ON TOPOLOGIES OF FINITE W*-ALGEBRAS

BY

Shôichirô Sakai¹

1. Let M be a W^* -algebra (namely, a C^* -algebra with a dual structure as a Banach space [4], [7]).

We may consider the following five typical topologies on M: (1) the norm topology u as a Banach space; (2) the Mackey topology τ defined by uniform convergences on every relatively $\sigma(M_*, M)$ -compact convex set of M_* , where M_* is the associated space of M (namely, M is the dual of M_*); (3) the topology s^* defined by a family of semi-norms { $\alpha_{\varphi}, \alpha_{\varphi}^*$ | all positive $\varphi \in M_*$ }, where $\alpha_{\varphi}(x) = \varphi(x^*x)^{1/2}$ and $\alpha_{\varphi}^*(x) = \varphi(xx^*)^{1/2}$ for $x \in M$; (4) the topology s defined by a family of semi-norms { α_{φ} | all positive $\varphi \in M_*$ }; (5) the weak^{*}topology σ (namely, $\sigma(M, M_*)$).

We can easily see that $u < \tau$ if M is infinite-dimensional. By introducing the τ -topology into W^* -algebras, the author [7] simplified the proof that two topologies \mathfrak{s} and σ have the same dual M_* as a set—that is, we showed $\tau \leq \mathfrak{s}^* \leq \mathfrak{s} \leq \sigma$, so that by the theorem of Mackey these four topologies have the same dual M_* as a set.

Considering this fact, the extremal property of the τ -topology must be a powerful tool in the theory of W^* -algebras.

On the other hand, for the s^* -, s- and σ -topologies, we have nice concrete representations—in fact, the s^* (resp. s and σ) coincides with the strong^{*}operator topology—namely, the operator topology is defined by a family of semi-norms { $|| x\xi ||, || x^*\xi || | \xi \in \mathfrak{H}$ } (resp. the strong operator topology and the weak operator topology) on bounded spheres, when M is faithfully represented as a weakly closed^{*}-algebra on a hilbert space \mathfrak{H} . Therefore, it is also important to have an analogous representation for the τ -topology. In this note, we shall show a concrete representation of the τ -topology of finite W^* -algebras as follows: the τ -topology of finite W^* -algebras is equivalent to the s-topology on bounded spheres. As a corollary of this result, we shall show that every σ -continuous linear mapping of a finite W^* -algebra into another W^* -algebra is s-continuous on bounded spheres. For non-finite W^* -algebra, we have no solution; clearly τ is \prec on bounded spheres for non-finite ones, because s^* is \prec on bounded spheres (cf. [5], [7]).

Our conjecture is as follows: can we conclude that the τ -topology is equivalent to the s^* -topology on bounded spheres for all W^* -algebras?

2. Let M be a finite W^* -algebra, M_* the associated space of M.

LEMMA 1. Let (f_i) be a countable family of elements in M_* ; then there is a

Received December 4, 1963.

¹ This research was partially supported by the National Science Foundation.

central projection z of M such that M_z is countably decomposable and

 $f_i(M(1-z)) = 0$

for all i, where 1 is the identity of M.

Proof. Let $f_i = L_{v_i} |f_i|$ be the polar decomposition of f_i (cf. [6], [7]). Put $\varphi = \sum_{i=1}^{\infty} |f_i|/2^i| f_i |(1)$; then φ is a normal positive functional on M. Let $s(\varphi)$ be the support of φ ; then $s(\varphi)Ms(\varphi)$ is countably decomposable; let z be the central envelope of $s(\varphi)$; then M_z is also countably decomposable, for M is finite. Then $f_i(M(1-z)) = |f_i|(v_iM(1-z)) = 0$ for all i, since the support $s(|f_i|)$ of $|f_i|$ is contained in $s(\varphi)$. This completes the proof.

LEMMA 2. Suppose that a sequence (f_i) converges weakly to f_0 in M_* ; then there is a normal finite trace t on M as follows: for arbitrary sequence (a_n) such that

$$||a_n|| \leq 1$$
 and $t(a_n^*a_n) \to 0 \ (n \to \infty),$

we have $\lim_{n\to\infty} f_i(a_n) = 0$, uniformly for $i = 1, 2, 3, \cdots$.

