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1. Introduction
The purpose of this paper is the investigation of the singular homology

groups of F(X, Y), the space of base-point preserving maps from X to Y
endowed with the compact-open topology [7]. We restrict ourselves to the
case where X is compact and Y has the homotopy type of a countable CW-
complex.

This problem was investigated by Borsuk [2] who studied the first nonzero
Betti number of F(X, S). Later, Moore [16] calculated the reduced singular
integral homology groups (F(X, S)) in the stable range. (We suppress
notation of the coefficient group in case of integer coefficients.) Moore’s
result as restated by Spanier [20] in the language of spectra [13] says that
/_ F(X, S) /"(X), where S is the spectrum of spheres.
The crucial part of Moore’s proof is that the homology of F(X, S’) defines

a cohomology theory on X in the stable range. It is shown here that if t
is a spectrum, the groups /(X) /_(F(X, E) define a generalized
cohomology theory [24] for finite complexes X. From a theorem of Brown
[3], it follows that there is a spectrum F such that/’(X) /’(X; F), the
nth cohomology group of X with coefficients in the spectrum F. This implies
that the homotopy groups of F are isomorphic to the homology groups of E.
This suggests that F might be the infinite symmetric product of E and this
is indeed the case. A final calculation arrives at the formula (Theorem (7.8))

It is assumed that the reader is familiar with the results and notation of
Sections 1 through 5 of [24] which present the basic notions of spectra and
generalized cohomology theories.

Sections 2 and 3 present elementary results on spectra and generalized
cohomology theories. In Section 4 it is proved that the groups/(X) de-
fine a generalized cohomology theory for finite complexes. Section 5 intro-
duces the notion of the infinite symmetric product SP" of a spectrum E
and in Section 6 it is proved that/7(X) /(X; SPE). Sections 7 and
8 are devoted to the calculation of/(X; SPE). In the final section, the
results are applied to function spaces (rather than function spectra) and to
the case where X is an arbitrary compact space.

This paper is essentially Part II of the author’s doctoral thesis written
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2. Preliminaries
In this section we discuss some elementary properties of spectra that will

be of use in the sequel.
In this paper, space will mean Hausdorff space with base-point and map

will mean continuous, base-point preserving map. In fact, unless otherwise
noted, spaces and maps will be assumed to belong to the category 0 whose
obiects are spaces having the homotopy type of a countable CW-complex
with base-vertex and whose morphisms are all base-point preserving maps.
Further, all n-ads will be assumed to have the homotopy type of CW-n-ads.
The properties of this category have been discussed in [15]. We will say that
a spectrum E /En, cn} is in 0(E e 20) if each E. e W0. The full sub-
category of W0 whose objects are countable CW-complexes is denoted by Co.
We first sketch a proof of an analogue of the theorem of J. H. C. Whitehead

[25] for maps of spectra. This is an unpublished "folk theorem", proved by
D. M. Kan among others.

Let E {En, } be a spectrum and let F F, } be a subspectrum of
E, thatis, (E,F) is a pair in W0 and e cnl (S ^ F). One has the
usual exact homotopy and homology sequences for the pair (E, F) [23].
The maps e determine maps b S ^ (En/F,,) E+I/F+ which makes
{E,,/F, b into a spectrum /F. Let p E --) E/F and p’ (E, F) --be the maps of spectra induced by the proiections p" E E/F and let

E --) (E, F) be the inclusion.

t)ROPOSITION (2.1). The diagrams

P \ //P P, \ / P*
(/) (/)

are commutative and both p and p, are isomorphisms.

Proof. Commutativity is obvious as is the fact that p. is an isomorphism.
That p’ is an isomorphism can be proved using the Blakers-Massey triad
theorem [1] and the technique used in the proof of (4.1) below.

:PRoPosITION (2.2).
(E) 0 for all n.

Let E be a spectrum. Then if r E) 0 for all n,

Proof. It may be assumed that E is a semi-simplicial group spectrum [11].
The hypothesis that ,(E) 0 then implies that E has as a deformation
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retract the subcomplex generated by the base-point. It follows that
Hn (Ii) 0 for all n.
Remark. The converse of (2.2) holds when E is convergent [24, p. 242],

but not in general. D.M. Kan has supplied a counter-example (unpublished).
Hurewicz theorems describing the first non-zero homotopy and homology
groups of a spectrum have also been proved with a similar caution about con-
vergence.

