
GROTHENDIECK GROUPS OF INTEGRAL GROUP RINGS

i. HELLER AND I. PEINER

1. Introduction
Let A be a ring, and consider the category of A-modules. Unless other-

wise stated, A-modules are assumed to be left modules which are finitely
generated. Recall that the Grothendiect group K(A) of this category is the
abelian additive group defined by means of generators and relations, as fol-
lows: the generators are the symbols [M], where M ranges over all A-modules;
the relations are given by

[/] [/’] + [/"],

corresponding to all short exact sequences of A-modules

O--> M’ . M--> M" --- 0.

In particular, let G be a finite group, and let R alg. in. {F}, the ring of
all algebraic integers in the algebraic number field F. Denote by FG the
group algebra of G over F, and by RG the integral group ring of G over/.
Swan [11] has already demonstrated the importance of the Grothendieck
group K(RG) for the study of RG-modules, and has recently obtained in
[13] some new fundamental results on the structure of the group.
The present authors have given an explicit formula for K(RG) under the

restriction that F be a splitting field for G (see [9]). This formula involves
the ideal theory of the Dedekind ring R, as well as the decomposition numbers
of G relative to the set of those prime ideals of R which divide the order of G.
Here we shall generalize this formula to the case where F need not be a

splitting field for G. Our results will involve the ideal theory of certain alge-
braic extension fields of R, as well as analogues of the decomposition matrices.

In our earlier paper, we made use of the following"

THEOREM 1 (Brauer [3], [4]). If F is a splitting field for G, then the set of
maximal size minors of the decomposition matrix of G (relative to any prime
ideal of R) has greatest common divisor 1.

As a by-product of the present approach, an independent proof of Brauer’s
theorem is obtained.
For the homological algebra used herein, we refer the reader to [5]. As a

general reference for the representation theory needed here, we may cite [6].

2. Whitehead groups
This section is devoted to the introduction of notation, and the statement

of one of the main results of our previous paper [9]. Let R be any Dedekind
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ring with quotient field F, and let A* be a finite-dimensional semisimple F-
algebra. By an R-order A of A* is meant a subring A of A* such that

(i) 1 e A,
(ii) A contains an F-basis of A*, and
(iii) A is finitely generated as R-submodule of A*.

We may then form the Grothendieck groups K (A*), K (A), and K, (A),
the last of which is obtained from the category of R-torsion A-modules.
For X an R-torsion-free A-module, we shall denote the A*-module F (R) R X

by FX, for brevity, and shall regard X as embedded in FX. If X and Y
are a pair of R-torsion-free A-modules for which FX --- FY as A*-modules,
we may identify FX and FY. Then we define

[X//Y] [X/ U] Y/ U] K A

where U is any A-submodule of X n Y such that FX FY FU.
Let us recall that the Whitehead group KI(A*) is the abelian additive group

defined by generators and relations as follows: the generators are the symbols
[M, ], where M ranges over all A-modules, and ranges over all automor-
phisms of M; the relations are, first, those of the form

[M, uu’] [M, u] + [M, u’]

for a pair of automorphisms u, u’ of M; and second, those of the form

[m, u] [m’, u’] + [M",

for every short exact sequence of A*-modules

0---M’ )M )M"--.0

such that ’, " .
We quote without proof:

THEOREM 2 (Heller and Reiner [9]). There is an exact sequence

K(A,) v K A*gt(Y) K(A) -- O,

with the maps defined as follows:
(i) Given [M, t] KI(A*), let Mo be any A-submodule of M such that

FMo M, and set

t[M, t] [tM0/M0] Kt(A).

(ii) The map is induced by the inclusion of the category of R-torsion A-
modules in the category of all A-modules.

(iii) For an A-module L, set OIL] IF (R) L].

For later use, we shall determine the Whitehead group of a simple algebra
A*. Suppose that A* is a full matrix algebra over the division ring D, and
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let W be an irreducible A*-module. Then we may write D Hom.(W, W),
and view W as a right D-module. As is well known, we have

A* HomD(W, W).

