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1. M will denote a triangulated 3-manifold, G finite group, (G, M) an
effective simplicial action, orientation-preserving whenever M is orientable.
Concerning the action we assume that (1) for every g G, the fixedpoint set
F F(g) is subcomplex of M; (2) the nutural cell structure of the orbit space
i) M/G and the projection M -- are simplicial and (3) maps each
simplex homeomorphicMly and (4) if , t are oriented simplexes of M, then

’ implies g for some g e G.
From the piecewise linear point of view, these conditions are not restrictive.

In fact if (G, M) is simplicial, there is an induced action (G, M), M. a sim-
plicial subdivision of M, which satisfies (1). If (G, M) satisfies (1), it is a
straightforward exercise to show that the induced action (G, M" ), where M" is
the second barycentric subdivision, satisfies 1 ), (2), (3), (4).
We shall assume from here on that G Z, p >_ 2 and F F(G) is a simple

closed curve. From condition (1), F is a polygon, subcomplex of M.
Moise [1] proved

THEOREM 1. IfM is homeomorphic to a euclidean 3-sphere there exists a com-
pact orientable polyhedral 2-manifold Y in M (i.e. piecewise linearly imbedded in
M) such that 0Y F and such that the p images of Y F are disjoint.

Moise showed further that if F is unknotted in the 3-sphere M, then (G, M)
is equivalent to a rotation. It is sufficient to prove

TEOnEM 2. If M is homeomorphic to a euclidean 3-sphere and F is un-
knotted, there exists a manifold Y which has the properties stated in Theorem 1
and is a disc.

The proof of Theorem I in [1] employs a number of special technical devices.
We give here an alternative proof which seems shorter and more direct. The
same proof in conjunction with Dehn’s lemma gives Theorem 2. Theorem 1
will be proved essentially by producing a 2-manifold ( in M/G such thut
0( :( F). The required 2-manifold in M is the union of F and a com-
ponent of -1(( a 5:).

If M is oriented and without boundary, and if the induced action
(G, M F) is free, then M/G is an oriented manifold without boundary.
For let x be a vertex of M, Cx, W St(x, M) star of x in M). Since
M F is a local homeomorphism, one sees that if x M F, maps W
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isomorphically onto St(, 9). If x e F, there is an induced orientation-
preserving action (G, 0W). 0W is a 2-sphere and the action leaves fixed two
vertices say a, b and is free in W {a, b}. Clearly (OW) is an orientable
2-manifold and a count of simplexes shows that its Euler characteristic is 2,
hence it is a 2-sphere. Hence eWe, which equals St(, r) is the join of
(0W) with , hence is a 3-ball around It follows that 9 is a manifold
without boundary. Let M be oriented by a fundamental cycle z (infinite if the
complex is infinite). We may write z ’g - gz where zl, as, are
oriented 3-simplexes such that no relation gzi (i j, g e G) exists. Then
(z) p ai is not zero. is oriented by (z).

2o LEMMA 1. Let P be an oriented (simple) polygon, subcomplex of M and
let i be the inclusion P M. If i. Hi(P) 0 there exists a compact oriented
polyhedral 2-manifold Y in M such that 0 Y P.

A proof of this lemma under the additional assumption that P c OM is given
in [3, Lemma (5.2)]. The general case follows immediately. (As it happens,
the assumption P OM holds in the situation where the lemma is to be
applied.

LEMMA 2. Let (K, ) be a regular covering of a connected manifold [4,
p. 195] and let x e K, (x). Let F 1(. )/, (K, x) (the subgroup
is normal by regularity). There is a free action (F, K) such that Cgy Cy for
g F, y e K. Let be an arcwise connected subset of containing and let i be
the inclusion c . If
(1) i. rl(, ) C . r(K, x)

there exists a set Y K such that the sets g Y, g e F, are disjoint, their union is-, and each is mapped homeomorphically onto by .
(K, ) can be realized as the totality of equivalence classes of paths modulo, (K, x) emanating from [4, p. 189]; b maps each class onto the common

terminal point of its members. The action of r is obvious. Referring to (1),
one sees that those classes having representatives which lie in N form a subset
Y with the stated properties.

LEMMA 3. Let r, K) be a free action in which r is finite and K is a connected
manifold. Let K/F and let be the projection K ----> . Let x e K, x.
Then is a connected manifold, (K, b) a regular covering, and

(See [4, p. 195].)

