mathbf{E}) \to \mathbf{F}(X, SP^{\infty}\mathbf{E})$ is defined by

 $\gamma_k \langle f_1, \cdots, f_n \rangle(x) = \langle f_1(x), \cdots, f_n(x) \rangle,$

where $f_i \in F(X, E_k)$ and $x \in X$. Each γ_k is continuous since it is continuous on each finite symmetric product. It follows from the definitions of the maps involved that the diagrams

are strictly commutative (not just homotopy-commutative), where θ_k and λ_k are the maps which define the spectra $SP^{\infty}\mathbf{F}(X, \mathbf{E})$ and $\mathbf{F}(X, SP^{\infty}\mathbf{E})$, respectively, thus showing that the γ_k do indeed define a map of spectra

$$\gamma: SP^{\infty}\mathbf{F}(X, \mathbf{E}) \to \mathbf{F}(X, SP^{\infty}\mathbf{E}).$$

We now wish to show that $SP_{\#}$ is a natural transformation of cohomology theories. Since τ and $\gamma_{\#}$ are both natural with respect to maps $X \to Y$, it only remains to show that $SP_{\#}$ commutes with suspension. This follows from the commutativity of the diagram

$$\begin{split} \widetilde{H}_{k-n}(F(X,E_k) & \xrightarrow{\tau} \pi_{k-n}(SP^{\infty}F(X,E_k)) \xrightarrow{\gamma_{k\#}} \pi_{k-n}(F(X,SP^{\infty}E_k)) \\ & \downarrow (\psi_{k+1}^{-1} \circ \widetilde{\varepsilon}_k)_{*} & \downarrow (SP^{\infty}(\psi_{k+1}^{-1} \circ \varepsilon_k))_{\#} & \downarrow (\psi_{k+1}^{-1} \circ \lambda_k))_{\#} \\ \widetilde{H}_{k-n}(F(SX,E_{k+1})) \xrightarrow{\tau} \pi_{k-n}(SP^{\infty}F(SX,E_{k+1})) \xrightarrow{\gamma'_{k+1\#}} \pi_{k-n}(F(SX,SP^{\infty}E_{k+1})) \end{split}$$

where $\gamma' : SP^{\infty} \mathbf{F}(SX, \mathbf{E}) \to \mathbf{F}(SX, SP^{\infty}\mathbf{E})$ is the map defining $SP_{\#}(SX)$.

Observe now that if $X = S^0$, γ is an isomorphism of spectra. Since τ is always an isomorphism, it follows that $SP_{\#}(S^0)$ is an isomorphism. Hence, by (3.2) we have

THEOREM (6.1). $SP_{\#}: \bar{\mathfrak{K}}^{*}(\mathbf{E}) \to \tilde{\mathfrak{K}}^{*}(SP^{\infty}\mathbf{E})$ is a natural equivalence of cohomology theories.

DANIEL S. KAHN

7. Calculation of $\mathfrak{K}^*(SP^{\mathfrak{m}}E)$

Theorem (6.1) has reduced the problem of calculating $\bar{H}^n(X)$ to the calculation of $\tilde{H}^n(X; SP^{\infty}\mathbf{E})$. The calculation will proceed by showing that $SP^{\infty}\mathbf{E}$ is "essentially" a product of Eilenberg-MacLane spectra [24, §4, Ex. 6].

It is true that each $SP^{\infty}E_k$ may be split into a product of Eilenberg-Mac-Lane spaces [17], but there is no guarantee that this splitting will be compatible with the maps $\tilde{\alpha}_k : SP^{\infty}E_k \to \Omega SP^{\infty}E_{k+1}$. We will first show that $SP^{\infty}E$ may be "replaced" by a spectrum $\mathbf{F} = \{F_k, \beta_k\}$ for which

$$\tilde{\boldsymbol{\beta}}_{k \#} : \pi_r(F_k) \xrightarrow{\approx} \pi_r(\Omega F_{k+1})$$

for $r \geq 1$. It will then be possible to use the technique of Dold and Thom [4] to split each F_k° into a product of Eilenberg-MacLane spaces in such a fashion that this splitting is compatible with the maps $\tilde{\beta}_k$.