Now each A*-module M is a direct sum of (say) copies of W, and each
automorphism of M is represented by an invertible X matrix t7 with en-
tries in D. Let D denote the multiplicative group of non-zero elements of D,
and set

D D/[D, D],
the factor commutator group of D. We may then form the Dieudonnt!
determinant d() e D . It is easily seen that the relations which serve to
define KI(A*) are precisely those which characterize the Dieudonn deter-
minant (see [8]). Thus we have

Ki(A*) D #,
the isomorphism being given by [M, t] -- d().As a special case of the above, we have KI(D) - D . (In fact, Morita’s
theorem (see 3) implies that the categories of A-modules and D-modules are
isomorphic. Consequently we may conclude, that K (A*) ----- K (D).)
Suppose now that A is an R-order in the simple algebra A*, and let W0

be any A-submodule of W such that FWo W. We may write

D* KI(A *) --;. K(A),
thereby obtaining a map D q

we have
--’.. Kt (A) which we again denote by

[Wo x//Wo].

For k e D,

3. Maximal orders in central simple algebras
Let A* be a central simple algebra over the algebraic number field F.

Then A* is isomorphic to a full matrix algebra over a division ring D whose
center is F. Let W be an irreducible A*-module, viewed as right D-module.
Then we may write

D Hom.(W, W), A* Hom)(W, W).

Now let R alg. int. {F}, and let A be a maximal R-order in A*. Such
maximal orders always exist, but need not be unique. From the results of
Auslander and Goldman [1], it follows that there exists a maximal R-order
o in D, and a right projective 0-module M’ contained in W, such that W FM
and

A Hom0(M, M).

We shall use Morita’s theorem to set up an isomorphism between the cate-
gories of left A-modules and left 0-modules, following an approach due to
Bass [2]. The right 0-module M is called a generator (of the category of
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right o-modules) if given any pair of right o-modules X and Y, and any non.
zero map f in Homo(X, Y), there exists a map g e Homo(M, X) such that fg
is not the zero map. It is convenient to rephrase this as follows: The map
f induces a map

f* Homo(M, X) --* Homo(M, Y).

Then M is a generator if and only if for each f e Homo(X, Y), f # 0 implies
f* 0.
We now quote without proof.

THEOREM 3 (Morita [10]; see Bass [2]). Let M be a right finitely generated
projective o-module which is a generator for the category of right o-modules.
Define A Homo(M, M), viewed as a ring of left operators on M, and set

Homo(M, o), a left o-, right A-module. Then the categories of left A-
modules and left o-modules are isomorphic, and the isomorphism is given as
follows" a left o-module U corresponds to the left A-module M (R)o U, and in-
versely a left A-module V corresponds to the left o-module M (R) V. Further-
more, o Hom(M, M) as right operator domain on M.

In order to apply the above, we must verify that in our case M is indeed a
generator. Let X, Y be o-modules, and let f e Homo(X, Y), f 0. We
need only show that f* 0. Let P denote a prime ideal of R, and let a
subscript P indicate localization at P. Since f 0, then also fe 0 for
some P, where fe’X. --* Ye. By the results of [1], the Re-order oe is a
hereditary principal ideal ring, so that Me is a free oe-module (see [13]).
Consequently Me is an oe-generator, and therefore (fp)* 0. But (fp)*
(f*)e, and therefore also f* 0, as desired.
Applying Morita’s theorem, we have o HomA(M, M), and the category

of left A-modules is isomorphic to the category of left o-modules, under the
isomorphisms given above. Therefore we have

K(A)
_

g(o).
Furthermore, the isomorphism of categories preserves R-torsion, so that also

K,(A) g,(o), K(A/PA) K(o/Po)
for each prime ideal P of R. We note further that

gt(A) e K(A/PA) -- e g(D/Po) g(o).

Let I(R) denote the abelian multiplicative group of non-zero R-ideals in F.
We shall show that K, (o) I(R), and in fact shall give two descriptions of
this isomorphism. For any R-torsion o-module X, define

annX {aR aX 0} I(R).
Now let V be any R-torsion o-module, and let V1, Vk be its o-composi-
tion factors. Define the order ideal of V to be

ord V II=x (ann V,) e I(R).
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Then ord V is a well-defined ideal in R, and the mp [V] - ord V defines a
homomorphism of Kt (0) into I (R), since the composition factors of an ex-
tension module are just those of the submodule together with those of the
factor module.

Let us show that the above-defined map is an isomorphism. The additive
group K(o) has as Z-basis the elements [o/m], where rrt ranges over all
maximal left ideals of o. This is clear from the fact that every irreducible
o-module is expressible as o/m, for some m. For fixed m, let be the unique
maximal two-sided ideal of o contained in m. Set P n R, a prime ideal
in R. Then ord (o/rrt) P.
On the other hand, there is a mapping I(R) 4. K(o), defined as follows.

