ON REPRESENTATIONS OF FINITE GROUPS OVER VALUATION RINGS

BY ALFREDO JONES¹

Let G be a finite group. Given a ring R, by RG we denote the group ring of G with coefficients in R. By an RG-module M we understand a left RG-module M that has a finite basis over R. Thus the RG-modules afford the representations of G by matrices with entries in R. If R' is a ring extension of R we write $R' \otimes M$ to denote $R' \otimes_R M$, and if G is a subgroup of H we let $M^H = RH \otimes_{RG} M$. Given a prime p let Z_p be the ring of p integral rationals and Q^* , with valuation ring Z^* , the p-adic completion of the rationals, Q.

In this note we study the representations of a finite group G over Z_p . If p is prime to the order of G, it is known that every representation of G over Z_p is a unique direct sum of indecomposable representations, and that the indecomposables are the Q-irreducible representations of G (see [2]). In the present paper we wish to consider the case when p divides the order of G.

In the first section we show that, if G is cyclic of order p and ξ is a root of unity of order prime to p, then the representations of G over $Z_p[\xi]$ can be determined by extending the method used by Reiner to study the rational integral representations of this group (see [2]). With this result it is possible to construct the representations over Z_p of any commutative group with a p-Sylow subgroup of order p.

In Section 2 we consider the problem of the uniqueness of the decomposition into indecomposables. We say that the Krull-Schmidt Theorem holds for RG-modules if in any decomposition of an RG-module into a direct sum of indecomposable submodules the indecomposable summands are uniquely determined up to RG-ismorphism. It is known that the Krull-Schmidt Theorem holds for Z^* G-modules for every finite group G (see [2]). In [4] Reiner raised the question of whether the theorem holds for Z_p G-modules. answered by Berman and Gudivok [1] who gave an example of a cyclic group for which the theorem fails.² In Theorem 2 of the present paper we prove that for G abelian, if p divides the order of G, then the Krull-Schmidt Theorem holds for Z_p G-modules if and only if the indecomposable representations of G over Z_p are indecomposable over Z^* , and that this is equivalent to a condition on the exponent of G. It is shown that this condition is also sufficient for the Krull-Schmidt Theorem to hold when G is a nilpotent group of odd This section is essentially independent of the first one, but some representations introduced in Section 1 are used in the proof of Theorem 2.

Received December 21, 1963.

¹ This research was partially supported by the U. S. Army Research Office.

² The author is grateful to Professor Berman for communicating this example to him.

1. In this section we use the following notation. θ denotes a root of unity of prime order p, and ξ a root of unity of order q, prime to p. Let $S = Z_p[\xi]$, and $R = S[\theta]$. If s is the order of p in the integers modulo q, Φ the Euler function, and $h = \Phi(q)/s$, then there are h primes $\delta_1, \dots, \delta_h$ in R, such that $R\delta_i \neq R\delta_j$ for $i \neq j, \delta_1 \dots \delta_h = \theta - 1$, and $R(\theta - 1)^{p-1} = Rp$. nS denotes the direct sum of n copies of S.

Let G be a cyclic group of order p, and g a generator of G. S can be considered as an SG-module by letting gc = c for all $c \in S$. R becomes an SG-module if we define $g\alpha = \theta\alpha$ for all $\alpha \in R$. Now let $\gamma \in R$, $\gamma \mid (\theta - 1)$, $R\gamma \neq R(\theta - 1)$. We can construct an SG-module by taking the S-module $Sy \oplus R$, direct sum of a free S-module and R, and defining

$$gy = y + \gamma, \qquad g\alpha = \theta\alpha, \qquad \qquad \alpha \in R.$$

We denote this module (γ, R) . We shall now prove that every indecomposable SG-module is of one of the types described above.

Theorem 1. Every SG-module M is isomorphic to a direct sum

$$(\gamma_1, R) \oplus \cdots \oplus (\gamma_r, R) \oplus n_0 S \oplus n_1 R$$

where $\gamma_i \mid \gamma_{i+1}$, $1 \leq i < r$, $\gamma_r \mid (\theta - 1)$, $R\gamma_r \neq R(\theta - 1)$. The integers n_0 , n_1 are uniquely determined by the isomorphism class of M, and $\gamma_1, \dots, \gamma_r$ are determined up to units of R.

