
ON TOPOLOGIES OF FINITE W*-ALGEBRAS

BY

1. Let M be a W*-algebra (namely, a C*-algebra with a dual structure
as a Banach space [4], [7]).
We may consider the following five typical topologies on M" (1) the norm

topology u as a Banach space; (2) the 5/Iackey topology r defined by uniform
convergences on every relatively z(M,, M)-compact convex set of M,,
where M, is the associated space of M (namely, M is the dual of M,); (3)
the topology * defined by a family of semi-norms a, a all positive M,},

(x’x)/ *(x) (xx*)/ for x M; (4) the topologywhere a(x) and a

defined by a family of semi-norms a all positive e M,}; (5) the weak*-
topology z (namely, z(M, M,) ).
We can easily see that u r if M is infinite-dimensional. By intro-

ducing the r-topology into W*-algebras, the author [7] simplified the proof
that two topologies and have the same dual M, as a set--that is, we showed
r * z, so that by the theorem of Mackey these four topologies
have the same dual M, as a set.

Considering this fact, the extremal property of the r-topology must be a
powerful tool in the theory of W*-algebras.
On the other hand, for the -, and z-topologies, we have nice concrete

representations--in fact, the * (resp. and z) coincides with the strong*-
operator topology--namely, the operator topology is defined by a family of
semi-norms {11 x ]l, x* lille @} (resp. the strong operator topology and
the weak operator topology) on bounded spheres, when M is faithfully repre-
sented as a weakly closed*-algebra on a hilbert space @. Therefore, it is
also important to have an analogous representation for the r-topology. In
this note, we shall show a concrete representation of the r-topology of finite
W*-algebras as follows" the r-topology of finite W*-algebras is equivalent
to the -topology on bounded spheres. As a corollary of this result, we shall
show that every z-continuous linear mapping of a finite W*-algebra into
another W*-algebra is -continuous on bounded spheres. For non-finite
W*-algebra, we have no solution; clearly is < on bounded spheres for
non-finite ones, because s < on bounded spheres (cf. [5], [7]).
Our conjecture is as follows" caa we conclude that the r-topology is

equivalent to the *-topology on bounded spheres for all W*-algebras?

2. Let M be a finite W*-algebra, M, the associated space of M.

LEMMA 1. Let (fi) be a countable family of elements in M, then there is a
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central projection z of M such that M is countably decomposable and

fi(i(1 z) 0

for all i, where 1 is the identity of M.
Proof. Let fi Lvlfl be the polar decomposition of f (cf. [6], [7]).

Put ,1 f ]/2il ill(l); then is a normal positive functional on i.
Let s() be the support of ; then s()Ms() is countably decomposable;
let z be the central envelope of s(); then M is also countably decomposable,
for M is finite. Then fi(M(1 z)) Ifl(vM( 1 z)) 0 for all i,
since the support s(I fi I) of I] is contained in s(). This completes the
proof.

LEMMA 2. Suppose that a sequence (fi) converges weakly to fo in M.;
then there is a normal finite trace on M as follows: for arbitrary sequence (an)
such that

I] an ll <- 1 and t(a* an) --. O (n -- ),

we have limn f(an) O, uniformly for i 1, 2, 3, ....
Proof. By Lemma 1, there is a central projection z such that M is count-

ably decomposable and f(M(1 z)) 0 for i 1, 2, and so

f0(M(1 z)) 0.

Let be a normal finite trace on M which is faithful on M.
We shall define a norm I1" [1 on M as follows: a I1--t(a*a)’ for

a eMz.
Let S be the unit sphere of M; then S is the unit sphere of M. We

define a metric d(x, y) on S such that d(x, y) x y I1: then this metric
defines a topology on S equivalent to the -topology; hence S is a complete
metric space under the metric d( ). The family {fill O, 1, 2, ...} can
be considered as continuous functions on the metric space S and

lim,_ f(a) fo(a)
for all a e S.
Put H, {allf(a) -fo(a)l <- for j _>_ i; a e S} for arbitrary posi-

tive > 0; then S (JiH by the theorem of Baire, there is a set H0,
which is of the second category; since H’0 is closed, it contains an open set;
hence there is an element a0 of S, a positive number () such that

d(a, no) < () (a e S) implies f(a) -fo(a)l <= s for j >__ j0.

Now suppose that a sequence of self-adjoint elements (bn) in S satisfies
limn t(b) O. By the theorem of Segal [8, Cor. 13.1], there is a subsequence
(b,) of (b) which converges metrically nearly everywhere to 0--namely,
for every positive e’ > 0 there exists a sequence Pn(e’) of projections in
M such that Pn(’) Z aS Up and ]] b P(’) < ’ (P 1, 2, ).



238 SH6ICHIR6 SAKAI

Therefore

(f- fo)(b,.,) (f- fo)(P,,(e’)b,,Pn(e’))

+ (f- fo)((z P(e’))bP..(e’))

+ (f- fo)(P(e’)b(z P(e’))

+ (f -fo)((z P(e’))b(z P(e’)))
6 supo,< f,

+ I(L fo)((z P.(e’))b(z P(e’))I.
Now put

z P(e’)ao P(e’) + (z P.(e’))b(z P(e’));
then x,.. e S, and

d(xv ao) (z Pnv(e’))aoPv(e’) + Pnv(e’)ao(z Pv(e’))
+ (Z Pnv(’))ao(z

(z- Pnv(#’))bnv(Z- Pnv(e’)) 2
4 z P(’).