Let P be any prime ideal of R. By [1] there is a unique maximal two-sided
ideal of o such that n R P. The ring o/ is then a simple ring. If m
is any maximal left ideal of o such that c m, then 0/m is an irreducible
(o/))-module, which is determined up to isomorphism by P, since o/ is
simple. Letting P- [o/m], we obtain a homomorphism of I(R) onto
Kt (o). It follows at once that K(o) I(R), the isomorphisms being given
as above.
The referee has kindly pointed out a second description of the above iso-

morphism, which is more useful for later purposes. For a any (non-zero)
left ideal in o, let Na be its reduced norm (see [7]). We recall the definition
of reduced norm" take any R-composition series of the R-module o/a, and
let N’a be the product of the annihilators of the composition factors. Let n
be the index of the division algebra D, so that (D" F) n. The equation

(N) N’

then serves to define an ideal Na in R, called the reduced norm of a.
We shall prove that ord (o/a) Na, and for this it suffices to prove that

P Nm, where m and P are related as above. The simple ring / is a
full matrix algebra (/)r over some skewfield/. Since/ is a finite extension
of R/P, it follows from Wedderburn’s theorem that / is a field. The ring
o/O is a direct sum of r copies of the irreducible (/O)-module 0/m, which
implies that N’) (N’m)r. On the other hand, o/O is R-isomorphic to a
direct sum of f copies of R/P, where f (o/o’R/P). Therefore

N’ P’, Nm P/"",
and we need only show that f rn.

This may be accomplished by working over the P-adic completion / of
the field F. Let/ be the valuation ring of/, and/ its prime ideal. Set
D D (8)F/, 5 (R) R/. Then D is a simple ring with center/9, but is
not necessarily a skewfield. Write D (D1)8, a full matrix algebra over a
skewfield D1. If we set n (D’/), then n (’) sn, so
n sn. As in Theorem 3, we may write
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where 51 is a maximal order in/1, and 1 is a maximal two-sided ideal in
B1. If fl (51/1"///5), then

f-- (o/o’R/P) (5/’[/P) s2fl.
But also o/ (51/1)8, and since / is a complete P-adic field, it follows
from [7] that 51/1 is a field. Thus r s, and so f/rn 82fl/s2ni fl//nl.
However, since F is complete, we have fl nl, which shows that f rn,
as claimed.

(Later on we shall need to know the number of composition factors of the
(o/O)-module o/P. Let us compute this by comparing dimensions over
R/P. The dimension of an irreducible (/O)-module is sfl, while

dim (0/Po) s dim (51/’) 82el fl,
where el is the ramification index of P at 51. Since is a P-adic field, we
have el --fl nl, and thus selfl/sfl sel snl n. This shows
that o/P has n composition factors when viewed as (/O)-module.)

In 2 we had defined a map ti D -- Kt (A). Since

Kt(A) Kt(o) I(R),

ti gives a map of D into I(R) denote by J(R) the image of ti in I (R). For
k e/, we have ti(k) [Wo kW0] e Kt(A), where W0 is an A-submodule of
A* such that FWo W; indeed, choose W0 to be the module M in Theorem 3.
Since M corresponds to o itself in the correspondence given in Theorem 3,
we see that

ti(k) [oko] e Kt(o),
and hence (in I (R))

(x) {N(ox)} -.
However, N(ok) (Nk)R, where Nk is the reduced norm of the element k.
This shows that J(R) is the subgroup of I(R) generated by the principal
ideals (Nk)R, where k ranges over ull non-zero elements of D.
As shown in [12], we may describe J(R) explicitly. If P0 is an infinite

prime of R, and F0 is the P0-adic completion of F, we call D ramified at P0 if
D (R) F0 is a full matrix algebra over the real quaternions. Let U be the
divisor of R consisting of all infinite primes P0 at which D is ramified. Then
J(R) is precisely the ray rood U, that is,

J(R) {xR x e F, x > O at each Po U}.

We shall briefly discuss the projective class group P(), and reduced pro-
jective class group C(), of the ring . The group P(0) is defined as the
Grothendieck group of the category of projective -modules, and there is an
obvious map P()-- K(). However, the ring is hereditary (by [1]),
and as pointed out in [13], this easily implies that the above map is an iso-
morphism: P(0) --_ K(). Since A is also hereditary, we have similarly
P(A -- K(A ).
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Swan [13] proved that

C(A) -- C(o) I(R)/J(R).