PROPOSITION (2.3). Let f" E --> F be a map of spectra in 2o. Then if
71"n (]) -"--> n() i8 an isomorphism for every n, f, /(E) ,(F) is

an isomorphism for every n.

Proof. This follows from (2.1) and (2.2) using standard mapping cylinder
techniques [25] as adapted to spectra.
We conclude this section with a discussion of loop spectra. Let

1 {E, } be a spectrum e 0. The spectrum E may be described equally
well using the adjoint maps [10] "E= --. t2E+ associated to the maps
vn S ^ En -- En+l. E F(S, 1) is the loop-spectrum of E [24, p. 242].
gtl has maps

k F(S, Ek) -- F(S, F(S, E+I) 2E+
defined by (h)(s)(t) g(,(t))(s), where ), e F(S, E) and s, e S.

We write F(1, g) gtY -- 2Z. The following lemmaLetg" Y---)Z.
is easily proved.

LEMMA (2.4). The following diagrams are anti-commutative"

where v, is the homology suspension for path fibrations.
In addition to the usual definition of the groups /-n(]) [24, p. 245], they

are also given as the direct limit of sequences

gk, ,
---+ H+(E) - ,+(E+) H,++(E+) ....

From (2.4) it follows that the maps

"/7.+(UE+,) -/.+(eE+),
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where Ck(z) (-1)k+l.z, define an isomorphism
a is also defined by the homomorphisms

(-- 1)k+1. k$" /n+(E) --/.+k(12Ek+l).
Similarly, the maps

(-1)+1. +(E) -, +(;+)

define an isomorphism 0" r(E) rn_l(2E). It is easily shown that 0-1

coincides with the isomorphism o rn_l(tE)r(E) defined by G. W. White-
head [24, p. 245].

3. Cohomology theories

We recall the definition of a generalized cohomology theory [24]. Let (%
be the category of finite CW-complexes with base-vertex and base-point
preserving maps. A generalized cohomology theory * on (% consists of a
sequence of contravariant functors

/ (eo a,
where a is the category of abelian groups and homomorphisms, and a se-
quence of natural transformations

n. /n+l(r S-- H

S being the suspension functor on (%, satisfying the following axioms"

If f0, fl 0 are homotopic maps, then

n(fo) /n(fl)
(C). If X e (e0, then

o.n(z) /.n+l(sx) n(x).
(C). If (X,A) isapairin(P0,i’A X, andifp’X--)X/A is the

identification map, then the sequence

/"(X/A) (P) (X) (A)
is exact.

Generalized cohomology theories frequently arise as follows" Let E be a
spectrum and let X e (%. Define

In(X; E) T’-n((X, E))

where F(X, E) is the function spectrum of base-point preserving maps of X
into the spaces E [24, 4, Ex. 6]. Iff" X ---> Y, then the maps

F(f, 1) F(Y, E) ---) F(X, E)

define a map f’ F( Y, E) --, F(X, E). Define

n(f) f r_(F(Y, E)) r_(F(X, E)).
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For X e (P0, a(X) :/+I(SX; E) n(x; E) is defined to be the com-
position

O-1__((z, E)) , __(e(Z, E)) _((Z, E)),

where F(SX, E) -o F(X, E) is the natural isomorphism [24, 4, Ex. 6].

PROPOSITION (3.1). *(E) {/", as} is a generalized cohomology theory
on (Po.

Proof. [24]. We remark that the blanket assumption made in [24] that
all the spaces Ek have the homotopy type of a CW-complex was not necessary
for the proof of this particular result. The spaces Ek may be arbitrary.
Remark. A theorem of E. H. Brown [3] states that any generalized coho-

mology theory 5:*, for which /*(S) is countable, is naturally equivalent
with C*(1) for some spectrum 1.
The following is a well-known "folk-theorem."

PROPOSITION (3.2). Let * and * be two generalized cohomology theories
on o and let T 5:* * be a natural transformation of cohomology theories.
Then, if T’(S) is an isomorphism for every n, T is a natural equivalence.

