PROJECTIVE REPRESENTATIONS OF FINITE GROUPS IN CYCLOTOMIC FIELDS

BY
W. F. Reynolds

Introduction

In [2] Brauer proved that every representation of a finite group G in the field C of complex numbers is equivalent in C to a representation of G in the field of the $|G|$-th roots of unity, and in [3] he improved this by replacing $|G|$ by the exponent of G. In this paper we consider the corresponding question for projective representations. Our main result is contained in the following theorem.

Theorem. Every projective representation \mathfrak{X} of G in C is projectively equivalent (see Section 2) in C to a projective representation 3 of G in the field of the $|G|$-th roots of unity. \mathfrak{B} can be chosen so that its factor set takes on only $|G|-$ th roots of unity as values, and so that it is inflated from any quotient group G / H from which the factor set of \mathfrak{X} is inflated.

This result is given in a more precise form in Theorems 5 and 6 , which also include a similar result for modular projective representations (see [10], [11]). It would be of interest to know whether $|G|$ could be replaced by the exponent of G in these results.

Our method combines those of Brauer [3] and Schur [13]. In Section 1 we give a modification (Theorem 1) of the Brauer induction theorem [4], [6, p. 283] which takes into account the behavior of characters on a given subgroup of the center $Z(G)$ of G; and we use this to prove in Theorem 3 that every representation of every subgroup of G in C is equivalent to a representation in the field of the $\left|G: Z(G) \cap G^{\prime}\right|$-th roots of unity, where G^{\prime} is the commutator subgroup of G. Schur's method is then applied in Section 2 to obtain the main result. In the final section we show that some basic results of Clifford [5] and Mackey [9] can be obtained within the field of the $|G|$-th roots of unity.

1. Characters and representations

Our first result is a modification of the Brauer induction theorem.
Theorem 1. Let A be a subgroup of the center of a finite group G; let ω be a linear character of A. Then every irreducible character χ of G such that $\chi \mid A$ contains ω can be expressed in the form

$$
\begin{equation*}
\chi=\sum_{i} c_{i} \lambda_{i}^{G} \tag{1}
\end{equation*}
$$

Received October 28, 1963.
where c_{i} is an integer and λ_{i} is a linear character of a nilpotent subgroup J_{i} of G such that $J_{i} \supseteq A$ and $\lambda_{i} \mid A=\omega$.

Here $\chi \mid A$ denotes the restriction of χ to $A ; \lambda_{i}^{G}$ denotes the character of G induced by λ_{i}; and a linear character is a character of degree 1.

Proof. By the induction theorem, we can write

$$
\chi=\sum_{j} b_{j} \theta_{j}^{G}=\sum_{j} b_{j}\left(\theta_{j}^{A E_{j}}\right)^{G}
$$

where b_{j} is an integer and θ_{j} is an irreducible character of an elementary subgroup E_{j} of G. Decomposing $\theta_{j}^{A E_{j}}$ into its irreducible constituents ψ_{i} on $A E_{j}$, we obtain an equation

$$
\begin{equation*}
\chi=\sum_{i} c_{i} \psi_{i}^{\theta} \tag{2}
\end{equation*}
$$

where c_{i} is an integer and ψ_{i} is an irreducible character of $A F_{i}, F_{i}$ being one of the groups E_{j}.

Since $A \subseteq Z(G)$, each $\psi_{i} \mid A$ is a multiple of some linear character ω_{i} of A; then also $\psi_{i}^{G} \mid A$ is a multiple of ω_{i}. Similarly $\chi \mid A$ is a multiple of ω. We can write

$$
\chi-\sum_{i \epsilon I^{\prime}} c_{i} \psi_{i}^{G}=\sum_{i \epsilon I^{\prime \prime}} c_{i} \psi_{i}^{G}
$$

where $i \in I^{\prime}$ if $\omega_{i}=\omega$ and $i \epsilon I^{\prime \prime}$ if $\omega_{i} \neq \omega$. The left side is a linear combination of those of the irreducible characters χ_{l} of G for which $\chi_{l} \mid A$ is a multiple of ω, while the right side is a linear combination of the remaining χ_{l}. By the linear independence of the χ_{l}, both sides vanish; hence we can discard those terms on the right side of (2) for which $\omega_{i} \neq \omega$.

Since F_{i} is nilpotent, so is $A F_{i}$. Therefore each ψ_{i} is the character of a monomial representation of $A F_{i}$; that is, $\psi_{i}=\lambda_{i}^{A F_{i}}$ for some linear character λ_{i} of a subgroup J_{i} of $A F_{i}$ (see [4, Lemma 3] or [6, pp. 273 and 356]). By the formula for induction, ψ_{i} vanishes except on the $A F_{i}$-conjugates of J_{i}; because $\psi_{i} \mid A$ is a multiple of ω, this implies that $J_{i} \supseteq A$ and $\lambda_{i} \mid A=\omega$. Since J_{i} is nilpotent, and since (2) implies (1), the theorem is proved.

Remark. In the same way we could obtain a modification of the WittBerman induction theorem [14, Theorem 1], [6, §42], provided that the field which appears in that theorem contains the values of ω.

The next theorem is obtained by a method of Schur [13, §5].
Theorem 2. Let G, A, and J be finite groups such that $A \subseteq G^{\prime} \cap Z(G)$ and $A \subseteq J \subseteq G$. Then for any linear character λ of J, the multiplicative order of $\lambda \mid A$ divides $|G: J|$.

Proof. Let $\omega=\lambda \mid A$, and let r be the order of ω in the group of linear characters of A. There exists $a \in A$ such that $\omega(a)$ is a primitive r-th root of unity. Let \mathfrak{I} be the representation of G corresponding to $\lambda^{G} ; \mathfrak{I}$ has degree $|G: J|$. Since $a \in Z(G)$, $\operatorname{det} \mathfrak{I}(a)=\operatorname{det}(\omega(a) I)=\omega(a)^{|G: J|}$, where I denotes the identity matrix. On the other hand, since $a \in G^{\prime}, \operatorname{det} \mathfrak{I}(a)=1$. Therefore r divides $|G: J|$, as required.

We now use Theorems 1 and 2 to strengthen the main result of [3].
Theorem 3. Let G and A be finite groups such that $A \subseteq Z(G) \cap G^{\prime}$. Then for every subgroup S of G, every representation of S in C is equivalent in C to a representation of S in the field K of the d-th roots of unity, where d is the greatest common divisor of $|G: A|$ and the exponent of G.

Proof. We may suppose that the representation \mathfrak{X} of S in C is irreducible. Let χ be the character of \mathfrak{X}; since $A \cap S \subseteq Z(S), \chi \mid A \cap S$ is a multiple of some linear character ω of $A \cap S$. There exists a linear character ω_{1} of the abelian group A such that $\omega_{1} \mid A \cap S=\omega$. For $a \in A$ and $s \in S$, set $\mathfrak{X}_{1}(a s)=$ $\omega_{1}(a) \mathfrak{X}(s) ; \mathfrak{X}_{1}$ is well defined and is an irreducible representation of the group $A S$ such that $\mathfrak{X}_{1} \mid S=\mathfrak{X}$. Now we can replace S by $A S, \mathfrak{X}$ by \mathfrak{X}_{1}, and ω by ω_{1}, and assume without loss of generality that $A \subseteq S$.

Now ω is a linear character of A; the kernel N of ω is normal in G, because $N \subseteq Z(G)$. Since $A / N \subseteq Z(G / N) \cap(G / N)^{\prime}$, and since \mathfrak{X} gives rise to a representation of S / N, it is sufficient to prove the theorem with G and A replaced by G / N and A / N. After this replacement, A is cyclic and the order of ω is $|A|$.

By Theorem 1 for $S, \chi=\sum_{i} c_{i} \lambda_{i}^{S}$ where c_{i} is an integer and λ_{i} is a linear character of a nilpotent group $J_{i}, A \subseteq J_{i} \subseteq S$, with $\lambda_{i} \mid A=\omega$. By Theorem 2, $|A|$ divides $\left|G: J_{i}\right|$ for each i; that is, $\left|J_{i}\right|$ divides $|G: A|$. Therefore the exponent of J_{i} divides d, and the values of λ_{i} lie in K, so that the representation with character λ_{i}^{S} is equivalent in C to a representation in K. We can then conclude by the argument of [3, Theorem 1] or [6, p. 294] that \mathfrak{X} is equivalent in C to a representation in K.

Combining Theorem 3 with the result of [6, p. 592], we obtain the following analogue of Theorem 3 for irreducible modular representations and finite fields.

Theorem 4. Let G, A, S, and K be as in Theorem 3; let K^{*} be any residue class field of K. Then every irreducible representation of S in the algebraic closure of K^{*} is equivalent in this algebraic closure to a representation of S in K^{*}.

2. Projective representations

We begin this section by presenting some definitions of well-known concepts in the precise form which we shall use. By a factor set (or 2-cocycle) of a finite group G in a field K we mean a mapping ρ of $G \times G$ into the multiplicative group K^{\times}of K such that for all $x, y, z \in G$,

$$
\rho(x, y) \rho(x y, z)=\rho(x, y z) \rho(y, z), \quad \rho(x, 1)=\rho(1, x)=1
$$

The factor sets of G in K form an abelian multiplicative group, where

$$
(\rho \sigma)(x, y)=\rho(x, y) \sigma(x, y)
$$

A 1-cochain of G in K is a mapping μ of G into K^{\times}such that $\mu(1)=1$; the

1-cochains of G in K also form an abelian multiplicative group. The coboundary of a 1 -cochain μ is the factor set $\delta \mu$ defined by

$$
(\delta \mu)(x, y)=\mu(x) \mu(y) \mu(x y)^{-1}
$$

Two factor sets in K are equivalent (or cohomologous) in K if their quotient is a coboundary; the equivalence classes $\{\rho\}$ under this relation form the multiplier (or second cohomology group) $M(G, K)$, which is a finite abelian multiplicative group. Our use of normalized cochains is for convenience, and does not affect the generality of our results (see [7, §6] or [8, p. 237]).

The restriction $\rho \mid S$ of a factor set ρ of G in K to a subgroup S is defined by restricting its arguments to S. If ε is a factor set of a quotient group G / H in K, the inflation of ε to G is the factor set $\inf \varepsilon$ of G in K defined by

$$
(\inf \varepsilon)(x, y)=\varepsilon(x H, y H)
$$

Restrictions and inflations of 1 -cochains are defined similarly.
A projective representation of G in K is a mapping \mathfrak{X} of G into the set of $n \times n$ matrices over K such that for $x, y \in G$,

$$
\mathfrak{X}(x) \mathfrak{X}(y)=\rho(x, y) \mathfrak{X}(x y), \quad \mathfrak{X}(1)=I,
$$

with $\rho(x, y) \in K$. Here ρ must be a factor set of G in K. If μ is a 1-cochain of G in K and if U is a non-singular $n \times n$ matrix over K, then the equations $\mathfrak{Y}(x)=\mu(x) U^{-1} \mathfrak{X}(x) U$ define a projective representation \mathfrak{Y} of G in K with factor set $(\delta \mu) \rho$; we say that \mathfrak{V} is projectively equivalent to \mathfrak{X} in K. If $\mu=1$, we call \mathfrak{V} linearly equivalent to \mathfrak{X} in K; observe that linearly equivalent projective representations have the same factor set.

Now we can state and prove our principal result.
Theorem 5. Let H be a normal subgroup of a finite group G, and let ε be any factor set of G / H in C. Then there exists a factor set η of G / H such that
(i) ε is equivalent to η in C;
(ii) the values of η are $|G|$-th roots of unity;
(iii) if S is any subgroup of G, then every projective representation of S in C with factor set $(\inf \eta) \mid S$ or $(\inf \eta)^{-1} \mid S$ is linearly equivalent in C to a projective representation of S in the field K of the $|G|-$ th roots of unity. Furthermore if K^{*} is any residue class field of K, and if η^{*} is obtained from η by the residue class mapping, then every irreducible projective representation of S in the algebraic closure of K^{*} with factor set $\left(\inf \eta^{*}\right) \mid S$ or $\left(\inf \eta^{*}\right)^{-1} \mid S$ is linearly equivalent in this algebraic closure to a projective representation of S in K^{*}.

Observe that this theorem implies that every projective representation of S in C with factor set $(\inf \varepsilon) \mid S$ is projectively equivalent in C to a projective representation of S in K with factor set $(\inf \eta) \mid S$; this gives us the theorem stated in the introduction.

Proof. Let r be the order of the equivalence class $\{\inf \varepsilon\}$ of $\inf \varepsilon$ in $M(G, C)$. Then this class also contains at least one factor set ρ of G such that ρ itself
has order r in the multiplicative group of factor sets of G in C (see [1, §1] or [6, p. 360]). Here

$$
\begin{equation*}
\rho=(\delta \mu)(\inf \varepsilon) \tag{3}
\end{equation*}
$$

for some 1-cochain μ of G in C.
We now use an adaptation of an argument of Schur [13, §§2, 3]. Let A be the character group of the multiplicative cyclic group generated by ρ; A is cyclic of order r. For any $x, y \in G$, let $a_{x, y} \in A$ be the character such that $a_{x, y}\left(\rho^{i}\right)=\rho(x, y)^{i}$. Then the ordered pairs $(a, x), a \in A, x \in G$, form a group G^{*} under the multiplication

$$
(a, x)(b, y)=\left(a b a_{x, y}, x y\right)
$$

If A^{*} consists of the pairs of form $(a, 1)$ and S^{*} consists of all pairs (a, \dot{s}) with $s \in S$, then clearly $A^{*} \subseteq Z\left(G^{*}\right), A^{*} \cong A, G^{*} / A^{*} \cong G$, and $S^{*} / A^{*} \cong S$. Furthermore $A^{*} \subseteq\left(G^{*}\right)^{\prime}$ by the following argument. For any linear character λ of $G^{*}, \lambda(a, 1)=a^{j}(\rho)$ for some j and for all $a \epsilon A$; in particular $\lambda\left(a_{x, y}, 1\right)=\rho(x, y)^{j}$. Since $\lambda(1, x) \lambda(1, y)=\rho(x, y)^{j} \lambda(1, x y)$, we have $\{\inf \varepsilon\}^{j}=\{\rho\}^{j}=1$, so that r divides j and $\lambda \mid A^{*}=1$; since λ is arbitrary, $A^{*} \subseteq\left(G^{*}\right)^{\prime}$.

To each projective representation \mathfrak{V} of S in C with factor set $\rho \mid S$, there corresponds an ordinary representation \mathfrak{I} of S^{*} defined by

$$
\mathfrak{I}(a, s)=a(\rho) \mathfrak{Y}(s)
$$

We can now apply Theorem 3 to G^{*} to see that \mathfrak{I} is equivalent to a representation of S^{*} in K, since $\left|G^{*}: A^{*}\right|=|G|$; then \mathfrak{V} is linearly equivalent to a projective representation of S in K. The same holds true for projective representations with factor set $\rho^{-1} \mid S$; and Theorem 4 gives the corresponding modular statement.

The order r of $\{\rho\}=\{\inf \varepsilon\}$ divides the order e of the class $\{\varepsilon\}$ of ε in $M(G / H, C)$. But e divides $|G: H|$ by [13], [1], or [6, p. 359]; hence

$$
\begin{equation*}
\rho^{|G: H|}=1 \tag{4}
\end{equation*}
$$

This proves the theorem in the case $H=1$, by taking $\eta=\rho$. But in general we must argue further, since ρ may not be the inflation of a factor set of G / H.

Since $\varepsilon(1,1)=1$, (3) implies that ($\delta \mu)|H=\rho| H$. By (4),

$$
((\delta \mu) \mid H)^{|G: H|}=1
$$

in other words, $(\mu \mid H)^{|G: H|}$ is a linear character of H. Therefore

$$
\begin{equation*}
(\mu \mid H)^{|G|}=\left((\mu \mid H)^{|G: H|}\right)^{|H|}=1 \tag{5}
\end{equation*}
$$

For each element $u \in G / H$, choose a representative $g_{u} \in g$ such that $g_{u} H=u$, with $g_{1}=1$. A 1-cochain γ of G / H is defined by setting $\gamma(u)=$ $\mu\left(g_{u}\right)$. We shall show that the factor set $\eta=(\delta \gamma) \varepsilon$ of G / H satisfies conditions (i), (ii) and (iii). Condition (i) holds by definition.

For the 1-cochain $\nu=(\inf \gamma) \mu^{-1}$ of G, whenever $h \in H$ and $u \epsilon G / H$ we have

$$
\nu\left(h g_{u}\right)=\gamma(u) \mu\left(h g_{u}\right)^{-1}=\mu\left(g_{u}\right) \mu\left(h g_{u}\right)^{-1}
$$

But by (3),

$$
\rho\left(h, g_{u}\right)=(\delta \mu)\left(h, g_{u}\right) \varepsilon(1, u)=\mu(h) \mu\left(g_{u}\right) \mu\left(h g_{u}\right)^{-1}
$$

so that $\nu\left(h g_{u}\right)=\mu(h)^{-1} \rho\left(h, g_{u}\right)$. By (4) and (5) both factors on the right are $|G|$-th roots of unity; hence

$$
\begin{equation*}
\nu^{|G|}=1 \tag{6}
\end{equation*}
$$

By (3) and the definitions of η and ν,

$$
\begin{equation*}
\inf \eta=(\inf (\delta \gamma))(\inf \varepsilon)=(\delta(\inf \gamma))(\delta \mu)^{-1} \rho=(\delta \nu) \rho \tag{7}
\end{equation*}
$$

Then by (4) and (6), $\eta^{|Q|}=1$; this proves (ii).
Corresponding to each projective representation $\sqrt[B]{ }$ of S with factor set (inf η) $\mid S$, we can define a projective representation \mathfrak{V} with factor set $\rho \mid S$ by writing $\mathfrak{Y}(s)=\nu(s)^{-1} \mathfrak{Z}(s), s \in S$; cf. (7). We have shown that \mathfrak{Y} is linearly equivalent to a projective representation over K; but for any matrix U over C such that $U^{-1} \mathfrak{Y}(s) U$ lies in K for all $s \in S, U^{-1} \mathcal{B}(s) U$ also lies in K, by (6). This proves the part of (iii) concerning (inf $\eta) \mid S$; the rest of (iii) follows from similar arguments. This completes the proof of Theorem 5.

Corollary. If $H=1$ in Theorem 5, we can choose η so that its order is the same as the order of its class $\{\eta\}$ in $M(G, C)$.

This is true since we can take $\eta=\rho$ in this case. It is natural to ask whether, in the situation of Theorem 5, we can always choose η to be of the same order as its class in $M(G / H, C)$, and hence of order dividing $|G: H|$. While we cannot answer this question, the following theorem gives some information about the order of η.

Theorem 6. In the conclusion of Theorem 5, we can add the following statement:
(iv) every prime divisor of the order of η divides $|G: H|$.

Proof. Since $\eta=(\delta \gamma) \varepsilon,\{\eta\}=\{\varepsilon\}$; thus the order of $\{\eta\}$ in $M(G / H, C)$ is e, so that $\eta^{e}=\delta \alpha$ for some 1-cochain α of G / H in C. Since e divides $|G: H|$, $|G| / e$ is an integer. Then by (ii) $1=\eta^{|G|}=(\delta \alpha)^{|G| / e}=\delta\left(\alpha^{|G| / e}\right)$. This means that $\alpha^{|G| / e}$ is a linear character of G / H. It follows that

$$
\begin{equation*}
1=\left(\alpha^{|G| / e}\right)^{|G: H|}=\alpha^{|H||G: H|^{2} / e} \tag{8}
\end{equation*}
$$

Let π be the set of all primes which divide $|G: H|$. Let α_{π} and α_{0} denote the π-part and π-regular part, respectively, of α; that is, the unique elements α_{π} and α_{0} of the abelian multiplicative group of all 1-cochains of G / H in C such that $\alpha_{\pi} \alpha_{0}=\alpha$ while all the prime divisors of the order of α_{π}, and none of the prime divisors of the order of α_{0}, are in π (cf. [6, p. 284]). Since the prime divisors of $|G: H|^{2} / e$ are all in π, (8) implies that $\alpha_{0}^{|H|}=1$.