Proof. By Lemma 1, there is a central projection z such that M_z is countably decomposable and $f_i(M(1-z)) = 0$ for $i = 1, 2, \cdots$ and so

$$f_0(M(1-z)) = 0.$$

Let t be a normal finite trace on M which is faithful on M_z .

We shall define a norm $\|\cdot\|_2$ on M_z as follows: $\|a\|_2 = t(a^*a)^{1/2}$ for $a \in M_z$.

Let S be the unit sphere of M; then S_z is the unit sphere of M_z . We define a metric d(x, y) on S_z such that $d(x, y) = ||x - y||_2$; then this metric defines a topology on S_z equivalent to the s-topology; hence S_z is a complete metric space under the metric d(,). The family $\{f_i | i = 0, 1, 2, \cdots\}$ can be considered as continuous functions on the metric space S_z and

$$\lim_{i\to\infty}f_i(a)=f_0(a)$$

for all $a \in S_z$.

Put $H_i = \{a \mid |f_j(a) - f_0(a)| \leq \varepsilon$ for $j \geq i$; $a \in S_z\}$ for arbitrary positive $\varepsilon > 0$; then $S_z = \bigcup_{i=1}^{\infty} H_i$; by the theorem of Baire, there is a set H_{j_0} , which is of the second category; since H_{j_0} is closed, it contains an open set; hence there is an element a_0 of S_z , a positive number $\delta(\varepsilon)$ such that

$$d(a, a_0) < \delta(\varepsilon) \ (a \in S_2) \quad \text{implies} \quad |f_j(a) - f_0(a)| \leq \varepsilon \quad \text{for } j \geq j_0$$

Now suppose that a sequence of self-adjoint elements (b_n) in S_z satisfies $\lim_n t(b_n^2) = 0$. By the theorem of Segal [8, Cor. 13.1], there is a subsequence (b_{n_p}) of (b_n) which converges metrically nearly everywhere to 0—namely, for every positive $\varepsilon' > 0$ there exists a sequence $P_{n_p}(\varepsilon')$ of projections in M_z such that $P_{n_p}(\varepsilon') \uparrow z$ as $n_p \uparrow \infty$ and $|| b_{n_p} P_{r_p}(\varepsilon') || < \varepsilon' (p = 1, 2, \cdots)$.

Therefore

$$|(f_{j} - f_{0})(b_{n_{p}})| = |(f_{j} - f_{0})(P_{n_{p}}(\varepsilon')b_{n_{p}}P_{n_{p}}(\varepsilon'))| + |(f_{j} - f_{0})((z - P_{n_{p}}(\varepsilon'))b_{n_{p}}P_{n_{p}}(\varepsilon'))| + |(f_{j} - f_{0})(P_{n_{p}}(\varepsilon')b_{n_{p}}(z - P_{n_{p}}(\varepsilon'))| + |(f_{j} - f_{0})((z - P_{n_{p}}(\varepsilon'))b_{n_{p}}(z - P_{n_{p}}(\varepsilon')))|$$

$$\leq 6 \sup_{0 \leq i < \infty} ||f_{i}||\varepsilon' + |(f_{j} - f_{0})((z - P_{n_{p}}(\varepsilon'))b_{n_{p}}(z - P_{n_{p}}(\varepsilon'))|.$$

Now put

$$x_{n_p} = P_{n_p}(\varepsilon') a_0 P_{n_p}(\varepsilon') + (z - P_{n_p}(\varepsilon')) b_{n_p}(z - P_{n_p}(\varepsilon'))$$

then $x_{n_p} \in S_z$ and

$$d(x_{n_p}, a_0) = \| (z - P_{n_p}(\varepsilon')) a_0 P_{n_p}(\varepsilon') + P_{n_p}(\varepsilon') a_0(z - P_{n_p}(\varepsilon')) + (z - P_{n_p}(\varepsilon')) a_0(z - P_{n_p}(\varepsilon')) - (z - P_{n_p}(\varepsilon')) b_{n_p}(z - P_{n_p}(\varepsilon')) \|_2 \leq 4 \| z - P_{n_p}(\varepsilon') \|_2.$$

