PERIODIC TRANSFORMATIONS OF 3-MANIFOLDS¹

BY

P. A. Smith

1. M will denote a triangulated 3-manifold, G a finite group, (G, M) an effective simplicial action, orientation-preserving whenever M is orientable. Concerning the action we assume that (1) for every $g \in G$, the fixedpoint set F = F(g) is a subcomplex of M; (2) the natural cell structure of the orbit space $\mathfrak{M} = M/G$ and the projection $\phi : M \to \mathfrak{M}$ are simplicial and (3) ϕ maps each simplex homeomorphically and (4) if σ , σ' are oriented simplexes of M, then $\phi\sigma = \phi\sigma'$ implies $\sigma' = g\sigma$ for some $g \in G$.

From the piecewise linear point of view, these conditions are not restrictive. In fact if (G, M) is simplicial, there is an induced action (G, M_1) , M_1 a simplicial subdivision of M, which satisfies (1). If (G, M) satisfies (1), it is a straightforward exercise to show that the induced action (G, M''), where M'' is the second barycentric subdivision, satisfies (1), (2), (3), (4).

We shall assume from here on that $G = Z_p$, $p \ge 2$ and F = F(G) is a simple closed curve. From condition (1), F is a polygon, subcomplex of M.

Moise [1] proved

THEOREM 1. If M is homeomorphic to a euclidean 3-sphere there exists a compact orientable polyhedral 2-manifold Y in M (i.e. piecewise linearly imbedded in M) such that² $\partial Y = F$ and such that the p images of Y - F are disjoint.

Moise showed further that if F is unknotted in the 3-sphere M, then (G, M) is equivalent to a rotation. It is sufficient to prove

THEOREM 2. If M is homeomorphic to a euclidean 3-sphere and F is unknotted, there exists a manifold Y which has the properties stated in Theorem 1 and is a disc.

The proof of Theorem 1 in [1] employs a number of special technical devices. We give here an alternative proof which seems shorter and more direct. The same proof in conjunction with Dehn's lemma gives Theorem 2. Theorem 1 will be proved essentially by producing a 2-manifold \mathfrak{C} in M/G such that $\partial \mathfrak{C} = \mathfrak{F}(=\phi F)$. The required 2-manifold in M is the union of F and a component of $\phi^{-1}(\mathfrak{C} - \mathfrak{C} \cap \mathfrak{F})$.

If M is oriented and without boundary, and if the induced action (G, M - F) is free, then $\mathfrak{M} = M/G$ is an oriented manifold without boundary. For let x be a vertex of M, $\kappa = \phi x$, $W_x = \operatorname{St}(x, M)$ (= star of x in M). Since $\phi \mid M - F$ is a local homeomorphism, one sees that if $x \in M - F$, ϕ maps W_x

Received January 17, 1964.

¹ This work has been supported by the Office of Naval Research.

² ∂X denotes the boundary of X in the sense of manifold theory. If X is oriented, so is ∂X .

isomorphically onto $\operatorname{St}(x, \mathfrak{M})$. If $x \in F$, there is an induced orientationpreserving action $(G, \partial W_x)$. ∂W_x is a 2-sphere and the action leaves fixed two vertices say a, b and is free in $W_x - \{a, b\}$. Clearly $\phi(\partial W_x)$ is an orientable 2-manifold and a count of simplexes shows that its Euler characteristic is 2, hence it is a 2-sphere. Hence ϕW_x , which equals $\operatorname{St}(x, \mathfrak{M})$ is the join of $\phi(\partial W_x)$ with x, hence is a 3-ball around x. It follows that \mathfrak{M} is a manifold without boundary. Let M be oriented by a fundamental cycle z (infinite if the complex is infinite). We may write $z = \sum_{g} \sum_{i} g\sigma_i$ where $\sigma_1, \sigma_2, \cdots$ are oriented 3-simplexes such that no relation $g\sigma_i = \sigma_j (i \neq j, g \in G)$ exists. Then $\phi(z) = p \sum \sigma_i$ is not zero. \mathfrak{M} is oriented by $\phi(z)$.