The method of constructing **F** will be analogous to the construction of the "infinite loop-space of the infinite suspension" of a space [5]. We first assume that each $\varepsilon_k : S \wedge E_k \to E_{k+1}$ is an inclusion. (That this assumption causes no problems will be proved in the following section.) Since each ε_k is an inclusion, so is each $\tilde{\rho}_k : SP^{\infty}E_k \to \Omega SP^{\infty}E_{k+1}$. Since each $SP^{\infty}E_k$ is a WAM, we may define a multiplication on $\Omega^r SP^{\infty}E_k \approx F(S^r, SP^{\infty}E_k)$ by the formula $(f \cdot g)(s) = f(s) \cdot g(s)$ for $f, g \in F(S^r, SP^{\infty}E_k)$ and $s \in S^r$. This multiplication makes $\Omega^r SP^{\infty}E_k$ into a WAM. The following lemma may be verified directly from the definitions:

LEMMA (7.1). $\Omega^r \tilde{\rho}_k : \Omega^r SP^{\infty} E_k \to \Omega^{r+1} SP^{\infty} E_{k+1}$ is a monomorphism.

Using (7.1), we form the union

$$F_{k} = SP^{\infty}E_{k} \mathsf{u}_{\tilde{\rho}_{k}}\Omega SP^{\infty}E_{k+1} \mathsf{u}_{\Omega \tilde{\rho}_{k+1}}\Omega^{2}SP^{\infty}E_{k+2} \mathsf{u} \cdots$$

and give this union the weak topology. It follows from (7.1) and the fact that F_{k+1} has the weak topology that the F_n are WAM's and that ΩF_{k+1} is isomorphic to F_k . Call this isomorphism $\tilde{\beta}_k$. It is possible that $F_k \in \mathfrak{W}_0$, but this (if true) is not necessary to our arguments.

LEMMA (7.2). $\mathbf{F} = \{F_k, \beta_k\}$ is an Ω -spectrum and the inclusion $\mathbf{i} : SP^{\infty}\mathbf{E} \to \mathbf{F}$ induces an isomorphism of homotopy groups.

Proof. Let $\alpha \in \pi_r(SP^{\infty}\mathbf{E})$ be an element such that $\mathbf{i}_{\#} \alpha = 0$ and let $h: S^{r+k} \to SP^{\infty}E_k$ represent α , where k is chosen so large that $i_{k\#}[h] = 0$. It follows that the map $i \circ h: S^{r+h} = D^{r+k+1} \to F_k$ can be extended to a map $H: D^{r+k+1} \to F_k$, where D^{r+k+1} is the (r+k+1)-disc having S^{r+k} as boundary D^{r+k+1} . Since D^{r+k+1} is compact, $H(D^{r+k+1}) \subset \Omega^n SP^{\infty}E_{k+n}$ for some n. It follows that the image of [h] in $\pi_{r+k+n}(SP^{\infty}E_{k+n})$ is 0 and hence that $\alpha = 0$. This proves that i is one-one. The proof that $\mathbf{i}_{\#}$ is onto is similar.

By (3.2) and (3.3), i induces a natural equivalence of cohomology theories

 $T_i: \mathfrak{K}^*(SP^{\infty}\mathbf{E}) \to \mathfrak{K}^*(F)$. We next show that \mathbf{F} may be split into a product of Eilenberg-MacLane spectra.

If G is a countable abelian group, let $\mathfrak{L}(G, q)$, where q > 0, denote the class of spaces $L \in \mathfrak{C}_0$ such that, $H_r(L; Z) = 0$ if $r \neq q$ and $\pi_q(L) \approx H_q(L; Z) \approx G$. $\mathfrak{L}(G, q)$ is non-empty [4, p. 278].