Take p_0 such that $||z - P_{n_p}(\varepsilon')||_2 < \delta(\varepsilon)/4$ for $p \ge p_0$; then

$$|(f_{j} - f_{0})(x_{n_{p}})| = |(f_{j} - f_{0})(P_{n_{p}}(\varepsilon')a_{0} P_{n_{p}}(\varepsilon')) + (f_{j} - f_{0})((z - P_{n_{p}}(\varepsilon'))b_{n_{p}}(z - P_{n_{p}}(\varepsilon')))| \le \varepsilon$$

for $p \ge p_0$ and $j \ge j_0$. Moreover,

$$d(P_{n_p}(\varepsilon')a_0 P_{n_p}(\varepsilon'), a_0) \leq 3 ||z - P_{n_p}(\varepsilon')||_2 < \delta(\varepsilon)$$

for $p \ge p_0$ and $|| P_{n_p}(\varepsilon')a_0 P_{n_p}(\varepsilon') || \le 1$, so that

$$|(f_j - f_0)(P_{n_p}(\varepsilon')a_0 P_{n_p}(\varepsilon'))| \leq \varepsilon$$

for $p \geq p_0$ and $j \geq j_0$; therefore

$$\left| (f_j - f_0)((z - P_{n_p}(\varepsilon'))b_{n_p}(z - P_{n_p}(\varepsilon'))) \right| \leq 2\varepsilon$$

for $p \geq p_0$ and $j \geq j_0$. Hence

$$|(f_j - f_0)(b_{n_p})| \leq 6 \sup_{0 \leq i < \infty} ||f_i|| \varepsilon' + 2\varepsilon$$

for $p \ge p_0$ and $j \ge j_0$.

Put $\varepsilon' = \varepsilon/6 \sup_{0 \le i < \infty} ||f_i||$; then $|(f_j - f_0)(b_{n_p})| \le 3\varepsilon$ for $p \ge p_0$ and $j \ge j_0$.

Since $b_{n_p} \to 0$ $(p \to \infty)$ in the s-topology, there is a positive integer p_1 such that $|(f_j - f_0)(b_{n_p})| \leq 3\varepsilon$ for $p \geq p_1$ and $1 \leq j \leq j_0$; hence

$$|(f_j - f_0)(b_{n_p})| \leq 3\varepsilon$$

238

for $p \ge \max(p_0, p_1)$ and $j = 1, 2, 3, \cdots$ -namely, $\lim_{p\to\infty} f_j(b_{n_p}) = 0$, uniformly for $j = 1, 2, 3, \cdots$.

Now we want to show that $\lim_n f_j(b_n) = 0$, uniformly for $j = 1, 2, 3, \cdots$. Suppose that this is false; then there is a positive number ε , a subsequence (b_{nq}) of (b_n) and a subsequence (f_{jq}) of (f_j) such that $|f_{jq}(b_{nq})| > \varepsilon$ for $q = 1, 2, 3, \cdots$.

On the other hand, by the above discussions, we can choose a subsequence (b_{nqr}) of (b_{nq}) such that $\lim_{r} f_j(b_{nqr}) = 0$, uniformly for $j = 1, 2, \cdots$. This is a contradiction; hence we have $\lim_{n} f_j(b_n) = 0$, uniformly for $j = 1, 2, 3, \cdots$.

Now let (a_n) be a sequence of elements in S such that $t(a_n^* a_n) \to 0$. Put $a_n = h_n + ik_n (h_n, k_n \text{ self-adjoint})$; then $t(a_n^* a_n) = t(h_n^2) + t(k_n^2)$; hence

 $t((h_n z)^2) = t(h_n^2) \to 0$ and $t((k_n z)^2) = t(k_n^2) \to 0$,

so that $\lim_n f_j(h_n z) = \lim_n f_j(h_n) = 0$, uniformly for $j = 1, 2, \cdots$ and $\lim_n f_j(k_n z) = \lim_n f_j(k_n) = 0$, uniformly for $j = 1, 2, \cdots$ and so

$$\lim_n f_j(a_n) = 0$$

uniformly for $j = 1, 2, 3, \cdots$. This completes the proof.