2. LEMMA 1. Let P be an oriented (simple) polygon, subcomplex of M and let i be the inclusion $P \to M$. If $i_* H_1(P) = 0$ there exists a compact oriented polyhedral 2-manifold Y in M such that $\partial Y = P$.

A proof of this lemma under the additional assumption that $P \subset \partial M$ is given in [3, Lemma (5.2)]. The general case follows immediately. (As it happens, the assumption $P \subset \partial M$ holds in the situation where the lemma is to be applied.)

LEMMA 2. Let (K, ψ) be a regular covering of a connected manifold \mathfrak{K} [4, p. 195] and let $x \in K, \mathfrak{k} = \psi(x)$. Let $\Gamma = \pi_1(\mathfrak{K}, \mathfrak{k})/\psi_* \pi_1(K, x)$ (the subgroup is normal by regularity). There is a free action (Γ, K) such that $\psi gy = \psi y$ for $g \in \Gamma, y \in K$. Let \mathcal{Y} be an arcwise connected subset of \mathfrak{K} containing \mathfrak{k} and let *i* be the inclusion $\mathcal{Y} \subset \mathfrak{K}$. If

(1)
$$i_* \pi_1(\mathfrak{Y}, \mathfrak{x}) \subset \psi_* \pi_1(K, \mathfrak{x})$$

there exists a set $Y \subset K$ such that the sets gY, $g \in \Gamma$, are disjoint, their union is $\psi^{-1}Y$, and each is mapped homeomorphically onto Y by ψ .

 (K, ψ) can be realized as the totality of equivalence classes of paths modulo $\psi_* \pi_1(K, x)$ emanating from $_{\infty}$ [4, p. 189]; ψ maps each class onto the common terminal point of its members. The action of Γ is obvious. Referring to (1), one sees that those classes having representatives which lie in \mathfrak{Y} form a subset Y with the stated properties.

LEMMA 3. Let (Γ, K) be a free action in which Γ is finite and K is a connected manifold. Let $\mathcal{K} = K/\Gamma$ and let ψ be the projection $K \to \mathcal{K}$. Let $x \in K$, $\kappa = \psi x$. Then \mathcal{K} is a connected manifold, (K, ψ) a regular covering, and

$$\Gamma \cong \pi_1(\mathcal{K}, \kappa)/\psi_* \pi_1(K, x).$$

(See [4, p. 195].)

3. Toroidal neighborhoods of F. Let M be orientable, without boundary. Denote successive barycentric subdivisions by M', M'', \cdots . Let v_0, \cdots, v_{k-1} be the vertices of F' named in cyclic order; the indices are to be taken as ele-

ments of Z_k . Let $L_i = \operatorname{St}(v_i, M'')$ and let b_i be the barycenter of $v_i v_{i+1}$. Let $D_i = L_i \cap L_{i+1}$. D_i is a disc, union of those 2-simplexes σ of M'' such that $\sigma \cap F = b_i$. If the M''-stars of v_i, v_j $(i \neq j)$ intersect, so do the interiors of the corresponding M'-stars. Then v_j is a vertex of the M'-star of v_i , and $v_i v_j$ is then a 1-simplex of M', hence of F', and this implies that $i - j = \pm 1$. It follows that L_i meets L_j if and only if i = j = 0, 1, or -1. The discs D_i are therefore disjoint. Since each L_i is a 3-ball and M is orientable, $L = \bigcup L_i$ is a solid torus, neighborhood of F.

Let $T = \partial L$, $T_i = T \cap L_i$, $J_i = T \cap D_i$. T_i is an annulus and $\partial T_i = J_{i-1} \cup J_i$.