Define $G_n = \pi_n(SP^{\infty}\mathbf{E}) \approx \pi_n(\mathbf{F}) \approx \widetilde{H}_n(E; Z)$. We construct spectra $\mathbf{Y}^n = \{Y_k^n, \zeta_k^n\}$ as follows: Let $Y^n \in \mathfrak{L}(G_n, 1)$. We set $Y_k^n = S^{n+k+1} \wedge Y^n$. (Recall that $S^r =$ base-point if r < 0.) Observe that if $n + k \ge 1$, $Y_k^n \in \mathfrak{L}(G_n, n + k)$ and hence $SP^{\infty}Y_k^n$ is an Eilenberg-MacLane space of type $K(G_n, n + k)$. The maps $\zeta_k^n : S \wedge Y_k^n \to Y_{k+1}^n$ are defined to be the obvious inclusions.

DEFINITION (7.3). The weak cartesian product $\mathbf{P}_{i=q}^{\infty} X_i$ of the spaces X_i is defined after [4] as the union of the $\prod_{i=q}^{n} X_i$ with the weak topology, where we identify $\prod_{i=q}^{n} X_i$ with the subspace $(\prod_{i=q}^{n} X_i) \times \{x_{n+1}\}$ of $\prod_{i=q}^{n+1} X_i$, x_{n+1} being the base-point of X_{n+1} .

LEMMA (7.4). Let $W = \mathbf{P}_{i=q}^{\infty} X_i$ and let K be an arbitrary compact space. Then F(K, W) is naturally homeomorphic with $\mathbf{P}_{i=q}^{\infty} F(K, X_i)$ and

$$[K, W] \approx \lim_{\to} [K, \prod_{i=q}^{n} X_i].$$

In particular, $\Omega W \approx \mathbf{P}_{i=q}^{\infty} \Omega X_i$.

Proof. The lemma is an elementary consequence of the observation that any compact subset of W is contained in $\prod_{i=q}^{n} X_i$ for some n. This is true because W was endowed with the weak topology.

Now consider the spectrum $\mathbf{W}^n = \{W_k^n, \eta_k^n\}$ where $W_k^n = SP^{\infty}Y_k^n$ and $\tilde{\eta}_k^n$ is defined by the formula

$$\tilde{\eta}_k^n \langle y_1, \cdots, y_r \rangle(t) = \langle \zeta_k^n(t \land y_1), \cdots, \zeta_k^n(t \land y_r) \rangle.$$

Set $W_k = \mathbf{P}_{n \in z} W_k^n$. Observe that since W_k^n is the base-point for n < 1 - k, this definition makes sense. Define maps $\tilde{\eta}_k : W_k \Omega \quad W_{k+1}$ to be $\mathbf{P}_{n \in z} \tilde{\eta}_k^n$ using (7.4). This determines a spectrum $\mathbf{W} = \{W_k, \eta_k\}$.

We now wish to calculate $\tilde{H}^r(X; \mathbf{W})$. Since $\tilde{\eta}_k^n$ is a homotopy equivalence for $n + k \ge 1$ and W_k^n is a space of type $K(G_n, n + k)$, we have

$$\widetilde{H}^r(X; \mathbf{W}^n) \approx \widetilde{H}^{n+r}(X; G_n).$$

This and (7.4) imply the following:

PROPOSITION (7.5). $\tilde{H}^r(X; \mathbf{W}) \approx \sum_n \tilde{H}^{n+r}(X; \tilde{H}_n(\mathbf{E}))$, this formula being natural for $X \in \mathcal{O}_0$.