Similarly, let η_{π} and η_{0} be the π-part and π-regular part, respectively, of η. Since e is relatively prime to the order of η_{0}, η_{0} is a power of η_{0}^{e}, say $\eta_{0}=\eta_{0}^{\text {ef }}$. Since $\eta^{e}=\delta \alpha, \eta_{0}^{e}=\delta \alpha_{0}$, so that

$$
\eta_{0}=\eta_{0}^{e f}=\left(\delta \alpha_{0}\right)^{f}=\delta \beta,
$$

where we set $\beta=\alpha_{0}^{f}$. Also $\beta^{|H|}=\alpha_{0}^{f|H|}=1$.
In the proof of Theorem 5 , set $\mathfrak{W}(s)=(\inf \beta)^{-1}(s) \mathfrak{Z}(s), s \in S$. Since $\eta_{\pi}=\eta_{0}^{-1} \eta=(\delta \beta)^{-1} \eta$, \mathfrak{W} has factor set $\left(\inf \eta_{\pi}\right) \mid S$, and \mathfrak{W} lies in K since $\beta^{|G|}=1$. Then if we replace η by η_{π}, (iv) holds as well as (i), (ii), and (iii).

3. Applications

Let H be any normal subgroup of a finite group G, and \mathfrak{X} an irreducible representation of G in an algebraically closed field of any characteristic. According to Clifford [5], \mathfrak{X} is induced from a representation \mathfrak{X}^{\prime} of a certain "inertial" group $S, H \subseteq S \subseteq G$, while \mathfrak{X}^{\prime} is a tensor product $\mathfrak{V} \times \mathfrak{H}$ of two projective representations of S, with factor sets inflated from inverse factor sets ε^{-1} and ε of S / H, where $\mathfrak{Y} \mid H$ is irreducible and \mathfrak{A} is inflated from a projective representation of S / H. By applying Theorems 5 and 6 to S (in the roles of both G and S), we can choose ε so that \mathfrak{V} and \mathfrak{Y}, and hence also \mathfrak{X}, lie in a subfield isomorphic to the field K of $|S|$-th roots of unity or to a residue class field of K while $\varepsilon^{|S|}=1$ and every prime divisor of the order of ε divides $|S: H|$.

Replacing \mathfrak{X} by a projective representation of G, we can find a similar statement concerning the finite-group case of Mackey's generalization [9] of Clifford's results, taking the G and S of Theorems 5 and 6 to be the same as the G and S of this section.

Another application of Theorems 5 and 6 appears in the Addendum to [12], where they are used to find a field in which the constructions of [12] can be carried out.

References

1. K. Asano and K. Shoda, Zur Theorie der Darstellungen einer endlichen Gruppe durch Kollineationen, Compositio Math., vol. 2 (1935), pp. 230-240.
2. R. Brauer, On the representation of a group of order g in the field of the g-th roots of unity, Amer. J. Math., vol. 67 (1945), pp. 461-471.
3. - Applications of induced characters, Amer. J. Math., vol. 69 (1947), pp. 709716.
4.,- A characterization of the characters of groups of finite order, Ann. of Math. (2), vol. 57 (1953), pp. 357-377.
4. A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. (2), vol. 38 (1937), pp. 533-550.
5. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, New York, Interscience, 1962.
6. S. Eilenberg and S. MacLane, Cohomology theory in abstract groups, I, Ann. of Math. (2), vol. 48 (1947), pp. 51-78.
7. M. Hall, The theory of groups, New York, Macmillan, 1959.
8. G. W. Mackey, Unitary representations of group extensions, I, Acta Math., vol. 99 (1958), pp. 265-311.
9. H. Nagao, On the theory of representation of finite groups, Osaka Math. J., vol. 3 (1951), pp. 11-20.
10. M. Osima, On the representations of groups of finite order, Math. J. Okayama Univ vol. 1 (1952), pp. 33-61.
11. W. F. Reynolds, Blocks and normal subgroups of finite groups, Nagoya Math. J., vol. 22 (1963), pp. 15-32.
12. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., vol. 127 (1904), pp. 20-50.
13. L. Solomon, The representation of finite groups in algebraic number fields, J. Math. Soc. Japan, vol. 13 (1961), pp. 144-164.

Tufts University

Medford, Massachusetts

