PERIODIC TRANSFORMATIONS OF 3-MANIFOLDS ${ }^{1}$

BY
P. A. Smith

1. M will denote a triangulated 3 -manifold, G a finite $\operatorname{group},(G, M)$ an effective simplicial action, orientation-preserving whenever M is orientable. Concerning the action we assume that (1) for every $g \in G$, the fixedpoint set $F=F(g)$ is a subcomplex of M; (2) the natural cell structure of the orbit space $\mathfrak{T K}=M / G$ and the projection $\phi: M \rightarrow \mathfrak{I}$ are simplicial and (3) ϕ maps each simplex homeomorphically and (4) if σ, σ^{\prime} are oriented simplexes of M, then $\phi \sigma=\phi \sigma^{\prime}$ implies $\sigma^{\prime}=g \sigma$ for some $g \epsilon G$.

From the piecewise linear point of view, these conditions are not restrictive. In fact if (G, M) is simplicial, there is an induced action (G, M_{1}), M_{1} a simplicial subdivision of M, which satisfies (1). If (G, M) satisfies (1), it is a straightforward exercise to show that the induced action $\left(G, M^{\prime \prime}\right)$, where $M^{\prime \prime}$ is the second barycentric subdivision, satisfies (1), (2), (3), (4).

We shall assume from here on that $G=Z_{p}, p \geq 2$ and $F=F(G)$ is a simple closed curve. From condition (1), F is a polygon, subcomplex of M.

Moise [1] proved
Theorem 1. If M is homeomorphic to a euclidean 3 -sphere there exists a compact orientable polyhedral 2-manifold Y in M (i.e. piecewise linearly imbedded in $M)$ such that ${ }^{2} \partial Y=F$ and such that the p images of $Y-F$ are disjoint.

Moise showed further that if F is unknotted in the 3 -sphere M, then (G, M) is equivalent to a rotation. It is sufficient to prove

Theorem 2. If M is homeomorphic to a euclidean 3-sphere and F is unknotted, there exists a manifold Y which has the properties stated in Theorem 1 and is a disc.

The proof of Theorem 1 in [1] employs a number of special technical devices. We give here an alternative proof which seems shorter and more direct. The same proof in conjunction with Dehn's lemma gives Theorem 2. Theorem 1 will be proved essentially by producing a 2 -manifold \mathfrak{C} in M / G such that $\partial \mathfrak{C}=\mathfrak{F}(=\phi F)$. The required 2 -manifold in M is the union of F and a component of $\phi^{-1}(\mathfrak{C}-\mathcal{C} \cap \mathfrak{F})$.

If M is oriented and without boundary, and if the induced action ($G, M-F$) is free, then $\mathfrak{M}=M / G$ is an oriented manifold without boundary. For let x be a vertex of $M,{ }_{\alpha}=\phi x, W_{x}=\operatorname{St}(x, M)(=\operatorname{star}$ of x in $M)$. Since $\phi \mid M-F$ is a local homeomorphism, one sees that if $x \in M-F, \phi$ maps W_{x}

[^0]isomorphically onto $\operatorname{St}\left({ }_{x}, \mathfrak{N}\right)$. If $x \in F$, there is an induced orientationpreserving action $\left(G, \partial W_{x}\right) . \quad \partial W_{x}$ is a 2 -sphere and the action leaves fixed two vertices say a, b and is free in $W_{x}-\{a, b\}$. Clearly $\phi\left(\partial W_{x}\right)$ is an orientable 2 -manifold and a count of simplexes shows that its Euler characteristic is 2, hence it is a 2 -sphere. Hence ϕW_{x}, which equals $\operatorname{St}(x, \mathfrak{N})$ is the join of $\phi\left(\partial W_{x}\right)$ with κ, hence is a 3 -ball around α. It follows that \mathfrak{T} is a manifold without boundary. Let M be oriented by a fundamental cycle z (infinite if the complex is infinite). We may write $z=\sum_{g} \sum_{i} g \sigma_{i}$ where $\sigma_{1}, \sigma_{2}, \cdots$ are oriented 3 -simplexes such that no relation $g \sigma_{i}=\sigma_{j}(i \neq j, g \epsilon G)$ exists. Then $\phi(z)=p \sum \sigma_{i}$ is not zero. \mathfrak{T} is oriented by $\phi(z)$.
2. Lemma 1. Let P be an oriented (simple) polygon, subcomplex of M and let i be the inclusion $P \rightarrow M$. If $i_{*} H_{1}(P)=0$ there exists a compact oriented polyhedral 2-manifold Y in M such that $\partial Y=P$.