Proof. We shall duplicate a proof done by Reiner of a similar result for **Z**G-modules (see [2, p. 506]).

Let $\sigma = 1 + g + \cdots + g^{p-1}$, and let (σ) be the ideal generated by σ in SG. Then $SG/(\sigma) \cong R$. Given an SG-module M, let

$$M_{\sigma} = \{ m \in M; \sigma m = 0 \}.$$

Then M_{σ} can be made into an R-module by defining $\theta m = gm$ for all $m \in M_{\sigma}$. M_{σ} is finitely generated and torsion-free as an R-module.

Since $(g-1)M \subset M_{\sigma}$, by the invariant factor theorem for modules over principal ideal domains, there exist $b_1, \dots, b_n \in M, \gamma_1, \dots, \gamma_n \in R$, such that $\gamma_i \mid \gamma_{i+1}, 1 \leq i < n$, and

$$M_{\sigma} = Rb_1 \oplus \cdots \oplus Rb_n$$
, $(g-1)M = R\gamma_1 b_1 \oplus \cdots \oplus R\gamma_n b_n$.

 $\gamma_1, \dots, \gamma_n$ are uniquely determined up to units of R by the modules M_{σ} , (g-1)M. From $(g-1)M \supset (\theta-1)M_{\sigma}$ it follows that $\gamma_n | (\theta-1)$. Assume $R\gamma_r \neq R(\theta-1)$ and $\gamma_{r+1} = \dots = \gamma_n = \theta-1$.

 M_{σ} is an S-pure submodule of M; hence there exists an S-submodule X of M such that $M=X\oplus M_{\sigma}$. Now consider

$$L = (g-1)M/(\theta-1)M_{\sigma} \cong R\gamma_{\rm l}/R(\theta-1) \, \oplus \, \cdots \, \oplus \, R\gamma_{\rm r}/R(\theta-1).$$

Since $(g-1)M = (g-1)X + (\theta-1)M_{\sigma}$, the natural homomorphism $(g-1)M \to L$ maps (g-1)X onto L. Hence the composition of the map

$$x \to (g-1)x + (\theta-1)M_{\sigma}, \qquad x \in X,$$

with the above isomorphism defines a homomorphism ϕ from X onto $R\gamma_1/R(\theta-1) \oplus \cdots \oplus R\gamma_r/R(\theta-1)$. Let

$$\phi = \phi_1 + \cdots + \phi_r$$
, $\phi_i : X \to R\gamma_i/R(\theta - 1)$, $1 \le i \le r$.

Let x_1, \dots, x_t be an S-basis for X. Define $\beta_i = (\theta - 1)/\gamma_i$, $i \le i \le r$, and let $\beta_1 = \delta_1 \dots \delta_u$, $u \le h$. For $i \le u$ we write $\delta_i \mid \phi_1(x)$ if

$$\phi_1(x) \epsilon R \gamma_1 \delta_i / R(\theta - 1).$$

Suppose that for some $j \leq u$ we have

$$\delta_i \not\mid \phi_1(x_1),$$
 $1 \leq i < j,$ $\delta_j \mid \phi_1(x_1).$

Then there exists some x_k such that $\delta_j \not\mid \phi_1(x_k)$; otherwise

$$\phi_1(X) \subset R\gamma_1 \, \delta_j/R(\theta-1) \subset_{\neq} R\gamma_1/R(\theta-1).$$

So if we let $c = \varepsilon (\delta_1 \cdots \delta_{j-1})^{p-1} \epsilon S$, where ε is a unit of R, then

$$\delta_i \not\mid \phi_1(x_1+cx_k), \qquad 1 \leq i \leq j.$$

Thus we can get an S-basis x, x_2, \dots, x_t of X, such that

$$\phi_1(x) = \alpha \gamma_1 + R(\theta - 1),$$

where α is prime to β_1 .