LEMMA 3. Let K be a relatively $\sigma(M_*, M)$ -compact set in M_* ; then there is a normal finite trace t on M as follows: for arbitrary directed set (a_{α}) such that $||a_{\alpha}|| \leq 1$ and $\lim_{\alpha} t(a_{\alpha}^*a_{\alpha}) = 0$, we have $\lim_{\alpha} f(a_{\alpha}) = 0$, uniformly for $f \in K$.

Proof. We shall show that for any positive ε , there is a positive $\delta(\varepsilon)$ and a finite set $\{f_1, f_2, \dots, f_p\} \subseteq K$ such that if $|f_i|(a^*a) < \delta(\varepsilon)$ for $i = 1, 2, \dots, p$ and $a \in S$, then $|f(a)| < \varepsilon$ for $f \in K$. Suppose that this is false for some ε . Let $f_1 \in K$ be arbitrary; then there is an $a_1 \in S$ and an $f_2 \in K$ such that $|f_1|(a_1^*a_1) < 2^{-1}$ and $|f_2(a_1)| \ge \varepsilon$. By induction, construct sequences $\{f_i\} \subset K$ and $\{a_i\} \subset S$ such that $|f_i|(a_j^*a_j) < 2^{-j}$ for $1 \le j < \infty$, and $|f_{j+1}(a_j)| \ge \varepsilon$ for $1 \le j < \infty$.

Since K is relatively $\sigma(M_*, M)$ -compact, there is a subsequence (f_{i_p}) of (f_i) which converges weakly in M_* . Put $\varphi = \sum_{p=1}^{\infty} |f_{i_p}|/2^p$, and let $s(\varphi)$ be the support of φ .

$$\begin{split} \varphi(a_j^*a_j) &= \sum_{p=1}^{\infty} |f_{i_p}| (a_j^*a_j)/2^p \\ &\leq \sum_{\{p:i_p \leq j\}} |f_{i_p}| (a_j^*a_j)/2^p + \sum_{\{p:i_p > j\}} \|f_{i_p}\|/2^j \\ &\leq \frac{\frac{1}{2} - 1/2^{p(j)+1}}{1 - \frac{1}{2}} \cdot 2^{-j} + \frac{1/2^{p(j)+1}}{1 - \frac{1}{2}} \cdot \sup_{f \in K} \|f\| \end{split}$$

where p(j) is the greatest p such that $i_p \leq j$. Therefore $\lim_{j\to\infty} \varphi(a_j^*a_j) = 0$ and so the sequence $\{a_j \, s(\varphi)\}$ is s-convergent to 0 (cf. [2, Prop. 4, Chap. 1, §4]).

Let z be the central envelope of $s(\varphi)$, t a normal finite trace on M which is

faithful on Mz; then

$$t((a_j s(\varphi))^*(a_j s(\varphi))) \to 0 \qquad (j \to \infty),$$

so that by Lemma 2, $\lim_{j\to\infty} f_{i_p}(a_j \, s(\varphi)) = 0$, uniformly for $p = 1, 2, 3, \cdots$. Since $s(|f_{i_p}|) \leq s(\varphi), f_{i_p}(a_j \, s(\varphi)) = f_{i_p}(a_j)$; hence $\lim_{j\to\infty} f_{i_p}(a_j) = 0$,

uniformly for $p = 1, 2, \cdots$. This contradicts $|f_{j+1}(a_j)| \ge \varepsilon$ for all j. Therefore there is a sequence of elements (g_n) in K such that $|g_n|(a^*a) = 0$