Proof. To show that T(X) is an isomorphism, one proceeds by induction
on the number of cells in X. The proof is similar to Moore’s proof of Theorem
3 in [16].
Example (3.3). Let 1 and 1’ be spectra and let g t -- 1’ be a weakly

continuous (w.c.) map of spectra (each gk is w.c., that is, continuous on com-
pact subsets). Then g induces a natural transformation of cohomology
theories via

F(1, g): r.(F(X, l)) --, r.(F(X, 1’))

since w.c. maps induce homomorphisms of homotopy groups.
T(S) may be identified with g r.(]) --, r.(]’).

In this case

PROPOSITION (3.4). Let g: l --. F.’ be a map of spectra e XV such that
g: r.(I) r.(]’). Then

F(1, g). ,(F(X, t)) /.(F(X, t’)) for all X e (Po.

Proof. By (3.2) and (3.3), F(1, g) r.(F(X, 1)) -- r.(F(X, I’)) is
an isomorphism. By [15], F(X, I) and F(X, I’) are in W0. The proposi-
tion now follows from (2.3).

4. /-]*(X) as a generalized cohomology theory
We have already made the definition/’(X) /_,(F(X, E)). In this

section we shall show that the functors/ determine a generali,ed cohomology
theory *(E) on (e0.
We assume E e W0. The natural transformations of functors
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are defined by the composites
--1

/--(F(SX, E)) //* /--(eF(X, E)) H-(F(X, E)),

where is the isomorphism described in Section 2. Naturlity of is clear.

THEOREM (4.1). *(E) {, } is a generalized cohomology theory on
(Po.

Proof. Axioms (C) nd (C) are esily verified. It remains to prove
that the exactness xiom (C) is satisfied. Let (X, A) be a pair in (P0 and
let i" A c X and p X --+ X/A be the canonical maps.

LEMMA (4.2). F(i, 1) F(X, E) -- F(A, E) is a fibre map in the
sense of Serre [19] and F(p, 1) F(X/A, E) ---. F(X, E) is the inclusion
of the fibre into the total space.

Proof. [16, pp. 200-201].

LEMMA (4.3). Suppose d >_ dim X and that Y is (n 1)-connected, where
n > d. Then F(X, Y) is (n d 1)-connected.

Proof. We use the fact that r(F(X, Y) o(F(S ^ X, Y)). If
(dim X) + k < n, then r(F(X, Y)) ro(F(S ^ X, Y)) 0 by standard
obstruction theory.
/(i) o/(p) 0 since p i is the constant mp. To complete the

proof of (4.1) it remains to be shown that if u e

_
(F(X, E) is in the kernel

of//(i), then u is in the image of/(p). Let u I_(F(X, E)) be
representative of u. We my ssume k is chosen so lrge that . u 0.

Define new spectrum E’ {E’, ’} by

(4.4) E E for all i _< ]%

(4.5) E+ S ^ Eforallj> 0,

(4.6) e foralli < k,

(4.7) e,+ identity for ll j >_ 0.

It is easy to verify that the mps g E’ --* E, given by

(4.8) g, identity for i _< k

(4.9) g,+ for j > 0 is the composite
--1

S^ E S S’- ^ E+-->"’--+S ^ E+i-1 8k+:i-, Ek+.i
determine a map of spectra g" E’ -- E. The maps F(1, g) define a
map of spectra F( Y, E’) -- Y, E).
By (4.4) and (4.8) there is an element u’ /_.(F(X, E) representing

an element u’ /_.(F(X, E’)) for which . u’ u and hence, . u’ u.
Let v’ be the image of u’ in t_,,+.(F(X, E+)) where we choose
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N> 1/2(n-f-k33d),withd> dimX.
(4.3) and [19, III, Prop. 5] the sequence

(4.1o)
k-+N(F(X/A,E’+N))

-,+N(F(X,E+N))

also represents ut. By (4.2),

_!
"t,+v* Ik-n+N(F(A, E+))

is exact. Since ,. 0, we have ,+. 0. By the exactness of (4.10),
_p W ).there is an element w’ e Ik_n+v(F(X/A, E+)) such that p+.

Let w’ be the class of w’ in _,(F(X/A, E’)). Then w’ u’. From
the commutativity of

-n((X/A, ’) -n((X, -,’))

-((X/A, ,) -((X, )
it follows that w . w’ is a class such that . w u.
image of/_in (p), completing the proof of (4.1).