Since $R\gamma_1 = S\gamma_1 + R(\theta - 1)$, there exists $c \in S$, prime to β_1 , such that $\alpha\gamma_1 - c\gamma_1 \in R(\theta - 1)$. If c is not a unit then for some $\delta \mid \gamma_1$, $c = c'\epsilon\delta^{p-1}$, ϵ unit of $R,c' \in S$; therefore $c'' = c'(\epsilon\delta^{p-1} + p/\epsilon\delta^{p-1})$ has one prime factor less than c, and $\alpha\gamma_1 - c''\gamma_1 \in R(\theta - 1)$. We can then assume that c is a unit of S. Let $\bar{\gamma}_1 = \gamma_1 + R(\theta - 1)$; then if $x'_1 = c^{-1}x$ we have $\phi_1(x'_1) = \bar{\gamma}_1$. Now for every $i, 1 < i \le t$, $\phi_1(x_i) = \bar{d}_i \bar{\gamma}_i$ for some $d_i \in S$; hence $\phi_1(x_i - d_i x_1) = 0$. Therefore, letting $x'_1 = x_i - d_i x_1$, $1 < i \le t$, we obtain an S-basis x'_1, \dots, x'_t of X, such that

$$\phi_1(x_1') = \bar{\gamma}_1, \qquad \phi_1(x_2') = \cdots = \phi_1(x_t') = 0.$$

Let $\beta_2 = \delta_1 \cdots \delta_v$. We shall now prove that for every δ_j , $i \leq j \leq v$, there exists some x_k' , $2 \leq k \leq t$, such that $\delta_j \not\mid \phi_2(x_k')$. Assume this is false; then

$$\phi_2(Sx_2' \oplus \cdots \oplus Sx_t') \subset R\gamma_2 \, \delta_j/R(\theta-1).$$

Now let

$$\phi(\sum_{i=1}^t c_i x_i') \in R\gamma_2/R(\theta-1), \quad c_i \in S, \quad 1 \le i \le t.$$

Then $\phi_1(\sum_{i=1}^t c_i x_i') = \phi_1(c_1 x_1') = 0$, so $\beta_1 \mid c_1$; hence $\beta_i \mid c_1$, $1 \leq i \leq r$, and from this $\phi_i(c_1 x_i') = 0$, $1 \leq i \leq t$; consequently

$$\phi(\sum_{i=1}^{t} c_i x_i') = \phi(\sum_{i=2}^{t} c_i x_i') \epsilon R \gamma_2 \delta_j / R(\theta - 1) \subset_{\neq} R \gamma_2 / R(\theta - 1),$$
 which is a contradiction.

As before, we can now construct a new basis x_1'' , \cdots , x_t'' of X, such that

$$\phi_2(x_2'') = \bar{\gamma}_2$$
, $\phi_2(x_1'') = \phi_2(x_3'') = \cdots = \phi_2(x_t'') = 0$.

It is easily verified that with the method used to construct this basis we get

$$\phi_1(x_1'') = \phi_1(x_1') = \bar{\gamma}_1, \qquad \phi_1(x_2'') = \phi_1(x_2') = \cdots = \phi_1(x_t'') = \phi_1(x_t') = 0.$$

Repeating this process we obtain a basis z_1, \dots, z_t of X, such that

$$\phi(z_i) = \phi_i(z_i) = \bar{\gamma}_i,$$
 $1 \le i \le r,$ $\phi(z_i) = 0,$ $r < i < t.$

Hence there exist $m_i \in M_\sigma$, $1 \leq i \leq t$, such that

$$(g-1)z_i = \gamma_i b_i + (\theta-1)m_i,$$
 $1 \le i \le r,$
 $(g-1)z_i = (\theta-1)m_i,$ $r < i < t.$

If we let $y_i = z_i - m_i$, $1 \le i \le t$, then

$$(g-1)y_i = \gamma_i b_i, \qquad 1 \le i \le r,$$

$$(g-1)y_i = 0, \qquad r < i \le t,$$

and

$$M = Sy_1 \oplus \cdots \oplus Sy_t \oplus Rb_1 \oplus \cdots \oplus Rb_n.$$

Therefore

$$M \cong (\gamma_1, R) \oplus \cdots \oplus (\gamma_r, R) \oplus (t - r)S \oplus (n - r)R.$$