Let P be a T-circuit, that is a simple polygon in T which meets each J_i in a single point e_i . Since $k \ge 3$, each $P_i = P \cap T_i$ is a simple arc in T_i with ends e_{i-1}, e_i . Let $A(P) = \bigcup \Omega(P_i)$ where $\Omega(P_i)$ is the join of v_i and the simple arc $b_{i-1}e_{i-1} \cup P_i \cup e_i b_i$. $\Omega(P_i)$ is a polyhedral disc in L_i and

$$\partial \Omega(P_i) = b_{i-1} e_{i-1} \cup P_i \cup b_i e_i \cup b_{i-1} b_i.$$

Hence A(P) is an annulus in L and $\partial A(P) = F \cup P$.

4. Notation. Let X be an oriented simple closed curve in some set W and let i be the inclusion $X \to W$. We denote by h(X) the generator of $H_1(X)$ which corresponds to the orientation and by h(X, W) the element $i_*h(X)$ of $H_1(W)$.

Let $J = J_0$ oriented (any J_i would do). Note that if P is any oriented T-circuit h(J, T) and h(P, T) generate $H_1(T)$.

(4.1) If M is oriented without boundary and if $H_1(M) = H_2(M) = 0$, there exists an oriented T-circuit P such that h(P, M - F) = 0.

Proof. In the exact homology sequence for (M, M - F) the connecting homomorphism $\alpha : H_2(M, M - F) \to H_1(M - F)$ is bijective. Now $H_2(M, M - F) = Z$, in fact a generator is represented by a fundamental cycle for $D_0 \mod J$. The image of this generator under α is h(J, M - F). Hence h(J, M - F) is a generator of $H_1(M - F) = Z$. Let P^* be any fixed oriented T-circuit. Then $h(P^*, M - F) = qh(J, M - F)$, q an integer. Consider the generators $h(P^*, T)$, h(J, T) of $H_1(T)$. It is easy to see that there exists a T-circuit P such that $h(P, T) = h(P^*, T) - qh(J, T)$. Since $T \subset M - F$, this relation holds when T is replaced by M - F. Hence h(P, M - F) = 0.

5. Let M be orientable, without boundary and assume that the induced action (G, M - F) is free. The projection $\phi : M \to \mathfrak{M}$ maps F isomorphically onto $\mathfrak{F} = \phi F$. Let L, T, L_i, D_i, J_i be as in §3 and let $\mathfrak{L}, \mathfrak{I}, \cdots$ be the corresponding subcomplexes of \mathfrak{M} . Evidently $\phi^{-1} \operatorname{St}(s_i, \mathfrak{M}) = \operatorname{St}(v_i, M)$; hence $\phi^{-1}\mathfrak{L} = L$; hence L is invariant under the action.

(5.1) Let M be orientable, without boundary, and assume that (G, M - F) is

free. If P is an oriented T-circuit, there exists an oriented 5-circuit \mathfrak{O} such that $\phi_* h(P, T) = h(\mathfrak{O}, 5)$.

Proof. Write $P = \bigcup P_i$ as in §2. Then ϕP_i is a polygonal arc, not necessarily simple, which joins \mathcal{J}_{i-1} to \mathcal{J}_i and, except for its endpoints, lies in the interior of the annulus \mathfrak{I}_i . By a homotopy in \mathfrak{I}_i with fixed endpoints, ϕP_i is homotopic to a simple polygonal arc which, except for its endpoints lies in Int \mathfrak{I}_i . Thus ϕP is homotopic in \mathfrak{I} to an oriented \mathfrak{I} -circuit \mathcal{O} and so $\phi_*h(P,T) = h(\mathcal{O},\mathfrak{I})$.

Notation. From here on we shall write X_{\flat} for $X - X \cap F$, and \mathfrak{X}_{\flat} for $\mathfrak{X} - \mathfrak{X} \cap \mathfrak{F}$.

(5.2) Let M be orientable, without boundary and assume that (G, M_{\flat}) is free. Let P, \mathfrak{G} be oriented T- and 5-circuits such that $\phi_* h(P, T) = h(\mathfrak{G}, \mathfrak{I})$ and let $\mathfrak{a} = A(\mathfrak{G})$. There exists a polyhedral annulus A in M such that (1) ϕ maps A homeomorphically onto \mathfrak{a} ; (2) the sets gA_{\flat} , $g \in G$, are disjoint; (3) $\phi^{-1}\mathfrak{a} = \bigcup gA$; (4) $\partial A = F \cup B$ where B is a polygon in M.