3. Toroidal neighborhoods of F. Let M be orientable, without boundary.
Denote successive barycentric subdivisions by M’, Mt’, Let v0,
be the vertices of F’ named in cyclic order; the indices are to be taken as ele-
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ments of Zk. Let Li St(vi, M") and let be be the barycenter of v v+l.
Let De L n Li+l. De is a disc, union of those 2-simplexes g of M" such that
g n F b. If the M"-stars of v, v. (i j) intersect, so do the interiors of
the corresponding M’-stars. Then v is a vertex of the MP-star of re, and
v v. is then a 1-simplex of Mp, hence of F’, and this implies that i j =1.
It follows that Li meets L. if and only if i j 0, 1, or 1. The discs De are
therefore disjoint. Since each L is a 3-ball and M is orientable, L [JL is a
solid torus, neighborhood of F.

Let T OL, T T o L,J T n Di. T is an annulus and OT
J_ u J.

Let P be a T-circuit, that is a simple polygon in T which meets eachJ in a
single point e. Since ]c >_ 3, each P P n T is a simple arc in T with ends
ei_, e. Let A (P) [J2(P) where 2(P) is the join of v and the simple arc
b_i e_l t PC u e b. 2(P) is a polyhedral disc in Li and

O(P) b_ e_ u P J b ei u b_l b

Hence A P is an annulus in L and OA P F t P.

4. Notation. Let X be an oriented simple closed curve in some set W and
let i be the inclusion X -- W. We denote by h(X) the generator of Hi(X)
which corresponds to the orientation and by h(X, W) the element i.h (X) of
HI(W).

Let J J0 oriented (any J would do). Note that if P is any oriented
T-circuit h(J, T) and h(P, T) generate H(T).

(4.1) If M is oriented without boundary and if HI(M) H(M) 0, there
exists an oriented T-circuit P such that h(P, M F) 0.

Proof. In the exact homology sequence for (M, M F) the connecting
homomorphism a:H2(M, M F) H(M F) is bijective. Now
H.(M, M F) Z, in fact a generator is represented by a fundamental cycle
for Do mod J. The image of this generator under a is h(J, M F). Hence
h(J, M F) is a generator of H(M F) Z. Let P* be any fixed oriented
T-circuit. Then h(P*, M F) qh(J, M F), q an integer. Consider the
generatorsh(P*, T), h(J, T) of H(T). It is easy to see that there exists a
T-circuit P such that h(P, T) h(P*, T) qh(J, T). Since T c M F,
this relation holds when T is replaced by M F. Hence h(P, M F) O.

5. Let M be orientable, without boundary and assume that the induced
action (G, M F) is free. The projection M -- i) maps F isomorphically
onto: F. LetL, T,L,D:,Jbeasin3andlet,5,... be the cor-
responding subcomplexes of 9. Evidently -1 St(, 9) St(v, M)
hence -12 L; hence L is invariant under the action.

(5.1) Let M be orientable, without boundary, and assume that (G, M F) is
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fl’ee. If P is an oriented T-circuit, there exists an oriented 5-circuit such that, h(P, T) h(@, 5).

Proof. Write P UPi as in 2. Then CPi is a polygonal arc, not neces-
sarily simple, which joins g-i to 2 and, except for its endpoints, lies in the
interior of the annulus 5. By a homotopy in 5 with fixed endpoints, CP is
homotopic to a simple polygonal arc which, except for its endpoints lies in
Int3. Thus CP is homotopic in 5 to an oriented 3-circuit ( and so
,h(P, T) h(5), 5).

Notation. From here on we shall write X for X X n F, and for

(5.2) Let M be orientable, without boundary and assume that G, M is fl’ee.
Let P, (P be oriented T- and 5-circuits such that , h(P, T) h((P, 5) and let
( A (5)). There exists a polyhedral annulus A in M such that (1) maps A
homeomorphically onto (; (2) the sets gA g G, aredisjoint; (3) -( U gA
(4) OA F u B where B is a polygon in M.

Proof. First we show that there exists in L a set Y which is mapped homeo-
morphically onto a by and is such that the images of Y are disjoint and their
union is -a. This will be a consequence of lemmas 2 and 3 with F G,
K L, 1 L, a, provided we show that

i, 71"1((, x) C (, r(L, x), x L,

where Cx and i a -- 2 is the inclusion. Since T is a strong deforma-
tion retract of L,

r(T, x) r(L, x) Z X Z.

Thus (a, ) and r(L, x) are abelian and it is sufficient therefore to show
that i, Hl(a) , H(L). Since ( is a strong deformation retract of
a, H(a) is generated by h((P, a). Hence i, 3C(a) is generated by

i, h(@. a) h((P, ) , h(P, L) ,(H(L))

and so the inclusion in question follows. Now let A Y F so that

A Y. CmapsAonto(andthemapl= lAofAontoaisbijective.
We assert that -1 is continuous. It is sufficient to prove continuity at an
arbitrary point of ft. Let -1 f and let U be an open neighborhood of f.
It is sufficient to show that there exists an open neighborhood of such that
O-(n a) U. Let V ,gU(geG). V is an open neighborhood of f
and is invariant, hence a union of orbits so that -1V V. Let CV.
Since is an open map, t is an open neighborhood of . We have

-1(a n t) c -(a n t) c --1- V C U.

Since the domain a of - is compact, - is a homeomorphism. Hence A is
an annulus. It is readily seen that A is polyhedral since is simplicial.
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6. Proof of Theorem 1. Assume that the hypotheses of Theorem I are satis-
fied. The induced action (G, M) is free [5, remark on p. 708]. Choose P, @
so that h(P, M) O, oh. h(P, T) h((e. 5) ((4.1) and (5.1)). The second
relation holds with 5 replaced by i) and the first then implies h(@, ) 0.
Now the manifold 9T Int is a strong deformation retract of M, hence
h((P, Int ) 0. From the definition of (3), (P is a subcomplex of
(9 Int 2)". By Lemma 1 there exists in i) Int a compact oriented
polyhedral manifold with 0 . Let a A ((P) (3) and let ( and ff
be oriented so that Oa t (-@) (which implies Oa -(e). Then

t a is an oriented 2-manifold with boundary if, and is an oriented
(noncompact) manifold without boundary. Now IM is a local homeo-
morphism and hence -1a, -1, -1, are oriented manifolds and -1
-1a u -1. Since -1 is without boundary (because ( is), we have

(2) 0-a 0-.
If we refer to (4.2) and keep in mind that Cga a (g e G) for every oriented
simplex a of M we see that there exists an oriented annulus A such that
h-a (.JgA (disjoint union) and such that maps A homeomorphically
onto a with preservation of orientation. We have OA F t (--B),
OA -B, where B is an oriented polygon in M such that OB (e and F is
oriented so that OF ft. From (2) we have

(3) 04)- [.J gB.

Let W be a component of O-Iw. Then OW [.J g’B where g’ ranges over a
subset G’ of G. Let Y ([.Jg’A) t W. From (3)and the relations
Og’A F J (--g’B), we have, formally ut least, OY kF where k is the
number of elements in G’. Thus Y is, so to spek, an oriented 2-manifold with
oriented boundary/oF. This simply means that Y is homeomorphic to the
complex obtained from compact oriented surface with lc boundary curves by
identifying the boundaries with orientations matching. Suppose that lc > 1.
A simple cell decomposition shows that H:(Y, Z) Z, H(Y, Z.) 0 if
(j, k) 1. By the Alexander duality theorem M Y has two components
which, again by duality, implies that H( Y, Z.) Z. for every j > 1, which is
impossible. We conclude that k 1, so Y W J g’A for some g’ e G, and
0Y F. The images of Yaredisjoint. For if YmeetsgY, g 1, then
W meets gW since A gA 0. Since W is a component of the invariant set- so is gW; hence W gW. Hence B gB which is impossible since
B A. This concludes the proof.

7. Proof of Theorem 2. Assume that the hypotheses of Theorem 2 hold.
Orient F. Since F is unknotted, there exists an oriented polyhedral disc A in
M such that 0z F. Then A is a singular disc in with boundary ft. We
shall modify z to obtain A1 say, such that no singularity of OA lies on ft. By
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Dehn’s lemma [2] there exists a polyhedral disc 2 in 9 with boundary ft. By
Lemmas2and3withF G,K= M,= 9,= IM,Y= 2thereis
a set Y in M with disjoint images and mapped homeomorphically onto 12 by. Then Y u F is the required disc in M (see proof of (5.2)).
To obtain A1, decompose A A A* o E where A* is an oriented disc, E an

oriented annulus, 0/* B* say, OE (-B*) F. Let this be done in such
a way that E c L.

Let A, B, a, be as in 6 and recall that OA (-B) o F and that maps
A, B homeomorphically onto (, (P. Evidently maps B n L (3) homeo-
morphically onto (P n from which we see that B is a T-circuit. Hence
h(B, T), h(J, T) generate Hi(T) Z X Z and since T is a strong deformation
retract of L, h(B, L) and h(J, L) generate H(L) ._ H(T). Hence
h(B*, L) ah(B, L) + bh(J, L) say. This holds with L replaced by M
and since h(J, M) 0 (see proof of (4.1)) and h(B*, M) O, we have
b 0 so that h(B*, L) ah(B, L). This holds with L replaced by L and
since OA (--B) t F and 0E (-B*) ,J F, we see that h(B*, L)
h(F, L) h(B, L); hence a 1. Hence h(B*, L) h(B, L). Since the
fundamental group of L is abelian, there is a singular annulus A in L with
boundary (--B*) t B. Then A A u Ai J A* is a singular disc with bound-
ary (- B*) t B. Then A A u A1 u A* is a singular disc with boundary F.
Since A is non-singular and A u A* c M, no singularity of A1 is in F. Since
b maps A homeomorphically, no singularity of /1 is in 5:.
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