Hence, u is in the

5. Infinite symmetric products
In this section, we introduce the notion of the infinite symmetric product

SPF., of a spectrum 1. We show that the well-known theorem of Dold
and Thorn [4] that/,(X) r,(SPOOX) for "nice" spaces may be used to
obtain an isomorphism (ti) r, (SPOOF.,).
We review the basic material about infinite symmetric products. For

details see [4], [21]. Let E e W0 and let e0 be its base-point. The n-fold
symmetric product SP’E, n > O, of E is the identification space En/Gn,
where E is the n-fold cartesian product of E with itself and G,, the sym-
metric group on n letters, acts on E by permuting coordinates. Thinking
of the points of SP’E as unordered n-tuples (el, e,} of points of e e E,
SP’E may be imbedded as a closed subspace of SP’+IE by identifying
(e, e,} with (e0, e, en}. Writing SPE e0, we have

eo SPE SPE SP’E SP’+E ....
The union of the SP’E is called SPOOE, the infinite symmetric product of E,
assigned the base-point (e0} and topologized by calling a set C SPOOE
closed if and only if C n SP’E is closed for every n >_ 0. The multiplication
SPOOE X SPOOE --> SPOOE defined by

(e, e}, (e,+, e,+,}) ---> (e, e+,}

makes SPE into a weak abelian monoid (WAM), that is, an abelian monoid
whose product is weakly continuous. SPOOE is free in the sense that if W is
a WAM with unit w0 and g" E W such that f(eo) w0, then f extends
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uniquely to w.e. homomorphism O:SPaE W. In particular,

g E F c SPaF
determines a map

SPag SPaE -.-. SPaF,
which in this case is continuous.

PROPOSITION (5.1). SP is a functor which preserves homotopy and which
takes Wo to Wo

Proof. The only part of (5.1) not proved in [4] is the observation that if
E o, SPaE Wo. If E e W0, then E has the homotopy type of a locally
.finite simplicial complex K [15]. By [4], [12] SPaE can be given the structure
of a countable CW-complex. Since SP is a functor which preserves ho-
motopy, it follows that SPaE W0.

PROPOSITION (5.2). If E W0 is connected, there is a natural isomorphism

:/(E) (SPE)

for all q.

Proof. Use (5.1) and [21, (7.5)].
We now define the functor SP for a spectrum E {E, e}. We define

maps

oh SSPaE SPaSEk,

k SPaE -"* spasEk

pk(t ^ (el,’",e,,}) (t ^ el,...,t ^
,((e,...,e,))(t) (t e,...,t

We then define maps

a SSPE SPE+
by the compositions

a SSPE o SPSPSE SP E+,

SPE SPeSPSE SPE+.
Then the a and are adjoint maps which define a spectrum

SpE SPE }.

If E, F are spectra, then a map g E F induces a map

SPg SPE SPF.

and SP’E -- SpaE,+
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LEMMA (5.3). Let E o such that every E is connected.
tivity holds in the diagrams

Then commta-

q(E) * q+(SE)

rq(SPE) S,, q+(SSPE) p#
rq+(SPSE)

and

q(E) * iq+(SE)

-(SP ) .(aSpSE). n., .+(SPSE).
[21, (10.1)].

Remark (5.4). Let t be a spectrum and let E be the subspectrum of I!;
for which E is the path-component of the base-point of E. Then, since

e(SE) E+ and a(SSP’E) SP E+,

the inclusions i" E --, E and j" SP’E --, SP’CF induce isomorphisms of
homotopy and homology groups.