A proof of this lemma under the additional assumption that $P \subset \partial M$ is given in [3, Lemma (5.2)]. The general case follows immediately. (As it happens, the assumption $P \subset \partial M$ holds in the situation where the lemma is to be applied.)

Lemma 2. Let (K, ψ) be a regular covering of a connected manifold \mathfrak{K} [4, p. 195] and let $x \in K,{ }_{\kappa}=\psi(x)$. Let $\Gamma=\pi_{1}\left(K_{, ~ x}\right) / \psi_{*} \pi_{1}(K, x)$ (the subgroup is normal by regularity). There is a free action (Γ, K) such that $\psi g y=\psi y$ for $\boldsymbol{g} \epsilon \Gamma, y \in K$. Let \mathcal{Y} be an arcwise connected subset of \mathcal{K} containing \times and let i be the inclusion $\mathcal{Y} \subset \mathcal{K}$. If

$$
\begin{equation*}
i_{*} \pi_{1}(Y, \kappa) \subset \psi_{*} \pi_{1}(K, x) \tag{1}
\end{equation*}
$$

there exists a set $Y \subset K$ such that the sets $g Y, g \in \Gamma$, are disjoint, their union is $\psi^{-1} \mathcal{Y}$, and each is mapped homeomorphically onto \mathcal{Y} by ψ.
(K, ψ) can be realized as the totality of equivalence classes of paths modulo $\psi_{*} \pi_{1}(K, x)$ emanating from ${ }_{\infty}[4$, p. 189]; ψ maps each class onto the common terminal point of its members. The action of Γ is obvious. Referring to (1), one sees that those classes having representatives which lie in \mathcal{Y} form a subset Y with the stated properties.

Lemma 3. Let (Γ, K) be a free action in which Γ is finite and K is a connected manifold. Let $K=K / \Gamma$ and let ψ be the projection $K \rightarrow K . \quad$ Let $x \in K,{ }_{\alpha}=\psi x$. Then \mathfrak{K} is a connected manifold, (K, ψ) a regular covering, and

$$
\Gamma \cong \pi_{1}\left(\mathcal{K},{ }_{\kappa}\right) / \psi_{*} \pi_{1}(K, x)
$$

(See [4, p. 195].)
3. Toroidal neighborhoods of F. Let M be orientable, without boundary. Denote successive barycentric subdivisions by $M^{\prime}, M^{\prime \prime}, \cdots$. Let v_{0}, \cdots, v_{k-1} be the vertices of F^{\prime} named in cyclic order; the indices are to be taken as ele-
ments of Z_{k}. Let $L_{i}=\operatorname{St}\left(v_{i}, M^{\prime \prime}\right)$ and let b_{i} be the barycenter of $v_{i} v_{i+1}$. Let $D_{i}=L_{i} \cap L_{i+1} . \quad D_{i}$ is a disc, union of those 2 -simplexes σ of $M^{\prime \prime}$ such that $\sigma \cap F=b_{i}$. If the $M^{\prime \prime}$-stars of $v_{i}, v_{j}(i \neq j)$ intersect, so do the interiors of the corresponding M^{\prime}-stars. Then v_{j} is a vertex of the M^{\prime}-star of v_{i}, and $v_{i} v_{j}$ is then a 1 -simplex of M^{\prime}, hence of F^{\prime}, and this implies that $i-j= \pm 1$. It follows that L_{i} meets L_{j} if and only if $i=j=0,1$, or -1 . The discs D_{i} are therefore disjoint. Since each L_{i} is a 3-ball and M is orientable, $L=\mathrm{U} L_{i}$ is a solid torus, neighborhood of F.

Let $T=\partial L, T_{i}=T \cap L_{i}, J_{i}=T \cap D_{i} . \quad T_{i}$ is an annulus and $\partial T_{i}=$ $J_{i-1} \cup J_{i}$.