We now construct a map $W \to F$ which induces an isomorphism of homotopy groups. We first define maps $\varphi^n : Y^n \to F$. Let $\varphi_{1-n}^n : Y_{1-n}^n \to F_{1-n}$ be a map which induces an isomorphism of fundamental groups. If Y_k^n consists only of the base-point, let φ_k^n be the constant map. Otherwise, ζ_k^n is the identity map and we can define φ_{k+1}^n by requiring that the diagram

be commutative.

Since F_k is a WAM, φ_k^n extends to a homomorphism

$$\psi_k^n: SP^{\infty}Y_k^n = W_k^n \to F_k$$

which is a w.c. map.

LEMMA (7.7). The diagram

$$SP^{\infty}Y_{k}^{n} \xrightarrow{\psi_{k}^{n}} F_{k}$$

$$\downarrow \tilde{\eta}_{k}^{n} \qquad \qquad \downarrow \tilde{\beta}_{k}$$

$$\Omega SP^{\infty}Y_{k+1}^{n} \xrightarrow{\Omega\psi_{k+1}^{n}} \Omega F_{k+1}$$

is strictly commutative.

Proof.

$$\begin{aligned} (\Omega\psi_{k+1}^{n}) \circ \tilde{\eta}_{k}^{n} \langle y_{1}, \cdots, y_{n} \rangle (t) &= \psi_{k+1}^{n} \langle \zeta_{k+1}^{n}(t \wedge y_{1}), \cdots, \zeta_{k}^{n}(t \wedge y_{r}) \\ &= \langle \varphi_{k+1}^{n} \zeta_{k}^{n}(t \wedge y_{1}), \cdots, \varphi_{k+1}^{n} \zeta_{k}^{n}(t \wedge y_{r}) \rangle \\ &= \langle \beta_{k}(t \wedge \varphi_{k}^{n}(y_{1})(t), \cdots, \beta_{k}\varphi_{k}^{n}(y_{r})(t) \rangle \\ &= \tilde{\beta}_{k} \langle \varphi_{k}^{n}(y_{1}), \cdots, \varphi_{k}^{n}(y_{r}) \rangle (t) \\ &= \tilde{\beta}_{k} \psi_{k}^{n} \langle y_{1}, \cdots, y_{r} \rangle (t) \end{aligned}$$

since $\tilde{\beta}_k$ is an isomorphism, Q.E.D.

It follows that the w.c. maps ψ_k^n define a w.c. map of spectra

$$\boldsymbol{\psi}^n:SP^{\boldsymbol{\infty}}\mathbf{Y}^n\to\mathbf{F}$$

such that

Define ψ : $W \to F$ by

It follows that
$$\psi$$
 is a w.c. map of spectra which induces an isomorphism of homotopy groups. By (3.2) and (3.3), ψ induces a natural equivalence

$$T(\mathbf{\psi}): \mathfrak{\tilde{K}}^*(\mathbf{W}) \to \mathfrak{\tilde{K}}^*(\mathbf{F}).$$

480

Thus the composite

$$\widetilde{\mathfrak{K}}^{*}(\mathbf{E}) \xrightarrow{SP_{\$}} \widetilde{\mathfrak{K}}^{*}(SP^{\infty}\mathbf{E}) \xrightarrow{T(\mathbf{i})} \widetilde{\mathfrak{K}}^{*}(\mathbf{F}) \xrightarrow{T(\boldsymbol{\psi})^{-1}} \widetilde{\mathfrak{K}}^{*}(\mathbf{W})$$

is a natural equivalence. This and (7.5) imply the following:

THEOREM (7.8). There is a natural equivalence

$$\widetilde{H}_n(F(X;\mathbf{E})) \approx \sum_r \widetilde{H}^{r-n}(X;\widetilde{H}_r(\mathbf{E}))$$

defined for $X \in \mathcal{P}_0$.