If E 0 is a spectrum for which each E is connected, then the isomor-
phisms

r t-,+(E,) +(SP’CE,)
define an isomorphism +’ :/,(1) r,(SP’CE). This follows from (5.3)
and the commutativity of

,,+(SE) s, Iq+(E+)

.+(SPSN) (SPe), -e+(SPN+)

which follows from the naturality of r. For any spectrum I e 0, we de-
fine a natural isomorphism "/(Ii) r(SPF.) by the composition of
isomorphisms

/n(E) i1 /n(E) -n(SPC-,) j*

TnEOE (5.5). For any spectrum E %Vo there is a natural isomorphism
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6. A natural equivalence
In this section, we construct a natural transformation of cohomology theories

SPa N:* I,) --> * SPE). The observation that SP(S) is an isomor-
phism then implies that SP is a natural equivalence.
For X e (Po SP(X) t’(X) --> In(x; SPY’S-,) is given by the composite

where the map . SPF(X, F.,) -- F(X, SP’F.,) is defined by

A)(x) ff (x),

where f e F(X, E) and x e X. Each , is continuous since it is continuous
on each finite symmetric product. It follows from the definitions of the maps
involved that the diagrams

SSP’F(X, E) S’ SE(X, SP’E)

SP’F(X, E+I) ..+ , F(X, SP’*E+)
are strictly commutative (not just homotopy-commutative), where 0h and, are the maps which define the spectra SPF(X, l?,) and F(X,
respectively, thus showing that the / do indeed define a map of spectra

,, SP’F(X, E) F(X, SP’*I,).
We now wish to show that SP is a natural transformation of cohomology

theories. Since and ,a are both natural with respect to maps X .-. Y,
it only remains to show that SP commutes with suspension. This follows
from the commutativity of the diagram

-,(F(X, E,) r
r-,(SP’F(X, E,) ")’* r-,(F(X, SP*E) )

,-(F(SX,E+)) r -(SP F(SX, E+)) + )-,(F(SX, SPE.+))

where ’’ SPF(SX, E) F(SX, SP) is the p defining SP(SX).
Observe now that if X S, y is an isomorphism of spectra. Since is

always an isomorphism, it follows that SPa(S) is a isomorphism. Hence,
by (3.2) we have

Ton (6.1). SP" *(E) *(SPE) is a natural equ#alence 4
cohomology theors.
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7. Calculation of 5:*(SPE)

Theorem (6.1) has reduced the problem of calculating FIn(X) to the calcu-
lation of n(X; SPE). The calculation will proceed by showing that
SPE is "essentially" a product of Eilenberg-MacLane spectra [24, 4, Ex. 6].

It is true that each SPEk may be split into a product of Eilenberg-Mac-
Lane spaces [17], but there is no guarantee that this splitting will be com-
patible with the maps " SPE SPE+. We will first how that
SPE may be "replaced" by a spectrum F F, } for which

(F) )(F+)

for r 1. It will then be possible to use the technique of Dold and Thom
[4] to split euch F into a product of Eilenberg-MacLane spaces in such a
fashion that this splitting is compatible with the maps .
The method of constructing F will be analogous to the construction of the

"infinite loop-space of the infinite suspension" of a space [5]. We first as-
sume that each e S n E E+ is an inclusion. (That this assumption
causes no problems will be proved in the following section.) Since each
e is an inclusion, so is each " SPE SPE+. Since each SPE
is a WAM, we may define a multiplication on SPE F(S, SPE)
by the formula (f.g)(s) f(s).g(s) for L g e F(S, SPE) and s
This multiplication makes SPE into a WAM. The following lemma may
be verified directly from the definitions"

r+lLEMMA (7.1). SPE SP E+ is a monomorphism.

Using (7.1), we form the union

F SPE uSP E++SP E+ u

and give this union the weak topology. It follows from (7.1) and the fact
that F+ has the weak topology that the F are WAM’s and that F+ is
isomorphic to F. Call this isomorphism . It is possible that F e W0,
but this (if true) is not necessary to our arguments.

LEMMA (7.2). F F,} is an -spectrum and the inclusn i SPE F
induces an isomorphism of homotopy groups.

Proof. Let a er,(SP) be an element such that ia 0 and let
h" S+ SPE represent a, where k is chosen so large that i[h] O.
It follows that thep i o h S"+ D++ F can be extended to a map
H D++ F, where D"++ is the (r + k + 1)-disc having S"+ as bound-
ary D++. Since D++ is compact, H (Dr++i) ’SPE+, for some n.
It follows that the image of [hi in ++,(SPE+) is 0 and hence that a 0.
This proves that i is one-one. The proof that i is onto is similar.
By (3.2) and (3.3), induces a natural equivalence of cohomology theories
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Ti *(SP’CE) -- *(F). We next show that F may be split into a product
of Eilenberg-MacLane spectra.