We may obtain this same result here by use of Theorems 2 and 3. Using the
map 0 defined in Theorem 2, we have

P(o)- g(o) 0 K(D),
which defines a homomorphism (again denoted by ) of P(o) into K (D). In
[13, Prop. 4.1], Swan showed that the kernel of (in P(o)) is precisely C(o).
From Theorems 2 and 3, we obtain a pair of isomorphic exact sequences

KI(A K(A K(A K(A*) -- 0

KI(D)
(

K(D)
v

/ K0(o) m_ K(D)---0,

in which each vertical arrow is an isomorphism. Therefore ker 0’ _-- ker 0,
that is, C(A) C(). Furthermore,

C(o) ----- ker 0 im -- Kt(o)/im i ----- I(R)/J(R),which gives the desired result.
As shown in [12] and [13], C(o) is always a finite group. The group J(R)

is an analogue of the group of principal ideals, and I(R)/J(R) is an analogue
of the ideal class group of R. Indeed, when D F then R, and in this
case the quotient I(R) /J(R) is precisely the ideal class group of R.

4. Grothendieck groups of group rings
Let G be a finite group, F an algebraic number field, and R alg. int. {F}

Set A RG, A* FG, and let (C) be any maximal R-order of A* which con-
tains A. By restriction of operators, each -module becomes an A-module,
and R-torsion is preserved. Using Theorem 2, we obtain a commutative
diagram with exact rows"

K(A*) K,() K() K(A*) -- 0

11 [ a 1
K K(A*)KI(A*) Kt(A n’ (A

0
O.

In [13] Swan proved the difficult result that a is an epimorphism. Apply-
ing the "Five Lemma" to the above diagram, we conclude that also is an
epimorphism, and therefore ker im v. Next, we note that K(A*)
is a free Z-module, and therefole

K(A) K(A*) ker

as additive groups. Furthermore,
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ker 0 im t K()/ker vB.
Routine diagram-chasing yields

ker n ker/ + im ’and consequently

K(A .. K(A*) @ K((C))/(ker + im ’).

Let A* A’ @ @ A* be the decomposition of A* into simple rings
A’, and let M’ be an irreducible A’-module. Set

D, Homa:(M’, M’),
so that Di is a division algebra over F, and A’ is a full matrix algebra over
Di. Of course, K(A*) is the free Z-module with Z-basis [M], ., [M].*
Furthermore,

KI(A*) KI(A *

the latter isomorphism determined as in 2.
Let F. denote the center of D, and let Ri alg. int. {F}. Each field,

F. is then a finite extension of F, and each A is a central simple algebra over

Since (C) is a maximal order, we may write

,
where each )i is a maximal R-order in A However R is finitely generated
over R, and thus )i is also a maximal R-order in A’. We may therefore
apply the results of the preceding section.
To begin with, we deduce that for each i, there exists a maximal R-order

o in D, and a finitely generated proiective right 0-module M, such that
FM M,and

i Homo,(M, M), oi Hom o(M, M).

Clearly FM FM M’. The isomorphism between the categories of
left o-modules and left O.i-modules is given by X M (R) X, where X
ranges over all left o.-modules.
Next we have

K() =---. E, K((C),) E,
and

Furthermore, R-torsion and R-torsion are equivalent concepts, and we need
not distinguish between them. The results of 3 are thus directly applicable,
and we deduce that

K,(O) ---"-’ K(o) =’" I(R,),

with the isomorphisms given as in 3.
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The map i’ KI(A*) --) K() induces maps ti KI(A) --) I(R), and
we have seen that the image of t is precisely J(R).
Our next task is the consideration of the epimorphism K((C)) -K(A).

For each prime ideal P of R, maps K(/P) onto K(A/PA). Calling
this map Be, we have

Let us show at once that e is an isomorphism whenever P/ g, where g is
the order of G. For suppose that g is a unit in Re, the localization of R at
P. As shown in [13, Lemma 5.1], there are inclusions

A ccg-lA.
Therefore Ae (C)e, and so

A/PA A,/PAe -- e/P, --- /P.This implies that Be is an isomorphism, as claimed. We have thus shown that

ker f el ker e.
In order to investigate the map e ".K(/P) K(A/PA) for an

arbitrary prime ideal P of R, we shall make use of the fact that

K(/P(C)) "-- ’ g(/p(C)).