8. Alterations of E

In the previous section, it was assumed that $\mathbf{E} = \{E_k, \varepsilon_k\}$ was a spectrum such that each ε_k was an inclusion. In this section we show that from the point of view of $\mathcal{R}^*(\mathbf{E})$, \mathbf{E} may always be "replaced" by such a spectrum. "Replacement" of \mathbf{E} by \mathbf{Q} means the exhibiting of a natural equivalence

 $T: \overline{\mathfrak{X}}^*(\mathbf{E}) \to \overline{\mathfrak{X}}^*(\mathbf{Q})$. By (3.4), such a *T* is given by a map $\mathbf{E} \to \mathbf{Q}$ or $\mathbf{Q} \to \mathbf{E}$ which induces an isomorphism of homotopy groups.

Given $\mathbf{E} = \{E_k, \varepsilon_k\}$, let $\mathbf{F} = \{F_k, \varphi_k\}$ be the subspectrum of \mathbf{E} for which $F_k = E_k$ if $k \ge 0$ and F_k = base-point if k < 0. This inclusion $\mathbf{F} \to \mathbf{E}$ induces an isomorphism of homotopy groups. Hence \mathbf{F} "replaces" \mathbf{E} . We now "replace" \mathbf{F} by a spectrum $\mathbf{Q} = \{Q_k, \mu_k\}$ for which each μ_k is an inclusion.

If one has a map $f: X \to Y$, the (reduced) mapping cylinder C(f) is defined as follows: Let I^+ be the disjoint union of the unit interval [0, 1] with a point p. C(f) is to be the identification space obtained from $Y \cup (X \land I^+)$ via the identifications $\{f(x) \sim (x \land 1)\}$. Note that $S \land C(f)$ is homeomorphic with C(Sf).

Let

(8.1)
$$X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_1} \cdots \xrightarrow{f_{n-1}} X_n$$

be a sequence of spaces and maps. The compound mapping cylinder of the sequence (8.1) is defined as follows: We may view X_{n-1} as a subspace of $C(f_{n-1})$ and f_{n-2} as a map $f'_{n-2}: X_{n-2} \to C(f_{n-1})$. This defines $C(f'_{n-2})$. In general, view f_{n-k} as a map $f'_{n-k}: X_{n-k} \to C(f'_{n-k+1})$. The compound mapping cylinder of (8.1) is defined to be $C(f'_0)$.

Returning to the spectrum $\mathbf{F} = \{F_k, \varphi_k\}$, let Q_n be the compound mapping cylinder of the sequence

$$S^n F_0 \xrightarrow{S^{n-1} \varphi_0} S^{n-1} F_1 \longrightarrow \cdots \longrightarrow SF_{n-1} \xrightarrow{\varphi_{n-1}} F_n.$$

We may view $S \wedge Q_n$ as a closed subspace of Q_{n+1} and denote these inclusions by $\mu_n : S \wedge Q_n \subset Q_{n+1}$. F_n is a deformation retract of Q_n for every n. Hence the inclusions $g_n : F_n \subset Q_n$ define a map of spectra $\mathbf{g} : \mathbf{F} \to \mathbf{Q}$ which induces an isomorphism of homotopy groups. Hence, \mathbf{Q} "replaces" \mathbf{F} . Since \mathbf{F} "replaces" \mathbf{E}, \mathbf{Q} is a spectrum $\{Q_k, \mu_k\}$ for which each μ_k is an inclusion which "replaces" \mathbf{E} .

9. Applications

We first show that we may apply Theorem (7.8) for X an arbitrary compact space.

THEOREM (9.1). Let X be an arbitrary compact space and $\mathbf{E} \in \mathfrak{W}_0$ a spectrum then there is a natural equivalence

$$\widetilde{H}_n(\mathbf{F}(X, \mathbf{E})) \approx \sum_r {}^c H^{r-n}(X; \widetilde{H}_r(\mathbf{E})),$$

where ${}^{\circ}H^{p}(X; G)$ denotes the pth reduced Čech cohomology group of X with coefficients in G.