If G is a countable abelian group, let (G, q), where q > 0, denote the class
of spaces L e 0 such that, Hr(L; g) 0 if v q and rq(L) Hq(L; Z) ’ G.
.C(G, q) is non-empty [4, p. 278].

Define G, r,(SPE) rn(F) /(E; ). We construct spectra
Yn {Y, 1 as follows" Let Y e(G, 1). WesetY S+k+l ^ Y.
(Recall that S base-point if r < 0.) Observe that if n-t-k >_ 1,

e 2(G n -t- k) and hence SP Y is an Eilenberg-MacLane space of type
K(Gn, n + l). The maps ’ S ^ Y -- Yk+l are defined to be the ob-
vious inclusions.

DEFINITION (7.3). The weak cartesian product Pi_-q Xi Of the spaces X
is defined after [4] as the union of the II=q x with the.weak topology, where
we identify Hqx with the subspace (H%qx) x {x+l} of II__+q x,
x.+ being the base-point of X+.
LEMMA (7.4). Let W Ii=q Xi and let K be an arbitrary compact space.

Then F(K, W) is naturally homeomorphic with Iq F(K, X) and

[K, W] Limo [K, H_q x].

In particular, W PqX.

Proof. The lemma is an elementary consequence of the observation that
any compact subset of W is contained in ]-IqX for some n. This is true
because W was endowed with the weak topology.
Now consider the spectrum W {W, ’} where W SP’Y and
is defined by the formula

(Yi Yr’(t) (t ^ Yl),

Set W lae W. Observe that since W is the base-point for n < 1 k,
this definition makes sense. Define maps ’W
using (7.4). This determines a spectrum W {W,
We now wish to calculate/(X; W). Since is a homotopy equivalence

for n +/ >_ i and W is a space of type K(G., n + k), we have

/7(x; w) /+(x;
This and (7.4) imply the following"

PnOeOSITION (7.5). /(X; W) ’n +’(X; ,()), this formula
being natural for X e

We now construct a map W --+ F which induces an isomorphism of homotopy
groups. We first define maps " Y -+ F. Let ’-. Y’-. + F,_ be a
map which induces an isonorphism of fundamental groups. If Y consists
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only of the base-point, let be the constant map. Otherwise, ’ is the
identity map and we can define k+l by requiring that the diagram

S ^ Y SqS ^ Fk

(7.6) 1’
k+lY+l

be commutative.
Since F is a WAM,# extends to a homomorphism

SPY W F
which is a w.c. map.

LEMMA (7.7). The diagram

SP Yi Fi

Y+ +

Pro4.

since B is an isomorphism, .N.D.
Ig follows gheg ghe w.e. meps define a w.e. map

Spry
such that

Define W " by
(Spyn) )(’).

It follows that is a w.c. map of spectra which induces an isomorphism of
homotopy groups. By (3.2) and (3.3), induces a natural equivalence

T() *(W)
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Thus the composite

C*(E) SP C.(SpE) :_T(i) *(F) -T()- *(W)
is a natural equivalence. This and (7.5) imply the following:

THEOREM (7.8). There is a natural equivalence

E))
defined for X e @o.

8. Alterations of E
In the previous section, it ws ssumed that E {E, } ws spectrum

such that each e was an inclusion. In this section we show that from the
point of view of *(), may always be "replaced" by such a spectrum.

"Replacement" of by Q means the exhibiting of a natural equivalence
T’*() + *(Q). By (3.4), such a Tis givenby amap + Q or
Q E wch induces an isomorphism of homotopy groups.
Given {E, e}, let F {F, e} be the subspeotrum of for which

F E if k 0 and F base-point if < 0. This inclusion Y + in-
duces an isomorphism of homotopy groups. Hence F "replaces" . We
now "replace" F by a spectrum Q Q, } for which each is an inclusion.

If one has a map f" X + Y, the (reduced) mapping cylinder C(f) is de-
fined as follows" Let I+ be the disjoint union of the unit interval [0, i] with
a point p. C(f) is to be the identification space obtained from Y u (X a I+)
via the identifications {f(x) (x 1)}. Note that S a C(f) is homeo-
morphio th C(Sf).