Proof. First we show that there exists in L_{\flat} a set Y which is mapped homeomorphically onto \mathfrak{a}_{\flat} by ϕ and is such that the images of Y are disjoint and their union is $\phi^{-1}\mathfrak{a}_{\flat}$. This will be a consequence of lemmas 2 and 3 with $\Gamma = G$, $K = L_{\flat}, \psi = \phi \mid L_{\flat}, \mathfrak{Y} = \mathfrak{a}_{\flat}$, provided we show that

$$i_* \pi_1(\mathfrak{A}_{\flat}, \mathfrak{a}) \subset \phi_* \pi_1(L_{\flat}, x), \qquad \qquad x \in L_{\flat},$$

where $\kappa = \phi x$ and $i : \mathfrak{A}_{\flat} \to \mathfrak{L}_{\flat}$ is the inclusion. Since T is a strong deformation retract of L_{\flat} ,

$$\pi_1(T, x) = \pi_1(L_{\flat}, x) = Z \times Z.$$

Thus $\pi_1(\mathfrak{A}_{\flat}, \mathfrak{s})$ and $\pi_1(L_{\flat}, \mathfrak{x})$ are abelian and it is sufficient therefore to show that $i_* H_1(\mathfrak{A}_{\flat}) \subset \phi_* H_1(L_{\flat})$. Since \mathcal{O} is a strong deformation retract of $\mathfrak{A}_{\flat}, H_1(\mathfrak{A}_{\flat})$ is generated by $h(\mathcal{O}, \mathfrak{A}_{\flat})$. Hence $i_* \mathfrak{K}_1(\mathfrak{A}_{\flat})$ is generated by

$$i_* h(\mathcal{O}, \mathfrak{a}_{\flat}) = h(\mathcal{O}, \mathfrak{L}_{\flat}) = \phi_* h(P, L_{\flat}) \subset \phi_*(H_1(L_{\flat}))$$

and so the inclusion in question follows. Now let $A = Y \cup F$ so that $A_{\flat} = Y$. ϕ maps A onto α and the map $\phi_1 = \phi \mid A$ of A onto α is bijective. We assert that ϕ_1^{-1} is continuous. It is sufficient to prove continuity at an arbitrary point f of \mathfrak{F} . Let $\phi_1^{-1} f = f$ and let U be an open neighborhood of f. It is sufficient to show that there exists an open neighborhood \mathfrak{U} of f such that $\phi_1^{-1}(\mathfrak{U} \cap \alpha) \subset U$. Let $V = \bigcap_g gU(g \in G)$. V is an open neighborhood of f and is invariant, hence a union of orbits so that $\phi^{-1}\phi V = V$. Let $\mathfrak{U} = \phi V$. Since ϕ is an open map, \mathfrak{U} is an open neighborhood of f. We have

$$\phi_1^{-1}(\mathfrak{A} \cap \mathfrak{U}) \subset \phi^{-1}(\mathfrak{A} \cap \mathfrak{U}) \subset \phi^{-1}\mathfrak{U} = V \subset U.$$

Since the domain α of ϕ_1^{-1} is compact, ϕ_1^{-1} is a homeomorphism. Hence A is an annulus. It is readily seen that A is polyhedral since ϕ is simplicial.