Take po such that ]z- P(e’)]]2 < ()/4 for p po; then

(f- fo)(Xn,) (f- fo)(P,(e’)aoP=(e’))

+ (f fo)((z Pn(’))bn(Z P(’)))

for p po and j jo. Moreover,

d(Pn(e’)aoPn(e’), ao) 3]] z P(e’) ]]2 <
for p po and Pv(e’)ao Pnv(e’) 1, so that

(fi fo)(Pnv(’)ao Pnv()) 8

for p po and j jo therefore

(f- fo)( (z P,(g) )b=(z P=(g))) 2

forp poandj jo.
Hence

forp poandj jo.
Put e’ e/6 supo,<, f, ll; then I(f -fo)(b) 3 for p po and

jjo.
Since bn 0 (p in the -topology, there is a positive integer p

such that (f- fo)(b) 3e for p p and 1 j jo hence
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for p >= max (po, pl) and j 1, 2, 3, namely, limp f(b.,,) 0, uni-
formly forj 1, 2, 3, ....
Now we want to show that lima f(bn) 0, uniformly for j 1, 2, 3, ....
Suppose that this is false; then there is a positive number e, a subsequence

(b,q) of (bn) and a subsequence (flq) of (f’) such that Iflq(bnq) l> e for
q 1,2,3,.-..
On the other hand, by the above discussions, we can choose a subsequence

(bq) of (bq) such that limrf(bq) 0, uniformly forj 1, 2, This
is a contradiction; hence we have lim f(b) 0, uniformly for j 1, 2,

Now let (a) be a sequence of elements in S such that t(a a) O. Put
a h + ikn (ha, self-adjoint); then t(a a)= t(h) + t(k); hence

t((hz)) t(h)O and t((kz)) t(k)0,

so that lim fi(hz) lim fi(hn) 0, uniformly for j 1, 2,... and
lima f(k z) lima f(k) 0, uniformly for j 1, 2,... and so

lim f(a) O,

uniformly for j 1, 2, 3, -... This completes the proof.

LEMMA 3. Let K be a relatively a(M, M)-compt set in M, then there is a
normal finite tre on M as follows" for arbitrary directed set (a,) such that
a, 1 and lira, t(a a,) O, we have lira, f(a,) O, uniformly for

feK.
Proof. We shall show that for any positive e, there is a positive (e) and a

finite set {fx, f, f} = K such that if If ](a’a) < (e) for i 1, 2,.., p andaeS, then f(a) < eforfeK. Suppose that this is false for
some e. Let f e K be arbitrary; then there is an a e S and an f: e K such
that [f [(a a) < 2- and [f(a) e. By induction, construct sequences
{f} K and {a} S such that [fl(aai)< 2-i for 1 N i N j < ,
and f+i(ai) for 1 N j < .

Since K is relatively z(M,, M)-compact, there is a subsequence (f) of
(]) which converges weakly in M,. Put =t j /2", and let
s(9) be the support of 9.

< {= f *< aa)/2 + tv:> ]]f,/2

1/2v()+l 1/2v()+< 2 2- + supf,g lf1 1-2 2

where p(j) is the greatest p such that i j. Therefore lim 9(aa) 0
and so the sequence {a s(9)} is ,-convergent to 0 (cf. [2, Prop. 4, Chap. 1,

Let z be the central envelope of s(9), a normal finite trace on M which is
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faithful on Mz; then
t( (a s())*(a s())) -- 0 (j- ),

so that by Lemma 2, lim fv(a s() O, uniformly for p 1, 2, 3,
Since s(I f I) <= s(), fi(a s()) fv(a.); hence lim.fiv(a) O,

uniformly for p 1, 2,.... This contradicts f+l(a) >= for all j.
Therefore there is a sequence of elements (gn) in K such that g,, I(a*a) 0

for all n implies f(a) 0 for all f e K. Put

and let z0 be the central envelope of the support s() of ; then

g I(M(1 z0)) 0

for all n, so that f(M(1 z0)) 0 for all f e K. Let be a normal finite
trace on M which is faithful on Mzo. Let (a,) be a directed set of elements in
S such that t(a*, a,) -- 0; then lira, f(a,) 0 uniformly for f e K--in fact,
suppose that this is false; then there is a subsequence (a,) of (a,), a subse-
quence (f) of K, a positive number such that t(a*, a,,) --, 0 and

This contradicts Lemma 2. This completes the proof.
Remark 1. The proof of Lemma 3 is a modification of the discussions of

Bartle-Dunford-Schwartz [1].
Now we shall show the following.

THEOREM. Let M be a finite W*-algebra; then the r-topology is equivalent
to the -topology on bounded spheres.

Proof. Suppose that a directed set of elements (x,) in S is -convergent
to 0. Let K be arbitrary relatively z(M,, M)-compact set in M, then by
Lemma 3 there is a finite normal trace such that limt(*..)0.11.ll

_
f(a,) O,

uniformly for f e K; since t(x*, x,) -- O, we have lira, f(x,) O, uniformly
for f e K, so that {a,} is r-convergent to 0. This completes the proof.

CoRollaRY 1. Let p be a z-continuous linear mapping of a finite W*-al-
gebra into another W*-algebra; then p is -continuous on bounded spheres.

Proof. By the general theory of locally convex spaces, p is r-continuous.
By the above theorem, the r-topology coincides with the -topology on
bounded spheres of finite W*-algebras, so that p is -continuous oa bounded
spheres.
Remark 2. This corollary can not be extended to general W*-algebras--

in fact, let M be a W*-algebra; then we can construct a W*-algebra N such
that there is an anti-.-isomorphism p of M onto N (cf. [3], [7]); p is always
a-bicontinuous (cf. [7]); however, if M is not finite, p is always -discontinu-
ous on bounded spheres (cf. [5], [7]).
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COROLLARY 2. Let be a normal positive mapping of a finite *W -algebra
into another *W-algebra; then it is -continuous on bounded spheres.

Proof. Since a normal positive mapping is a-continuous, by Corollary 1
it is -continuous on bounded spheres.
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