Consider now

$$M = (\gamma_1, R) \oplus \cdots \oplus (\gamma_r, R) \oplus n_0 S \oplus n_1 R,$$

$$\gamma_i | \gamma_{i+1}, \qquad 1 \leq i < r,$$

$$\gamma_r | (\theta - 1), \qquad R \gamma_r \neq R(\theta - 1).$$

It is easily verified that the invariant factors of the pair of modules M_{σ} , (g-1)M are

$$\gamma_1, \dots, \gamma_r, \gamma_{r+1} = \dots = \gamma_n = \theta - 1.$$

Since under any isomorphism of SG-modules, $M \cong M'$, M_{σ} is mapped onto M'_{σ} and (g-1)M onto (g-1)M', the numbers $\gamma_1, \dots, \gamma_r$ and $n-r=n_1$ are determined by the isomorphism class of M. Therefore, given the S-rank of M, n_0 is also determined.

Now let G be a commutative group, $G = G_1 \times G_2$, where G_1 has exponent q prime to p and G_2 has ordered p, and let ξ be a root of unity whose order divides q. Then $Z_p[\xi]$ can be made into an irreducible Z_p G_1 -module with the elements of G_1 acting by multiplication by the powers of ξ . Denote

$$gx = \xi^{\alpha(g)}x$$
, for $x \in \mathbb{Z}_p[\xi]$, $g \in G_1$.

Then, given an indecomposable $Z_p[\xi]G_2$ -module N, define a Z_p G-module N_α to

be the additive group N with the elements of G acting by

$$g_1 g_2 n = \xi^{\alpha(g_1)} g_2 n$$
, for $g_1 \epsilon G_1, g_2 \epsilon G_2, n \epsilon N$.

It is easily verified that N_{α} is an indecomposable $Z_{p}G$ -module and that, if N' is another indecomposable $Z_{p}[\xi]G_{2}$ -module, then $N_{\alpha} \cong N'_{\alpha}$ if and only if $N \cong N'$.

Given any indecomposable Z_p G-module M let M_{G_1} be the Z_p G_1 -module obtained by restricting the operators to G_1 . Since p is prime to the order of G_1 , M_{G_1} is the direct sum of irreducible submodules. Multiplication by the elements of G_2 permutes isomorphic components of M_{G_1} . Since M is indecomposable, it follows that all the components of M_{G_1} are isomorphic. The irreducible Z_p G_1 -modules are of the form $Z_p[\xi]$, therefore $M_{G_1} \cong Z_p[\xi] \otimes M'$ for some Z_p -module M', where $g(x \otimes m) = gx \otimes m$ for $x \in Z_p[\xi]$, $m \in M'$. Now considering the action of G_2 on M, $N = Z_p[\xi] \otimes M'$ can be made into an indecomposable $Z_p[\xi]G_2$ -module, and M can be obtained from N in the manner described above.

2. Theorem 2. Let G be a commutative group. If p divides the order of G, then the Krull-Schmidt Theorem holds for Z_p G-modules if and only if G has exponent qp^n where either q=1 or p is a primitive root modulo q. The theorem also holds if G is a nilpotent group of odd order satisfying this condition.

Proof. To show that the theorem holds when the given condition is satisfied we shall prove that for every irreducible QG-module M, $Q^* \otimes M$ is an irreducible Q^*G -module. It follows that every irreducible Q^*G -module can be obtained from a QG-module by tensoring with Q^* , and this implies that every Z^*G -module comes from a Z_p G-module (see [2]). From this, and the fact that for Z_p G-modules Z^* -isomorphism implies Z_p -isomorphism, it follows that for every indecomposable Z_p G-module M, $Z^* \otimes M$ is indecomposable. Then the Krull-Schmidt Theorem for Z_p G-modules is a consequence of the theorem for Z^*G -modules.

Let G be a commutative group satisfying the condition. Every irreducible QG-module M is of the form $M \cong Q[X]/(f)$, where f is a cyclotomic polynomial of some order dividing qp^n , and where the elements of G act by multiplication by X and the powers of X. By the hypothesis on qp^n , f is irreducible over Q^* , hence $Q^* \otimes M$ is an irreducible Q^*G -module.

Suppose G has exponent qp^n where p is not a primitive root modulo q, then, since G has a homomorphic image that is cyclic of order qp, it is sufficient to show that the theorem fails when G is cyclic of order qp.