Proof of Theorem 1. Assume that the hypotheses of Theorem 1 are satis-6. The induced action (G, M_{\flat}) is free [5, remark on p. 708]. Choose P, \mathcal{O} fied. so that $h(P, M_{\flat}) = 0$, $\phi_* h(P, T) = h(\mathcal{O}, \mathfrak{I})$ ((4.1) and (5.1)). The second relation holds with 5 replaced by $\mathfrak{M}_{\mathfrak{h}}$ and the first then implies $h(\mathfrak{O}, \mathfrak{M}_{\mathfrak{h}}) = 0$. Now the manifold \mathfrak{M} – Int \mathfrak{L} is a strong deformation retract of $M_{\mathfrak{b}}$, hence $h(\mathcal{O}, \mathfrak{M} - \operatorname{Int} \mathfrak{L}) = 0$. From the definition of $\mathfrak{L}(\S 3)$, \mathcal{O} is a subcomplex of $(\mathfrak{M} - \operatorname{Int} \mathfrak{L})''$. By Lemma 1 there exists in $\mathfrak{M} - \operatorname{Int} \mathfrak{L}$ a compact oriented polyhedral manifold \mathfrak{W} with $\partial \mathfrak{W} = \mathfrak{O}$. Let $\mathfrak{A} = A(\mathfrak{O})$ (§3) and let \mathfrak{A} and \mathfrak{F} be oriented so that $\partial \alpha = \mathfrak{F} \cup (-\mathfrak{O})$ (which implies $\partial \alpha_{\mathfrak{h}} = -\mathfrak{O}$). Then $\mathfrak{C} = \mathfrak{W} \cup \mathfrak{A}$ is an oriented 2-manifold with boundary \mathfrak{F} , and \mathfrak{C}_{\flat} is an oriented (noncompact) manifold without boundary. Now $\phi \mid M_{\flat}$ is a local homeomorphism and hence $\phi^{-1}\mathfrak{A}_{\flat}$, $\phi^{-1}\mathfrak{W}$, $\phi^{-1}\mathfrak{C}_{\flat}$, are oriented manifolds and $\phi^{-1}\mathfrak{C}_{\flat} =$ $\phi^{-1}\mathfrak{A}_{\flat} \cup \phi^{-1}\mathfrak{W}$. Since $\phi^{-1}\mathfrak{C}_{\flat}$ is without boundary (because \mathfrak{C}_{\flat} is), we have

(2)
$$\partial \phi^{-1} \mathfrak{A}_{\flat} = -\partial \phi^{-1} \mathfrak{W}$$

If we refer to (4.2) and keep in mind that $\phi g\sigma = \phi \sigma (g \epsilon G)$ for every oriented simplex σ of M we see that there exists an oriented annulus A such that $\phi^{-1}\alpha_{\flat} = \bigcup gA_{\flat}$ (disjoint union) and such that ϕ maps A homeomorphically onto α with preservation of orientation. We have $\partial A = F \cup (-B)$, $\partial A_{\flat} = -B$, where B is an oriented polygon in M_{\flat} such that $\phi B = \mathfrak{O}$ and F is oriented so that $\phi F = \mathfrak{F}$. From (2) we have

(3)
$$\partial \phi^{-1} \mathfrak{W} = \bigcup g B.$$

Let W be a component of ϕ^{-1} . Then $\partial W = \bigcup g'B$ where g' ranges over a subset G' of G. Let $Y = (\bigcup g'A) \cup W$. From (3) and the relations $\partial g'A = F \cup (-g'B)$, we have, formally at least, $\partial Y = kF$ where k is the number of elements in G'. Thus Y is, so to speak, an oriented 2-manifold with oriented boundary kF. This simply means that Y is homeomorphic to the complex obtained from a compact oriented surface with k boundary curves by identifying the boundaries with orientations matching. Suppose that k > 1. A simple cell decomposition shows that $H_2(Y, Z_k) = Z_k$, $H_2(Y, Z_j) = 0$ if (j, k) = 1. By the Alexander duality theorem M - Y has two components which, again by duality, implies that $H_2(Y, Z_j) = Z_j$ for every j > 1, which is impossible. We conclude that k = 1, so $Y = W \cup g'A$ for some $g' \in G$, and $\partial Y = F$. The images of Y_{\flat} are disjoint. For if Y_{\flat} meets gY_{\flat} , $g \neq 1$, then W meets gW since $A \cap gA = \emptyset$. Since W is a component of the invariant set ϕ^{-1} w so is gW; hence W = gW. Hence B = gB which is impossible since $B \subset A$. This concludes the proof.

7. Proof of Theorem 2. Assume that the hypotheses of Theorem 2 hold. Orient F. Since F is unknotted, there exists an oriented polyhedral disc Δ in M such that $\partial \Delta = F$. Then $\phi \Delta$ is a singular disc in \mathfrak{M} with boundary \mathfrak{F} . We shall modify Δ to obtain Δ_1 say, such that no singularity of $\phi \Delta_1$ lies on \mathfrak{F} . By Dehn's lemma [2] there exists a polyhedral disc Ω in \mathfrak{M} with boundary \mathfrak{F} . By Lemmas 2 and 3 with $\Gamma = G$, $K = M_{\flat}$, $\mathfrak{K} = \mathfrak{M}_{\flat}$, $\psi = \phi \mid M_{\flat}$, $Y = \Omega_{\flat}$ there is a set Y in M_{\flat} with disjoint images and mapped homeomorphically onto Ω_{\flat} by ϕ . Then Y \cup F is the required disc in M (see proof of (5.2)).

To obtain Δ_1 , decompose $\Delta : \Delta = \Delta^* \cup E$ where Δ^* is an oriented disc, E an oriented annulus, $\partial \Delta^* = B^*$ say, $\partial E = (-B^*) \cup F$. Let this be done in such a way that $E \subset L$.

Let $A, B, \mathfrak{a}, \mathfrak{O}$ be as in §6 and recall that $\partial A = (-B) \cup F$ and that ϕ maps A, B homeomorphically onto $\mathfrak{a}, \mathfrak{O}$. Evidently ϕ maps $B \cap L_i$ (§3) homeomorphically onto $\mathfrak{O} \cap \mathfrak{L}_i$ from which we see that B is a T-circuit. Hence h(B, T), h(J, T) generate $H_1(T) = Z \times Z$ and since T is a strong deformation retract of L_{\flat} , $h(B, L_{\flat})$ and $h(J, L_{\flat})$ generate $H(L_{\flat}) \cong H(T)$. Hence $h(B^*, L_{\flat}) = ah(B, L_{\flat}) + bh(J, L_{\flat})$ say. This holds with L_{\flat} replaced by M_{\flat} and since $h(J, M_{\flat}) \neq 0$ (see proof of (4.1)) and $h(B^*, M_{\flat}) = 0$, we have b = 0 so that $h(B^*, L_{\flat}) = ah(B, L_{\flat})$. This holds with L_{\flat} replaced by L and since $\partial A = (-B) \cup F$ and $\partial E = (-B^*) \cup F$, we see that $h(B^*, L) = h(F, L) = h(B, L)$; hence a = 1. Hence $h(B^*, L_{\flat}) = h(B, L_{\flat})$. Since the fundamental group of L_{\flat} is abelian, there is a singular annulus A_1 in L_{\flat} with boundary $(-B^*) \cup B$. Then $\Delta_1 = A \cup A_1 \cup \Delta^*$ is a singular disc with boundary F. Since A is non-singular and $A_1 \cup \Delta^* \subset M_{\flat}$, no singularity of Δ_1 is in F.

References

- 1. EDWIN MOISE, Periodic homeomorphisms of the 3-sphere, Illinois J. Math., vol. 6 (1962), pp. 206-225.
- C. D. PAPAKYRIAKOPOULOS, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), vol. 66 (1957), pp. 1–26.
- ——, Reduction of the Poincaré conjecture to group theoretic conjectures, Ann. of Math. (2), vol. 77 (1963), pp. 250-305.
- 4. H. SEIFERT AND W. THRELFALL, Lehrbuch der Topologie, Berlin, B. G. Teubner, 1939.
- 5. P. A. SMITH, Transformations of finite period II, Ann. of Math. (2), vol. 40 (1939), pp. 690-711.

COLUMBIA UNIVERSITY NEW YORK, NEW YORK