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The concept of a d-class in a semigroup was introduced and investigated by
Green [3]. The importance of this concept in the study of semigroups is indi-
cated in [2]. Regular d-classes have been studied by Miller and Clifford [2],
[4]. A semigroup consisting of a single d-class is called bisimple. Clifford
[1] has determined the structure of all bisimple inverse semigroups with
identity.

Let S be a semigroup and A a non-empty subset of S. Let EA denote the
collection of idempotents of A. E may be partially ordered as follows" e <_ f
if and only if ef fe e. We characterize regular d-classes D for which ED is
linearly ordered and we determine the structure of bisimple inverse semigroups
G for which E is linearly ordered. The connection between certain regularity
conditions [2] and the linear ordering of idempotents is considered.
Two elements of S are said to be R-(L-) equivalent if they generate the same

principal right (left) ideal. Two elements a, b of S are d-equivalent if there
exists x in S such that a R x and x L b (or equivalently there exists y in S such
that a L y and y R b). An element a in S is called right (left) regular if
a R a (a L a2). a is called biregular if it is either right regular or left regular.
S is said to be biregular if all its elements are biregular. An element a in S is
regular if a in aSa. A subset of S is regular if all its elements are regular. A
regular semigroup in which the idempotents commute is called an inverse
semigroup [2], [5].

Let e be n idempotent element of S. P(Q) will denote the right (left)
unit subsemigroup of eSe (the set of elements of eSe having a right (left) in-
verse with respect to e the identity of eSe). H will denote the group of units
of eSe.
By a decomposition of S we mean a partition of S into a union of disioint

subsemigroups.
S will denote S with an appended identity [2, p. 4].

LEMMA. Let S be a bisimple inverse semigroup. Then Es is linearly ordered
if and only if S is biregular.

Proof. Suppose that Es is linearly ordered. Then, if a in S there exist e, f
in ED such that a R e and a L f [2], [4]. If ef fe e, then aea L lea or a L a

[2], [4]. If ef fe f, a R a. Conversely, suppose that S is biregular.
If e, f in E, there exists a in D such that e R a and a L f. Hence, if a R a
then a R ae. Since a L f, there exists x in S such that xa f. Thus, xa R xae
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implies f R re.
ef -fe e.

Hence, f-- fe ef [2], [4]. In a similar fashion, a L a implies

THEOREM. The following four conditions are equivalent on any d-class D of
a semigroup:

A D is regular and E, is linearly ordered.
(B) D is a biregular, bisimple, inverse semigroup.
C D is the union of a chain of bisimple, biregular inverse semigroups with

identity.
(D D is a group or the idempotents of D commute and D has the following

decomposition into groups, right cancellative semigroups without idempotent and
left cancellative semigroups without idempotent

D U{H, u (P,- H,) u (Q,- H,) :e eEl}

Proof. (A) (B). If a, binD, there exists f, h inE such that a Lf and
b R h [2], [4]. Thus, ab R ah and ah L fh. Hence, ab d fh and D is a semi-
group. D is therefore a bisimple inverse semigroup [2, p. 62]. Thus, D is
biregular by the lemma.

(B) (C). E is linearly ordered by the lemma. If a in eDe there exists
x in D such that e RD x (RD denotes R-equivalence on D) and x L a. There
exists f inE such that x Lf [4], [2] and hence one may find u, v in D such that
f uxandx yr. If re =f, xe vfe vf= xandxineDe. Thus, there
exist r, p, q in D such that e x(ere), a (epe)x, x (eqe)a and eDe is thus
bisimple. If ef e, e eux euqe a and eDe is again bisimple. Since eDe
is clearly an inverse semigroup, eDe is biregular by the lemma. If a in D,
there exist e, f in E such that a in eDf. Clearly, eDf eDe or fDf and hence
D [J(eDe e in ED). If e, f in E, eDe fDf or fDf eDe.

(C) (D). Pe- He(Qe He) is a right (left)cancellative semigroup
without idempotent. It follows from the lemma that E is linearly ordered.
Clearly, D is regular. If a in D, there exists f, g ia E. such that a R f and a L g
[4], [2]. If gf g, af agf ag a and a in fSf [4],[6]. There exists y in S
such that a(fyf) f and a in Ps [4], [2]. If gf f, a in Qg. Thus, the equality
(.) is satisfied. If the second or third factor of (.) is empty, D is a group.
If, for example, the third factor is empty, Qe Pe and Pe He Qe for all
einE. Thus, De Re He Le. Otherwise, aia (Pe- Ha) n (Qs Hs)
implies a in eSe c fSf and there exist zl, z. in S such that az e and z a f.
Iffe= e,z.ae=fe=eandza=e=f. Iffe=f, az=f= eandwehavea
contradiction in both cases. If a in Pea P], a R e and a R f; i.e. e R f. Since
the idempotents of D commute e f. Similarly, a in Qe a Q implies e f.

(D) (A). If a in P, a in eSe and there exists y in Q such that ay e.
Thus, aya ea a and ay ae a. Thus, a is regular and right regular.
If a in Qe, a is regular and left regular. If a in D, a in D. If x, y in D, there
exists a in D such that a R y and a L x. Thus, Ray and ay L xy [4], [2].
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Hence, xy d ada and D is a semigroup and therefore a bisimple inverse semi-
group [2, p. 62]. Thus, ED is linearly ordered by the lemma, Q.E.D.
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