Proof. Let J(X) denote the set of finite open coverings of X. If $\alpha \in J$, denote by X_{α} the nerve of α and by $\varphi_{\alpha} : X \to X_{\alpha}$ a projection. Also set

$$\bar{\varphi}_{\alpha} = F(\varphi_{\alpha}, 1) : F(X_{\alpha}, Y) \to F(X, Y),$$

where Y is any space. The maps $\bar{\varphi}_{\alpha}$ define homomorphisms

$$\Phi_*: \operatorname{Lim}_{\to} \tilde{H}_n(\mathbf{F}(X_\alpha, \mathbf{E})) \to \tilde{H}_n(\mathbf{F}(X, \mathbf{E})).$$

(9.1) will follow from (7.8) if we can show that Φ_* is an isomorphism. This last is a consequence of the following lemma.

LEMMA (9.2). Let $Y \in \mathfrak{W}_0$. Then

$$\Phi_*: \lim_{\to} \widetilde{H}_n(F(X_\alpha, Y)) \to \widetilde{H}_n(F(X, Y))$$

is an isomorphism.

Proof. Let $u \in \tilde{H}_n(F(X, Y))$. There is a finite CW-complex K, an element $w \in \tilde{H}_n(K)$ and a map $f: K \to F(X, Y)$ such that $f_*(w) = u$. (For example, take K to be a finite subcomplex of the geometric realization of the singular complex of F(X, Y) [14], where K carries u.) Let $\bar{f}: K \wedge X \to Y$ be the adjoint of f. Since product coverings are cofinal in the set of coverings of $K \times X$ [6], it follows from the "bridge" theorems of Hu [9] that there is a map $\bar{g}: K_{\beta} \wedge X_{\alpha} \to Y$ such that the diagram

(9.3)
$$K \wedge X \xrightarrow{\psi_{\beta} \wedge \varphi_{\alpha}} K_{\beta} \wedge X_{\alpha}$$
$$\overrightarrow{f} \qquad \overbrace{g}_{Y}$$

is homotopy-commutative. Here $\beta \in J(K)$, $\alpha \in J(X)$ and $\psi_{\beta} : K \to K$ is a projection. Let $g: K_{\beta} \to F(X_{\alpha}, Y)$ be the adjoint of \bar{g} . It follows from the homotopy-commutativity of (9.3) that the diagram

(9.4)
$$\begin{array}{ccc} K & \stackrel{f}{\longrightarrow} & F(X, \ Y) \\ & & \downarrow \psi_{\beta} & & \downarrow \bar{\varphi} \\ & & K_{\beta} \stackrel{g}{\longrightarrow} & F(X_{\alpha}, \ Y) \end{array}$$

is homotopy-commutative. Write $v = g_*(\psi_{\beta*} w)$. Then $\bar{\varphi}_{a*} v = u$ and Φ_* is onto. The proof that Φ_* is one-one is similar.

The following proposition will show how (7.8) and (9.1) may be used to obtain information about particular function spaces F(X, Y). There is a natural homomorphism

$$\nu: \tilde{H}_j(F(X, Y)) \to \tilde{H}_j(\mathbf{F}(X, \mathbf{S} \land Y)) = \lim_{\to} \tilde{H}_{j+r}(F(X, S^r \land Y)).$$

We assume that X has finite dimension d > 0 and that Y is (n - 1)-connected, n > d.

PROPOSITION (9.5). The homomorphism

 $\nu: \tilde{H}_j(F(X, Y)) \to \tilde{H}_j(\mathbf{F}(X, \mathbf{S} \land Y))$

is an isomorphism for j < 2(n-d) - 1 and onto for j = 2(n-d) - 1.

Proof. (9.6) follows from a slight restatement of the discussion on p. 350 of [20].