Using the notation of Theorem 1, $\theta-1$ has a proper divisor δ in R, so letting $\gamma=(\theta-1)/\delta$ we get

$$(1, R) \oplus S \oplus R \cong (\delta, R) \oplus (\gamma, R).$$

Let
$$\delta = \delta_0 + \delta_1 \theta + \cdots + \delta_{p-2} \theta^{p-2}$$
 and $\gamma = \gamma_0 + \gamma_1 \theta + \cdots + \gamma_{p-2} \theta^{p-2}$.

Let ξ be a matrix over Z_p which represents multiplication by ξ in S, and denote

$$U = \begin{bmatrix} 0 & 0 & \cdots & 0 & -\xi \\ \xi & 0 & \cdots & \cdot & \cdot \\ 0 & \xi & \cdots & \cdot & \cdot \\ \cdot & \cdot & \cdots & \cdot & \cdot \\ 0 & 0 & \cdots & \xi & -\xi \end{bmatrix}.$$

We then obtain two different decompositions of a Z_p -representation of G into indecomposables by mapping the generator of G into

$$\begin{bmatrix} \tilde{\xi} & 0 & \cdots & 0 \\ \tilde{\xi} & & & & \\ 0 & & U & \\ \vdots & & & & \\ 0 & & & & \end{bmatrix} \oplus \tilde{\xi} \oplus U \sim \begin{bmatrix} \tilde{\xi} & 0 & \cdots & 0 \\ \tilde{\xi} \tilde{\delta}_0 & & & & \\ \vdots & & U & \\ \tilde{\xi} \tilde{\delta}_{p-2} & & & \end{bmatrix} \oplus \begin{bmatrix} \tilde{\xi} & 0 & \cdots & 0 \\ \tilde{\xi} \tilde{\gamma}_0 & & & & \\ \vdots & & & U & \\ \tilde{\xi} \tilde{\gamma}_{p-2} & & & \end{bmatrix}.$$

Let G be any finite group and M^* an irreducible Q^*G -module. Let |G| denote the order of G and let $|G|M^*$ be the direct sum of |G| copies of M^* . It can be shown from Artin's Theorem on induced characters (see [2, p. 281]) that there exist cyclic subgroups $\{H_i\}$ of G, and for each H_i a Q^*H_i -module M_i^* and integers n_i , $n_i' \geq 0$, such that

$$\mid G \mid M^* \oplus \sum n_i(M_i^*)^G \cong \sum n_i(M_i^*)^G$$
.

Suppose that the exponent of G satisfies the given condition; then this condition is also satisfied by all the subgroups H_i , so by the first part of our proof every Q^*H_i -module comes from a QH_i -module. It follows that there exists a QG-module N such that $|G|M^*=Q\otimes N$. Now let M be an irreducible QG-module and suppose that $Q^*\otimes M\cong \sum M_i^*$ where $\{M_i^*\}$ are irreducible Q^*G -modules. Applying the above considerations to these modules we get QG-modules $\{N_i\}$ such that $|G|M_i^*=Q^*\otimes N_i$; hence $|G|M\cong \sum N_i$, so the irreducible components of the modules $\{N_i\}$ are all isomorphic to M. From this it follows that the modules $\{M_i^*\}$ are all isomorphic.

If we now assume G nilpotent and of odd order, by the results of Roquette [5], $\operatorname{Hom}_{Q^*G}(Q^*\otimes M, Q^*\otimes M)$ is commutative so we conclude that $Q^*\otimes M$ must be irreducible.

References

- S. D. Berman and P. M. Gudivok, Integral representations of finite groups, Dokl. Akad. Nauk SSSR, vol. 145 (1962), pp. 1199-1201.
- C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, New York, Interscience, 1963.
- 3. A. HELLER AND I. REINER, Representations of cyclic groups in rings of integers I, Ann. of Math. (2), vol. 76 (1962), pp. 73-92.

- I. Reiner, The Krull-Schmidt Theorem for integral group representations, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 365-367.
- 5. P. ROQUETTE, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math., vol. 9 (1958), pp. 241-250.
- 6. H. Weyl, Algebraic theory of numbers, Princeton, Princeton University Press, 1940.

CORNELL UNIVERSITY
ITHACA, NEW YORK