Let P be a T-circuit, that is a simple polygon in T which meets each J_{i} in a single point e_{i}. Since $k \geq 3$, each $P_{i}=P \cap T_{i}$ is a simple arc in T_{i} with ends e_{i-1}, e_{i}. Let $A(P)=\bigcup \Omega\left(P_{i}\right)$ where $\Omega\left(P_{i}\right)$ is the join of v_{i} and the simple arc $b_{i-1} e_{i-1} \cup P_{i} \cup e_{i} b_{i} . \quad \Omega\left(P_{i}\right)$ is a polyhedral disc in L_{i} and

$$
\partial \Omega\left(P_{i}\right)=b_{i-1} e_{i-1} \cup P_{i} \cup b_{i} e_{i} \cup b_{i-1} b_{i}
$$

Hence $A(P)$ is an annulus in L and $\partial A(P)=F \cup P$.
4. Notation. Let X be an oriented simple closed curve in some set W and let i be the inclusion $X \rightarrow W$. We denote by $h(X)$ the generator of $H_{1}(X)$ which corresponds to the orientation and by $h(X, W)$ the element $i_{*} h(X)$ of $H_{1}(W)$.

Let $J=J_{0}$ oriented (any J_{i} would do). Note that if P is any oriented T-circuit $h(J, T)$ and $h(P, T)$ generate $H_{1}(T)$.
(4.1) If M is oriented without boundary and if $H_{1}(M)=H_{2}(M)=0$, there exists an oriented T-circuit P such that $h(P, M-F)=0$.

Proof. In the exact homology sequence for $(M, M-F)$ the connecting homomorphism $\alpha: H_{2}(M, M-F) \rightarrow H_{1}(M-F)$ is bijective. Now $H_{2}(M, M-F)=Z$, in fact a generator is represented by a fundamental cycle for $D_{0} \bmod J$. The image of this generator under α is $h(J, M-F)$. Hence $h(J, M-F)$ is a generator of $H_{1}(M-F)=Z$. Let P^{*} be any fixed oriented T-circuit. Then $h\left(P^{*}, M-F\right)=q h(J, M-F), q$ an integer. Consider the generators $h\left(P^{*}, T\right), h(J, T)$ of $H_{1}(T)$. It is easy to see that there exists a T-circuit P such that $h(P, T)=h\left(P^{*}, T\right)-q h(J, T) . \quad$ Since $T \subset M-F$, this relation holds when T is replaced by $\mathbf{M}-F$. Hence $h(P, M-F)=0$.
5. Let M be orientable, without boundary and assume that the induced action $(G, M-F)$ is free. The projection $\phi: M \rightarrow \mathfrak{T}$ maps F isomorphically onto $\mathfrak{F}=\phi F$. Let $L, T, L_{i}, D_{i}, J_{i}$ be as in $\S 3$ and let $\mathscr{L}, \mathfrak{J}, \cdots$ be the corresponding subcomplexes of \mathfrak{T}. Evidently $\phi^{-1} \operatorname{St}\left(\mathfrak{\imath}_{i}, \mathfrak{M}\right)=\operatorname{St}\left(v_{i}, M\right)$; hence $\phi^{-1} \mathscr{L}=L$; hence L is invariant under the action.
(5.1) Let M be orientable, without boundary, and assume that $(G, M-F)$ is
free. If P is an oriented T-circuit, there exists an oriented 5 -circuit \odot such that $\phi_{*} h(P, T)=h(\odot, J)$.

Proof. Write $P=\mathrm{U} P_{i}$ as in $\S 2$. Then ϕP_{i} is a polygonal arc, not necessarily simple, which joins \mathscr{J}_{i-1} to \mathscr{J}_{i} and, except for its endpoints, lies in the interior of the annulus \mathfrak{J}_{i}. By a homotopy in \mathfrak{J}_{i} with fixed endpoints, ϕP_{i} is homotopic to a simple polygonal are which, except for its endpoints lies in Int J_{i}. Thus ϕP is homotopic in \mathfrak{J} to an oriented \mathfrak{J}-circuit \mathcal{P} and so $\phi_{*} h(P, T)=h(\mathcal{P}, \mathfrak{J})$.

Notation. From here on we shall write X_{b} for $X-X \cap F$, and X_{b} for $\mathfrak{X}-\boldsymbol{X} \cap \mathfrak{F}$.
(5.2) Let M be orientable, without boundary and assume that $\left(G, M_{b}\right)$ is free. Let P, \odot be oriented T - and \mathfrak{J}-circuits such that $\phi_{*} h(P, T)=h(\odot, J)$ and let $\mathfrak{Q}=A(\mathcal{P})$. There exists a polyhedral annulus A in M such that $(1) \phi$ maps A homeomorphically onto \mathbb{Q}; (2) the sets $g A_{b}, g \in G$, are disjoint; (3) $\phi^{-1} \mathbb{Q}=\cup g A$; (4) $\partial A=F \cup B$ where B is a polygon in M.

Proof. First we show that there exists in L_{b} a set Y which is mapped homeomorphically onto \mathcal{Q}_{b} by ϕ and is such that the images of Y are disjoint and their union is $\phi^{-1} Q_{b}$. This will be a consequence of lemmas 2 and 3 with $\Gamma=G$, $K=L_{b}, \psi=\phi \mid L_{b}, \mathcal{Y}=\mathfrak{a}_{b}$, provided we show that

$$
i_{*} \pi_{1}\left(Q_{b}, \kappa\right) \subset \phi_{*} \pi_{1}\left(L_{b}, x\right), \quad x \in L_{b}
$$

where ${ }_{x}=\phi x$ and $i: \mathbb{Q}_{b} \rightarrow \mathscr{L}_{b}$ is the inclusion. Since T is a strong deformation retract of L_{b},

$$
\pi_{1}(T, x)=\pi_{1}\left(L_{b}, x\right)=Z \times Z
$$

Thus $\pi_{1}\left(Q_{b},{ }_{\alpha}\right)$ and $\pi_{1}\left(L_{b}, x\right)$ are abelian and it is sufficient therefore to show that $i_{*} H_{1}\left(\mathbb{Q}_{b}\right) \subset \phi_{*} H_{1}\left(L_{b}\right)$. Since \mathcal{P} is a strong deformation retract of $\mathbb{Q}_{b}, H_{1}\left(\mathbb{Q}_{b}\right)$ is generated by $h\left(\mathcal{P}, \mathbb{Q}_{b}\right)$. Hence $i_{*} \mathfrak{H}_{1}\left(\mathbb{Q}_{b}\right)$ is generated by

$$
i_{*} h\left(P, \mathbb{Q}_{b}\right)=h\left(P, \mathscr{L}_{b}\right)=\phi_{*} h\left(P, L_{b}\right) \subset \phi_{*}\left(H_{1}\left(L_{b}\right)\right)
$$

and so the inclusion in question follows. Now let $A=Y$ u F so that $A_{b}=Y . \quad \phi$ maps A onto \mathbb{Q} and the map $\phi_{1}=\phi \mid A$ of A onto \mathbb{Q} is bijective. We assert that ϕ_{1}^{-1} is continuous. It is sufficient to prove continuity at an arbitrary point f of \mathfrak{F}. Let $\phi_{1}^{-1} f=f$ and let U be an open neighborhood of f. It is sufficient to show that there exists an open neighborhood \mathfrak{U} of $\&$ such that $\phi_{1}^{-1}(\mathcal{U} \cap \mathfrak{a}) \subset U$. Let $V=\bigcap_{g} g U(g \in G) . \quad V$ is an open neighborhood of f and is invariant, hence a union of orbits so that $\phi^{-1} \phi V=V$. Let $\mathcal{U}=\phi V$. Since ϕ is an open map, \mathcal{U} is an open neighborhood of f. We have

$$
\phi_{1}^{-1}(\mathbb{Q} \cap \mathfrak{u}) \subset \phi^{-1}(\mathfrak{a} \cap \mathfrak{u}) \subset \phi^{-1} \mathfrak{u}=V \subset U
$$

Since the domain \mathbb{Q} of ϕ_{1}^{-1} is compact, ϕ_{1}^{-1} is a homeomorphism. Hence A is an annulus. It is readily seen that A is polyhedral since ϕ is simplicial.
6. Proof of Theorem 1. Assume that the hypotheses of Theorem 1 are satisfied. The induced action $\left(G, M_{b}\right)$ is free [5, remark on p. 708]. Choose P, \mathcal{P} so that $h\left(P, M_{b}\right)=0, \phi_{*} h(P, T)=h(\mathcal{P}, \mathfrak{J})((4.1)$ and (5.1)). The second relation holds with \mathfrak{J} replaced by \mathfrak{N}_{b} and the first then implies $h\left(\mathcal{P}, \mathfrak{N}_{b}\right)=0$. Now the manifold $\mathfrak{T C}$ - Int \mathcal{L} is a strong deformation retract of M_{b}, hence $h(\mathcal{P}, \mathfrak{N}-$ Int $\mathfrak{L})=0$. From the definition of $\mathfrak{L}(\S 3), \mathcal{P}$ is a subcomplex of (\mathfrak{T} - Int $\mathfrak{L})^{\prime \prime}$. By Lemma 1 there exists in \mathfrak{T} - Int $\&$ a compact oriented polyhedral manifold W with $\partial \mathscr{W}=\mathcal{P}$. Let $\mathfrak{Q}=A(\mathcal{P})(\S 3)$ and let \mathfrak{Q} and \mathfrak{F} be oriented so that $\partial \mathbb{Q}=\mathfrak{F} u(-\mathcal{P})$ (which implies $\partial Q_{b}=-\mathcal{P}$). Then $\mathfrak{C}=\mathscr{W} \cup \mathfrak{Q}$ is an oriented 2 -manifold with boundary \mathfrak{F}, and \mathfrak{C}_{b} is an oriented (noncompact) manifold without boundary. Now $\phi \mid M_{\mathrm{b}}$ is a local homeomorphism and hence $\phi^{-1} \mathbb{Q}_{b}, \phi^{-1} \mathscr{W}, \phi^{-1} \mathfrak{C}_{b}$, are oriented manifolds and $\phi^{-1} \mathfrak{C}_{b}=$ $\phi^{-1} \mathfrak{C}_{b} \cup \phi^{-1} \mathscr{W}$. Since $\phi^{-1} \mathfrak{C}_{b}$ is without boundary (because \mathfrak{C}_{b} is), we have

$$
\begin{equation*}
\partial \phi^{-1} \mathbb{Q}_{b}=-\partial \phi^{-1} \mathbb{F} \tag{2}
\end{equation*}
$$

If we refer to (4.2) and keep in mind that $\phi g \sigma=\phi \sigma(g \epsilon G)$ for every oriented simplex σ of M we see that there exists an oriented annulus A such that $\phi^{-1} \mathfrak{a}_{\mathrm{b}}=\cup_{g} A_{\mathrm{b}}$ (disjoint union) and such that ϕ maps A homeomorphically onto \mathbb{Q} with preservation of orientation. We have $\partial A=F \mathbf{u}(-B)$, $\partial A_{b}=-B$, where B is an oriented polygon in M_{b} such that $\phi B=\mathcal{\rho}$ and F is oriented so that $\phi F=\mathfrak{F}$. From (2) we have

$$
\begin{equation*}
\partial \phi^{-1} \mathscr{W}=U g B . \tag{3}
\end{equation*}
$$

Let W be a component of ϕ^{-1} F . Then $\partial W=U g^{\prime} B$ where g^{\prime} ranges over a subset G^{\prime} of G. Let $Y=\left(\cup g^{\prime} A\right)$ u W. From (3) and the relations $\partial g^{\prime} A=F \cup\left(-g^{\prime} B\right)$, we have, formally at least, $\partial Y=k F$ where k is the number of elements in G^{\prime}. Thus Y is, so to speak, an oriented 2 -manifold with oriented boundary $k F$. This simply means that Y is homeomorphic to the complex obtained from a compact oriented surface with k boundary curves by identifying the boundaries with orientations matching. Suppose that $k>1$. A simple cell decomposition shows that $H_{2}\left(Y, Z_{k}\right)=Z_{k}, H_{2}\left(Y, Z_{j}\right)=0$ if $(j, k)=1$. By the Alexander duality theorem $M-Y$ has two components which, again by duality, implies that $H_{2}\left(Y, Z_{j}\right)=Z_{j}$ for every $j>1$, which is impossible. We conclude that $k=1$, so $Y=W \cup g^{\prime} A$ for some $g^{\prime} \epsilon G$, and $\partial Y=F$. The images of Y_{b} are disjoint. For if Y_{b} meets $g Y_{b}, g \neq 1$, then W meets $g W$ since $A \cap g A=\emptyset$. Since W is a component of the invariant set $\phi^{-1}{ }^{1}$ W so is $g W$; hence $W=g W$. Hence $B=g B$ which is impossible since $B \subset A$. This concludes the proof.
7. Proof of Theorem 2. Assume that the hypotheses of Theorem 2 hold. Orient F. Since F is unknotted, there exists an oriented polyhedral disc Δ in M such that $\partial \Delta=F$. Then $\phi \Delta$ is a singular dise in \mathfrak{N} with boundary \mathfrak{F}. We shall modify Δ to obtain Δ_{1} say, such that no singularity of $\phi \Delta_{1}$ lies on \mathfrak{F}. By

Dehn's lemma [2] there exists a polyhedral disc Ω in \mathfrak{N} with boundary \mathfrak{F}. By Lemmas 2 and 3 with $\Gamma=G, K=M_{b}, \mathfrak{K}=\mathscr{N}_{b}, \psi=\phi \mid M_{b}, Y=\Omega_{b}$ there is a set Y in M_{b} with disjoint images and mapped homeomorphically onto Ω_{b} by ϕ. Then $Y \cup F$ is the required disc in M (see proof of (5.2)).

To obtain Δ_{1}, decompose $\Delta: \Delta=\Delta^{*} \mathrm{u} E$ where Δ^{*} is an oriented disc, E an oriented annulus, $\partial \Delta^{*}=B^{*}$ say, $\partial E=\left(-B^{*}\right) \cup F$. Let this be done in such a way that $E \subset L$.

Let A, B, Q, \odot be as in $\S 6$ and recall that $\partial A=(-B)$ u F and that ϕ maps A, B homeomorphically onto \mathbb{Q}, \mathcal{P}. Evidently ϕ maps $B \cap L_{i}$ (§3) homeomorphically onto $\odot \cap \mathscr{L}_{i}$ from which we see that B is a T-circuit. Hence $h(B, T), h(J, T)$ generate $H_{1}(T)=Z \times Z$ and since T is a strong deformation retract of $L_{\mathrm{b}}, h\left(B, L_{b}\right)$ and $h\left(J, L_{b}\right)$ generate $H\left(L_{b}\right) \cong H(T)$. Hence $h\left(B^{*}, L_{\mathrm{b}}\right)=a h\left(B, L_{\mathrm{b}}\right)+b h\left(J, L_{\mathrm{b}}\right)$ say. This holds with L_{b} replaced by M_{b} and since $h\left(J, M_{b}\right) \neq 0$ (see proof of (4.1)) and $h\left(B^{*}, M_{b}\right)=0$, we have $b=0$ so that $h\left(B^{*}, L_{b}\right)=a h\left(B, L_{b}\right)$. This holds with L_{b} replaced by L and since $\partial A=(-B)$ u F and $\partial E=\left(-B^{*}\right)$ u F, we see that $h\left(B^{*}, L\right)=$ $h(F, L)=h(B, L)$; hence $a=1$. Hence $h\left(B^{*}, L_{b}\right)=h\left(B, L_{b}\right)$. Since the fundamental group of L_{b} is abelian, there is a singular annulus A_{1} in L_{b} with boundary $\left(-B^{*}\right) \cup B$. Then $\Delta_{1}=A \cup A_{1} \cup \Delta^{*}$ is a singular disc with boundary $\left(-B^{*}\right) \cup B$. Then $\Delta_{1}=A \cup A_{1} \cup \Delta^{*}$ is a singular dise with boundary F. Since A is non-singular and $A_{1} \cup \Delta^{*} \subset M_{\mathrm{b}}$, no singularity of Δ_{1} is in F. Since ϕ maps A homeomorphically, no singularity of $\phi \Delta_{1}$ is in \mathfrak{F}.

References

1. Edwin Moise, Periodic homeomorphisms of the 3-sphere, Illinois J. Math., vol. 6 (1962), pp. 206-225.
2. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), vol. 66 (1957), pp. 1-26.
3. ——, Reduction of the Poincaré conjecture to group theoretic conjectures, Ann. of Math. (2), vol. 77 (1963), pp. 250-305.
4. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Berlin, B. G. Teubner, 1939.
5. P. A. Smith, Transformations of finite period II, Ann. of Math. (2), vol. 40 (1939), pp. 690-711.

Columbia University
New York, New York

[^0]: Received January 17, 1964.
 ${ }^{1}$ This work has been supported by the Office of Naval Research.
 ${ }^{2} \partial X$ denotes the boundary of X in the sense of manifold theory. If X is oriented, so is ∂X.