Note that F(X, Y) is (n - d - 1)-connected, so that (9.6) gives the stable homology groups of (9.7). Applying (9.6) to (9.1) gives the following:

COROLLARY (9.6). Let X and Y be as above. Then, for j < 2(n-d) - 1, we have

$$\widetilde{H}_{j}(F(X, Y)) \approx \sum_{r=0}^{d} {}^{c}H^{r}(X; \widetilde{H}_{r+j}(Y)).$$

Remark (9.7). Using (9.5) and (9.1), it follows from Serre's C-theory [18] that if X is an arbitrary compact space, $Y \in W_0$ and either ${}^{\circ}H^n(X)$ is finite for all n or $\tilde{H}_n(Y)$ is finite for all n, then $\{X, Y\}$, the group of stable homotopy classes of maps $X \to Y$ is finite. This result is essentially due to Thom [22]. Similar results may be derived for p-components of $\{X, Y\}$.

BIBLIOGRAPHY

- A. L. BLAKERS AND W. S. MASSEY, The homotopy groups of a triad, II, Ann. of Math. (2), vol. 55 (1952), pp. 192-201.
- K. BORSUK, Concerning the homological structure of the functional space S^{m^{*}}, Fund. Math., vol. 39 (1952), pp. 25-37.
- 3. E. H. BROWN, Cohomology theories, Ann. of Math. (2), vol. 75 (1962), pp. 467-484.
- 4. A. DOLD AND R. THOM, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2), vol. 67 (1958), pp. 239–281.
- E. DYER AND R. K. LASHOF, Homology of iterated loop spaces, Amer. J. Math., vol. 84 (1962), pp. 35–88.
- 6. S. EILENBERG AND N. STEENROD, Foundations of algebraic topology, Princeton, Princeton University Press, 1952.
- R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., vol. 51 (1945), pp. 429-432.
- 8. P. J. HILTON, An Introduction to homotopy theory, Cambridge, 1953.
- S. T. HU, Mappings of a normal space into an absolute neighborhood retract, Trans. Amer. Math. Soc., vol. 64 (1948), pp. 336-358.
- 10. D. M. KAN, Adjoint functors, Trans. Amer. Math. Soc., vol. 87 (1958), pp. 294-329.
- 11. —, Semi-simplicial spectra, Illinois J. Math., vol. 7 (1963), pp. 463-478.

- S. D. LIAO, On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., vol. 77 (1954), pp. 520-551.
- 13. E. L. LIMA, The Spanier-Whitehead duality in new homotopy categories, Summa Brasil. Math., vol. 4 (1958-59), pp. 91-148.
- 14. J. MILNOR, Geometric realization of a semi-simplicial complex, Ann. of Math. (2), vol. 65 (1957), pp. 357-362.
- 15. ——, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., vol. 90 (1959), pp. 272–280.
- 16. J. C. MOORE, On a theorem of Borsuk, Fund. Math., vol. 43 (1956), pp. 195-201.
- 17. ——, Semi-simplicial complexes and Postnikov system, Symposium Internacional de Topologia Albegraica, Mexico City, 1958, pp. 232–247.
- J. P. SERRE, Groupes d'homotopie et classes des groupes abéliens, Ann. of Math (2), vol. 58 (1953), pp. 258-294.
- 19. ——, Homologie singulière des espaces fibres, Ann. of Math. (2), vol. 54 (1951), pp. 425-505.
- 20. E. H. SPANIER, Function spaces and duality, Ann. of Math. (2), vol. 70 (1959), pp. 338-378.
- _____, Infinite symmetric products, function spaces and duality, Ann. of Math. (2), vol. 69 (1959), pp. 142-198.
- R. THOM, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., vol. 28 (1954), pp. 17-86.
- 23. G. W. WHITEHEAD, Generalized homology theories, OOR Project No. 2246, Report No. 3.
- 24. , Generalized homology theories, Trans. Amer. Math. Soc., vol. 102 (1962), pp. 227-283.
- On the homotopy type of ANR's, Bull. Amer. Math. Soc., vol. 54 (1948), pp. 1133-1145.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS

THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS