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1. Introduction

The relation between the core of a complex sequence and the core of its
transform by a regular matrix has been studied by Knopp and others [1, Ch.
6]. In this paper it is shown that core theorems for coregular matrices can
be obtained rather readily from known core theorems for regular matrices
by means of a decomposition of the coregular matrices. These new core
theorems contain several results of B. E. Rhoades [3] for coregular matrices.

Let A (ank) be an infinite matrix of complex numbers and let (s) be a
complex sequence such that An(s) _,k a,k s exists for every n. The se-
quence (An(s)) is called the transform of (Sn) by the matrix A. When
an 0 for/c > n, A is said to be triangular. Clearly, when A is triangular,
An(s) always exists. The matrix A is said to be conservative if lima An(8)
exists whenever lima Sn exists. Necessary and sufficient conditions that A
be conservative are well known [2, Th. 1]. When A is conservative, one de-
fines X(A), the characteristic of A, as X(A) - a, where
lima ank and a lima an. If X(A) # O, A is said to be coregular. The
matrix A is said to be regular if and only if lima An(s) lima Sn whenever
lima sn exists. Necessary and sufficient conditions that A be regular are
also well known [2, Th. 2].
The core of a complex sequence (sn) is defined by Cooke [1, p. 137] to be

the intersection of the sets Rn, where Rn is the convex hull of the points
[s, s+, ""], n 0, 1, ....

2. The main theorems
For complex sequences (s) and complex matrices A, the following assertion

will be investigated"

(I) The core of (An(s)) is a subset of the image of the core of (sn) under
the linear transformation w z. X(A) + a s.

Since the core of a real sequence (Sn) is the closed iterval [Jim inf s
lira sup Sn], the real counterpart of (I) for real matrices with X(A) >_ 0 is the
following"

(II)

and
ak sk + X(A). lira inf sn _< lim inf An(s)

lim sup An(8) -d ak 8k + X A lim sup s.
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THEOREM 2.1.
complex sequence.

Let A be a complex coregular matrix and let Sn) be a bounded
A necessary and sucient condition for (I) is

 im. X(A)I.
COROLLARY 2.2. Let A be a real coregular matrix with X(A > 0 and let

(s,) be a bounded real sequence. Then a necessary and sucient condition for
(II) is

(a) limn k lank a X(A ).

THEOREM 2.3. Let A be a complex coregular matrix and let sn) be a complex
sequence such that An(s) exists for every n and ak s converges. A sucient
condition for (I) is that there exists a number K such that for all n and all l >_ K,

(an- ak)/X(A)= Re [(an- a)/X(A)] >_ O,

where Re [z] denotes the real part of z.

COROLLARY 2.4. Let A be a real coregular matrix with X(A) > O. Let
s,) be a real sequence such that An s exists for every n and a sk converges.
A sucient condition for (II) is

(b) there exists a number K such that a, >_ a, for all n and all k >_ K.

The proofs of these theorems require the following lemma.

LEMMA 2.5. Let A be a coregular matrix and define B bn) where
a,k a /X A Then B is regular and

An(s) X(A).B,(s)

for all sequences (Sn) for which a s converges and A,(s) exists.

Proof. B is regular, since lim bn 0 for every k,

k bnk -- (k ankl + a[)/I X(A)] for every n,

and limn bn 1. Clearly, An(s) X(A).Bn(s) -t- ask.
Proof of Theorem 2.1. Agnew proved that if B is a regular matrix and

(s) is bounded, then the core of (Bn(s)) is contained in the core of (sn) if
and only if limn bl 1 [1, Th. 6.4 II]. Theorem 2.1 follows from
Agnew’s result, by means of the decomposition of Lemma 2.5.

Proof of Theorem 2.3. Cooke [1, p. 145] remarks that the condition that
there exists a K such that bn Re [bn] >_ 0 for every n and for k >_ K is a
sufficient condition that the core of (Bn(s)) be contained in the core of (s)
when B is regular and (sn) is arbitrary. Theorem 2.3 follows from this re-
sult by the use of Lemma 2.5.

THEOREM 2.6. In order that the triangular coregular matrix A be such that
(I) holds for those sequences (Sn) for which a sk converges, it is necessary
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and sucient that there exists a number K such that for all n > k >_ K,

(a- a)/X(A) Re i(a.- a)/X(A)] > O.

Proof. Define a triangular matrix B (5k) as follows" let bnk
(a,,k-- ak)/X(A) ifn >/, 5nk 0 otherwise. Then, asinthe proof of Lemma
2.5, B is regular and An(s) X(A). Bn(s) -4- 0 ak sk. By a result of
Agnew [1, Th. 6.4 I], the core of (Bn(s)) is contained in the core of (s,) if
and only if there exists a K such that bnk Re Ibnk] > 0 for all n and for all
k > K. tIence, if W,(s) X(A). Bn(s) -f- k0 ak sk, the core of (W.(s))
is contained ir the image of the core of (s.) under the transformation

w z’X(A) - ak s.
Now

Wn(s) A,(s) k>,+ ak sk --> 0,

so, the cores of (An(s)) and (Wn(S)) are identical [1, Th. 6.3 II].

Cononv 2.7. In order that the real coregular triangular matrix A, with
X(A) > 0, be such that (II) holds for real sequences (Sn) such that ak sk
converges, it is necessary and suicient that

(c) there exists a K such that auk

_
ak for all n >_ t >_ K.

3. Related results
Recently, B. E. Rhoades [3] investigated statement (II) under various

combinations of conditions on the real matrix A. It will be shown that the
corollaries of Section 2 above imply some of his results. His conditions are
the following.

(d) There exists an integer p such that a 0 for all ] > p.
(e) There exists an integer q such that ank >_ 0 for all/ >_ q.
(f) limn k lank t.

Rhoades’ results for coregular matrices may be stated as follows"

TEOREM 3.1 [3, Th. 4]. (e) /s sucient for (II) for those sequences (s,)
for which a s, converges.

THEOREM 3.2 [3, Th. 5]. If A is triangular and satisfies (d), then (e) is
necessary and sucient for (II).

TEORM 3.3 [3, Th. 6]. (f) is sucient for (II) for bounded sequences.

THEOREM 3.4 [3, Th. 7]. If ak 0 for all k and A is triangular, then (f)
is necessary and su2cient for (II) for bounded sequences.

In proving these theorems, Rhoades used the following lemma.

LEMM 3.5 [3, Lemma 1]. IfA is coregular and satisfies e thenX A ) > O.
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Theorem 3.2 follows readily from Corollary 2.7. For sufficiency, Lemma
3.5 assures that X(A) > O. Choose K max(p, q). Then (c) holds,
and by the corollary, (II) follows. For the necessity part, (d) implies that

ak sk converges for any sequence. Hence, if (s) is divergent, (II) and
coregularity imply that X(A) O. Let q max(K, p). Then condition
(e) holds.
In order to show that Section 2 implies Theorems 3.3 and 3.4, an additional

lemma is required. It may be of some independent interest.

LEMMA 3.6. Condition (f) is equivalent to the assertion that ak >_ 0 for all
and condition a holds.

Proof. Condition (f) implies that limn k (I a,k ank O. If

lim (I anv I-- anv) a > 0
for some p, then

]iron Ek (I auk I-- a.k) lim= (I av ]-- av) + lim kCv (i ak ]-- ak)

>a>0.

Hence, for all k, ak lim, lank

_
O. Since A is conservative, E lak

ak converges. Given c > 0, there is an N such that k>Nak < C/2.
Thus,

lira SUpn Ek>O lank- ak

__
lim _--o lank- ak -t- lim Ek> ak

Now
lim Ek> lank limn Ek>O [ak l-- Ef=o ak

< lim. Eko ank- Ek>o ak + s/2,

using (f) and the definition of N. Hence,

lim sup k lank- ak < lim k (ank- ak) - s X(A) + .
On the other hand,

lim infn k [ank ak --. limn k (ank ak X A

If ak >_ 0 for all ] and condition (a) holds, then

m u,. a <- im. E a- a + a

im (a- a) + a i. a..

Also, lira inf a >_ lim a ,so condition (f) holds.
It is to be noted that since (f) implies (a), if A is coregular and satisfies

(f), then X(A) > O. In the light of this remark and Lemma 3.6, Theorem
3.3 is a consequence of Corollary 2.2.

Using Lemma 3.6 and Corollary 2.2, it is seen that Theorem 3.4 may be
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strengtheaed to the following"

THEOREM 3.7. If ak >_ 0 for all ], then (f) is necessary and sucient for
(II) for bounded sequences.

In order to see that Theorem 3.1 for bounded sequences is a consequence of
Theorem 3.3, one uses a decomposition of the matrix A. Let A satisfy (e).
Define matrices C (Cnk) and D (dnk) as follows" let cn 0 for k < q,
Cnk auk fOr ]C

__
q; let rink a for ] < q, dn 0 for ] _> q. Then C is

conservative and satisfies (f) since cn >_ 0. Furthermore, C is coregular,
since by Lemma 3.5, X(A) > 0, and clearly, X(C) X(A). Now, if
(s) is bounded, then A(s) exists and equals C(s) + D(s). Also,
limDn(s) - ak sk. Hence,

lira sup A(s) lim sup Cn s - 2o ak sk

and a similar result holds for the inferior limits. Theorem 3.1 for bounded
sequences now follows from an application of Theorem 3.3 to C.
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