A CHARACTERIZATION OF CERTAIN REGULAR d-CLASSES IN SEMIGROUPS

BY

R. J. WARNE

The concept of a d-class in a semigroup was introduced and investigated by Green [3]. The importance of this concept in the study of semigroups is indicated in [2]. Regular d-classes have been studied by Miller and Clifford [2], [4]. A semigroup consisting of a single d-class is called bisimple. Clifford [1] has determined the structure of all bisimple inverse semigroups with identity.

Let S be a semigroup and A a non-empty subset of S. Let E_A denote the collection of idempotents of A. E_A may be partially ordered as follows: $e \leq f$ if and only if ef = fe = e. We characterize regular d-classes D for which E_D is linearly ordered and we determine the structure of bisimple inverse semigroups G for which E_G is linearly ordered. The connection between certain regularity conditions [2] and the linear ordering of idempotents is considered.

Two elements of S are said to be R-(L-) equivalent if they generate the same principal right (left) ideal. Two elements a, b of S are d-equivalent if there exists x in S such that a R x and x L b (or equivalently there exists y in S such that a L y and y R b). An element a in S is called right (left) regular if $a R a^2 (a L a^2)$. a is called biregular if it is either right regular or left regular. S is said to be biregular if all its elements are biregular. An element a in S is regular if a in aSa. A subset of S is regular if all its elements are regular. A regular semigroup in which the idempotents commute is called an inverse semigroup [2], [5].

Let e be an idempotent element of S. $P_e(Q_e)$ will denote the right (left) unit subsemigroup of eSe (the set of elements of eSe having a right (left) inverse with respect to e the identity of eSe). H_e will denote the group of units of eSe.

By a decomposition of S we mean a partition of S into a union of disjoint subsemigroups.

 S^1 will denote S with an appended identity [2, p. 4].

LEMMA. Let S be a bisimple inverse semigroup. Then E_s is linearly ordered if and only if S is biregular.

Proof. Suppose that E_s is linearly ordered. Then, if a in S there exist e, f in E_D such that a R e and a L f [2], [4]. If ef = fe = e, then aea L fea or $a^2 L a$ [2], [4]. If ef = fe = f, $a^2 R a$. Conversely, suppose that S is biregular. If e, f in E_D , there exists a in D such that e R a and a L f. Hence, if $a R a^2$ then a R ae. Since a L f, there exists x in S such that xa = f. Thus, xa R xae

Received December 28, 1963.

implies f R f e. Hence, f = f e = e f [2], [4]. In a similar fashion, $a L a^2$ implies e f = f e = e.

THEOREM. The following four conditions are equivalent on any d-class D of a semigroup:

(A) D is regular and E_D is linearly ordered.

(B) D is a biregular, bisimple, inverse semigroup.

(C) D is the union of a chain of bisimple, biregular inverse semigroups with identity.

(D) D is a group or the idempotents of D commute and D has the following decomposition into groups, right cancellative semigroups without idempotent and left cancellative semigroups without idempotent:

(*)
$$D = \bigcup \{H_e \cup (P_e - H_e) \cup (Q_e - H_e) : e \in E_D\}$$

Proof. (A) \Rightarrow (B). If a, b in D, there exists f, h in E_D such that a L f and b R h [2], [4]. Thus, ab R ah and ah L fh. Hence, ab d fh and D is a semigroup. D is therefore a bisimple inverse semigroup [2, p. 62]. Thus, D is biregular by the lemma.

(B) \Rightarrow (C). E_D is linearly ordered by the lemma. If a in eDe there exists x in D such that $e R_D x$ (R_D denotes R-equivalence on D) and $x L_D a$. There exists f in E_D such that $x L_D f$ [4], [2] and hence one may find u, v in D such that f = ux and x = vf. If fe = f, xe = vfe = vf = x and x in eDe. Thus, there exist r, p, q in D such that e = x(ere), a = (epe)x, x = (eqe)a and eDe is thus bisimple. If ef = e, e = eux = (euqe)a and eDe is again bisimple. Since eDe is clearly an inverse semigroup, eDe is biregular by the lemma. If a in D, there exist e, f in E_D such that a in eDf. Clearly, $eDf \subseteq eDe$ or fDf and hence $D = \bigcup(eDe : e \text{ in } E_D)$. If e, f in E_D , $eDe \subseteq fDf$ or $fDf \subseteq eDe$.

(C) \Rightarrow (D). $P_e - H_e(Q_e - H_e)$ is a right (left) cancellative semigroup without idempotent. It follows from the lemma that E_D is linearly ordered. Clearly, D is regular. If a in D, there exists f, g in E_D such that a R f and a L g[4], [2]. If gf = g, af = agf = ag = a and a in fSf [4],[6]. There exists y in S^1 such that a(fyf) = f and a in P_f [4], [2]. If gf = f, a in Q_g . Thus, the equality (*) is satisfied. If the second or third factor of (*) is empty, D is a group. If, for example, the third factor is empty, $Q_e \subseteq P_e$ and $P_e = H_e = Q_e$ for all e in E_D . Thus, $D_e = R_e = H_e = L_e$. Otherwise, a in $(P_e - H_e) \cap (Q_f - H_f)$ implies a in $eSe \cap fSf$ and there exist z_1 , z_2 in S such that $az_1 = e$ and $z_2 a = f$. If fe = e, $z_2 ae = fe = e$ and $z_2 a = e = f$. If fe = f, $az_1 = f = e$ and we have a contradiction in both cases. If a in $P_e \cap P_f$, a R e and a R f; i.e. eR f. Since the idempotents of D commute e = f. Similarly, a in $Q_e \cap Q_f$ implies e = f.

(D) \Rightarrow (A). If a in P_e , a in eSe and there exists y in Q_e such that ay = e. Thus, aya = ea = a and $a^2y = ae = a$. Thus, a is regular and right regular. If a in Q_e , a is regular and left regular. If a in D, a^2 in D. If x, y in D, there exists a in D such that a R y and a L x. Thus, $a^2 R ay$ and ay L xy [4], [2]. Hence, $xy \ d \ a^2 da$ and D is a semigroup and therefore a bisimple inverse semigroup [2, p. 62]. Thus, E_D is linearly ordered by the lemma, Q.E.D.

References

- A. H. CLIFFORD, A class of d-simple semigroups, Amer. J. Math., vol. 75 (1953), pp. 547-556.
- 2. A. H. CLIFFORD AND G. B. PRESTON, The algebraic theory of semigroups, Providence, Amer. Math. Soc., 1961.
- 3. J. A. GREEN, On the structure of semigroups, Ann. of Math. (2), vol. 54 (1951), pp. 163-172.
- D. D. MILLER AND A. H. CLIFFORD, Regular d-classes in semigroups, Trans. Amer. Math. Soc., vol. 82 (1956), pp. 270-280.
- 5. W. D. MUNN AND R. PENROSE, A note on inverse semigroups, Proc. Cambridge Philos. Soc., vol. 51 (1956), pp. 396-399.

VIRGINIA POLYTECHNIC INSTITUTE BLACKSBURG, VIRGINIA WEST VIRGINIA UNIVERSITY MORGANTOWN, WEST VIRGINIA