Now we have seen that I(Ri) K(), and in this isomorphism an element
J of I(Ri) maps onto an element of K(/P)) if and only if J is expres-
sible as a product of powers of prime ideals of R which divide P. Let us
denote by I(P) (R) the subgroup of I(R) consisting of all such ideals J; then
we have

I(’)(R) K(/P).
Let us specify this isomorphism explicitly. For a fixed prime ideal P of R,

let P- range over the prime ideals of R which contain P. Then each P. is
given by P Ri for some uniquely determined maximal two-sided
ideal ,;. of . Let V(O) denote an irreducible module over the simple ring
/.. Then in the isomorphism I(Ri) K(), the ideal P maps onto
[V(o.)]. In the isomorphism K(,) ----- K(), the latter symbol [V(o..)] is
mapped onto [M (R)o V(O)]. Summarizing our results, we have

(4.1) II--11(’)(R) - K(/P),with
P. - [M (R) 0 V(.)], i _< i _< n,

where P. ranges over the prime ideals of R which divide P.
We have seen in 3 that the (i/O.)-module t)/P ) has n composition

factors V(O.), where n (D" F). Hence

n,[M (R) , V(-)] [M. (R) 0 (o/P .;)] [M/Pi M].



358 A. HELLER AND I. REINER

Thus, the isomorphism (4.1) is given by

l)ai Ei,jII:,J ---’,. a n. l[Mi/Pj Mi]

Now each M is an (C).-module, hence is an -module annihilated by
{" 1 l n, i}. Then each M/PiiM is an (/P)-module,
hence by restriction of operators is also an (A/PA)-module. We may there-
fore conclude that the additive group K(/P) has Z-basis

and the map e is obtained by viewing each M/PiM as. (A/PA)-module.
For fixed P, suppose that Y, Y,} is a full set of irreducible (A/PA)-

modules. Then for each prime ideal P. of R which divides P, we may write

[M/I-’ M.] ;=lZ!)[Y] K(A/PA)
where the {i are non-negative integers. These integers may be regarded
as a generalization of the decomposition numbers which occur in the theory

(k)of modular group representations. In terms of these { }, we have

with
II= I(’)(R) K(/P) ’ K(A/PA),

Since is an epimorphism, so is each map e.
In the special case where F is a splitting field for G, great simplifications

occur. For each i, 1 _< i _< n, the division algebra D coincides with F, and
then also F F. Furthermore, R R, and each n 1. Each
i-module M is also an A-module, and FM M whereM M* are
a full set of irreducible A*-modules. Then each P. coincides with P, and

[M/M P] 2=1 d)[Y] K(A/PA),

where the {d})} are now the ordinary decomposition numbers.
e is then determined by

(pa, pan) __> Ei,k ai dk)[Yk].

The map

The statement that e is an epimorphism is easily seen to be equivalent to
Brauer’s Theorem 1.

Collecting our results in the general case, we have thus established the
following theorem"

Let G be a finite group, F an algebraic number field, R alg. int. {FI, and
set A RG, A* FG. Write A* A*, where A is isomorphic to a
full matrix algebra over a division algebra D with center F.; set
n (D’F). Define R alg. int. {F}, and let I(R) denote the multi-
plicative group of R-ideals in F.. For each i let U be the divisor of R con-
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sisting of all infinite primes of R,i at which D.. is ramified. Set

J(R,i) [xRi x Fi, x > 0 at each prime in U}.
Choose any maximal R-order in A* containing A, and write

i%1 i, with each a maximal R-order in A’. For each i, there
exists a maximal R,-order oi in D, and a projective right 0-module M, such
that Homo(M, M). The modules FM, FMn form a full set
of irreducible A*-modules.

For P a fixed prime ideal of R, define I(e) (R) as the subgroup of I(R)
generated by the prime ideals P of R, which contain P. Each M/PM
may be viewed as an (A/PA)-module, and there is an epimorphism

B H= I()(R) - K(A/PA)
given by

3v ,P ,an [i/ i] e Ko(A/PA)

The map 5 may be regarded as a generalization of the decomposition map,
and is an isomorphism when P does not divide the order of G.
The additive structure of the Grothendieck group K(A) is given by

(n)
i1K(a) K(a*)

i=l P O:1]

The Grothendieck group K(A*) is a free Z-module on the n generators
[M], [M]. The second summand on the right hand side is a finite
abelian group, written multiplicatively, the determination of which depends
on the ideal theory of each of the rings R, as well as the knowledge of the
maps p.
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