Let

(8.1) X0 X,- f’ X ... X_, X

be a sequence of spaces and maps. The compound mapping cylinder of the
sequence (8.1) is defined as follows" We may view X._, as a subspace of
C(%_) and %_ ss a map f._ X._ C(%_) This defines (._)

CIn general, ew %_ as map f._ X._ (f._+) The compound
mpping cylinder of (8.1) is defined to be C(%).

Returning to the spectrum F {F, }, let Q. be the compound mpping
cylinder of the sequence

S"F S"-0 S"-F SF.- "-
We may view S Q. ss a closed subspace of Q,+ and denote these inclusions
by ," S a Q. Q.+. F. is s deformation retract of Q, for every n.
Hence the inclusions g, F. Q, define map of spectra g F Q which
induces an isomorphism of homotopy groups. Hence, Q "replces" F.
Since F "replaces" E, Q is s spectrum Q, } for which each is an inclusion
which "replaces" E.
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9. Applications
We first show that we may apply Theorem (7.8) for X an arbitrary com-

pact space.

THEOREM (9.1). Let X be an arbitrary compact space and I 4o a spectrum
then there is a natural equivalence

/.(F(X, E)) r CHr-(X;/,(E)),
where CH(X; G) denotes the pth reduced ech cohomology group of X with
coe.tIicients in G.

Proof. Let J(X) denote the set of finite open coverings of X. If a e J,
denote by X. the nerve of a and by ." X -o X. a projection. Also set. F(q,, 1) F(X., Y) -- F(X, Y),
where Y is any space. The maps . define homomorphisms

," Lim/.(F(X., I)) --/.(F(X, t)).
(9.1) will follow from (7.8) if we can show that , is an isomorphism. This
last is a consequence of the following lemma.

LEMMA (9.2). Let Y o Then

," Lim- ,(F(X., Y)) -- ,(F(X, Y))
is an isomorphism.

Proof. Let u e ,(F(X, Y)). There is a finite CW-complex K, an ele-
ment w e/(K) and a map f" K --> F(X, Y) such that f,(w) u. (For
example, take K to be a finite subcomplex of the geometric realization of
the singular complex of F(X, Y) [14], where K carries u.) Let" K ^ X -- Ybe the adjoint of f. Since product coverings are cofinal in the set of coverings
of K X X [6], it follows from the "bridge" theorems of Hu [9] that there is a
map K ^ X, -- Y such that the diagram

(9.3)

K^X

Y
is homotopy-commutative. Here t e J(K), a J(X) and P" K -, K is a
projection. Let g K-- F(X,, Y) be the adjoint of . It follows from the
homotopy-commutativity of (9.3) that the diagram

K f,) F(X, Y)

(9.4) l.a 1
Ka g F(X., Y)
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is homotopy-commutative. Write v g,(, w). Then O,,v u and
, is onto. The proof that , is one-one is similar.
The following proposition will show how (7.8) and (9.1) may be used to

obtain information about particular function spaces F(X, Y). There is a
natural homomorphism

(F(X, Y)) --/(F(X, S ^ Y)) Lira-, +(F(X, S ^ Y)).

We assume that X has finite dimension d > 0 and that Y is (n 1)-con-
nected, n > d.

:PROPOSITION (9.5). The homomorphism

(F(X, Y)) -, ((X, S ^ Y))

is an isomorphism for j < 2(n d) 1 and onto for j 2(n d) 1.

Proof. (9.6) follows from a slight restatement of the discussion on p.
350 of [20].
Note that F(X, Y) is (n d 1)-connected, so that (9.6) gives the

stable homology groups of (9.7). Applying (9.6) to (9.1) gives the following"

COROLLARY (9.6). Let X and Y be as above. Then, for j < 2(n d) 1,
we have

j(F(X, Y)) 7=o CHr(X; r+(Y)).

Remark (9.7). Using (9.5) and (9.1), it follows from Serre’s e-theory
[18] that if X is an arbitrary compact space, Y e 0 and either CH’(X) is
finite for all n or ,(Y) is finite for all n, then {X, Y}, the group of stable
homotopy classes of maps X --* Y is finite. This result is essentially due to
Thorn [22]. Similar results may be derived for p-components of {X, Y}.
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