for all n implies f(a) = 0 for all $f \in K$. Put

$$\psi = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|g_n|}{|g_n|(1)|}$$

and let z_0 be the central envelope of the support $s(\psi)$ of ψ ; then

$$|g_n|(M(1-z_0)) = 0$$

for all n, so that $f(M(1 - z_0)) = 0$ for all $f \in K$. Let t be a normal finite trace on M which is faithful on Mz_0 . Let (a_α) be a directed set of elements in S such that $t(a_\alpha^* a_\alpha) \to 0$; then $\lim_{\alpha} f(a_\alpha) = 0$ uniformly for $f \in K$ —in fact, suppose that this is false; then there is a subsequence (a_{α_n}) of (a_α) , a subsequence (f_n) of K, a positive number ε such that $t(a_{\alpha_n}^* a_{\alpha_n}) \to 0$ and

$$|f_n(a_{\alpha_n})| \geq \varepsilon.$$

This contradicts Lemma 2. This completes the proof.

Remark 1. The proof of Lemma 3 is a modification of the discussions of Bartle-Dunford-Schwartz [1].

Now we shall show the following.

THEOREM. Let M be a finite W^* -algebra; then the τ -topology is equivalent to the s-topology on bounded spheres.

Proof. Suppose that a directed set of elements (x_{α}) in S is \circ -convergent to 0. Let K be arbitrary relatively $\sigma(M_*, M)$ -compact set in M_* ; then by Lemma 3 there is a finite normal trace t such that $\lim_{t(a_{\alpha}^*a_{\alpha})\to 0, ||a_{\alpha}|| \leq 1} f(a_{\alpha}) = 0$, uniformly for $f \in K$; since $t(x_{\alpha}^*x_{\alpha}) \to 0$, we have $\lim_{\alpha} f(x_{\alpha}) = 0$, uniformly for $f \in K$, so that $\{a_{\alpha}\}$ is τ -convergent to 0. This completes the proof.

COROLLARY 1. Let ρ be a σ -continuous linear mapping of a finite W^* -algebra into another W^* -algebra; then ρ is s-continuous on bounded spheres.

Proof. By the general theory of locally convex spaces, ρ is τ -continuous. By the above theorem, the τ -topology coincides with the \mathfrak{s} -topology on bounded spheres of finite W^* -algebras, so that ρ is \mathfrak{s} -continuous on bounded spheres.

Remark 2. This corollary can not be extended to general W^* -algebras in fact, let M be a W^* -algebra; then we can construct a W^* -algebra N such that there is an anti-*-isomorphism ρ of M onto N (cf. [3], [7]); ρ is always σ -bicontinuous (cf. [7]); however, if M is not finite, ρ is always s-discontinuous on bounded spheres (cf. [5], [7]).

240

COROLLARY 2. Let Φ be a normal positive mapping of a finite W^{*}-algebra into another W^{*}-algebra; then it is s-continuous on bounded spheres.

Proof. Since a normal positive mapping is σ -continuous, by Corollary 1 it is β -continuous on bounded spheres.

References

- 1. R. G. BARTLE, N. DUNFORD AND J. SCHWARTZ, Weak compactness and vector measures, Canad. J. Math., vol. 7 (1955), pp. 289–305.
- 2. J. DIXMIER, Les algebrès d'opérateurs dans l'espace Hilbertien, Paris, Gauthier-Villars, 1957.
- 3. F. J. MURRAY AND J. VON NEUMANN, On rings of operators IV, Ann. of Math. (2), vol. 44 (1943), pp. 716–808.
- 4. S. SAKAI, A characterization of W*-algebras, Pacific J. Math., vol. 6 (1956), pp. 763-773.
- On topological properties of W*-algebras, Proc. Japan Acad., vol. 33 (8) (1957), pp. 439-444.
- 6. ——, On linear functionals of W*-algebras, Proc. Japan Acad., vol. 34 (9) (1958), pp. 571-574.
- 7. ——, The theory of W*-algebras, Lecture notes, Yale University, 1962.
- 8. I. SEGAL, A non-commutative extension of abstract integration, Ann. of Math. (2), vol. 57 (1953), pp. 401-457.
- H. UMEGAKI, Weak compactness in an operator space, Kodai Math. Sem. Rep., vol. 8 (1956), pp. 145-151.

WASEDA UNIVERSITY TOKYO, JAPAN YALE UNIVERSITY NEW HAVEN, CONNECTICUT