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Introduction

In [2] Brauer proved that every representation of a finite group G in the
field C of complex numbers is equivalent in C to a representation of G in the
field of the G ]-th roots of unity, and in [3] he improved this by replacing
G by the exponent of G. In this paper we consider the corresponding ques-

tion for projective representations. Our main result is contained in the fol-
lowing theorem.

THEOREM. Every projective representation of G in C is projectively equiva-
lent (see Section 2) in C to a projective representation of G in the field of the
G I-th roots of unity. can be chosen so that its factor set takes on only G I"

th roots of unity as values, and so that it is inflated from any quotient group
G/H from which the factor set of . is inflated.

This result is given in a more precise form in Theorems 5 and 6, which also
include a similar result for modular projective representations (see [10],
[11]). It would be of interest to know whether G could be replaced by the
exponent of G in these results.
Our method combines those of Brauer [3] and Schur [13]. In Section 1

we give a modification (Theorem 1) of the Brauer induction theorem [4],
[6, p. 283] which takes into account the behavior of characters on a given
subgroup of the center Z(G) of G; and we use this to prove in Theorem 3 that
every representation of every subgroup of G in C is equivalent to a represen-
tation in the field of the G: Z(G) n G’ I-th roots of unity, where G’ is the
commutator subgroup of G. Schur’s method is then applied in Section 2 to
obtain the main result. In the final section we show that some basic results
of Clifford [5] and Mackey [9] can be obtained within the field of the G I-th
roots of unity.

1. Characters and representations

Our first result is a modification of the Brauer induction theorem.

THEOREM 1. Let A be a subgroup of the center of a finite group G; let be a
linear character of A. Then every irreducible character x of G such that x lA
contains o can be expressed in the form
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where c is an integer and is a linear character of a nilpotent subgroup J
of G such that J

_
A and hi A .

Here x lA denotes the restriction of x to A; ), denotes the character of G
induced by ), and a linear character is a character of degree 1.

Proof. By the induction theorem, we can write

where b is an integer and 0. is an irreducible character of an elementary sub-
group Ej of G. Decomposing 0" into its irreducible constituents b on
AE, we obtain an equation

(2) x
where c is an integer and h is an irreducible character of AFt, F being one
of the groups E..

Since A Z(G), each IA is a multiple of some linear character
of. A; then also A is a multiple of . Similarly x A is a multiple of
We can write

x Y:...
where i e I’ if co and i e I" if # co. The left side is a linear combina-
tion of those of the irreducible characters x of G for which xIA is a mul-
tiple of 0, while the right side is a linear combination of the remaining x.
By the linear independence of the xz, both sides vanish; hence we can discard
those terms on the right side of (2) for which co co.

Since F is nilpotent, so is AFt. Therefore each h is the character of a
,x AFimonomial representation of AFt; that is, b ,, for some linear charac-

ter M of a subgroup J of AF (see [4, Lemma 3] or [6, pp. 273 and 356]). By
the formula for induction, vanishes except on the AFt-conjugates of J;
because ]A is a multiple of co, this implies that J

_
A and M IA co.

Since J is nilpotent, and since (2) implies (1), the theorem is proved.
Remark. In the same way we could obtain a modification of the Witt-

Bermaa induction theorem [14, Theorem 1], [6, 42], provided that the field
which appears in that theorem contains the values of co.

The next theorem is obtained by a method of Schur [13, 5].

THEOREM 2. Let G, A, and J be finite groups such that A

_
G’ n Z(G)

and A J

_
G. Then for any linear character ) of J, the multiplicative

order of X lA divides G" J [.

Proof. Let A, and let r be the order of co in the group of linear char-
acters of A. There exists a e A such that c0(a) is a primitive r-th root of
unity. Let be the representation of G corresponding to ha; has degree
G:J I. Since a eZ(G), det 2(a)-- det (co(a)I) co(a) a:JI where I

denotes the identity matrix. On the other hand, since a e G’, det (a) 1.
Therefore r divides G: J I, as required.
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We now use Theorems 1 and 2 to strengthen the main result of [3].

THEOREM 3. Let G and A be finite groups such that A

_
Z(G) n G’.

Then for every subgroup S of G, every representation of S in C is equivalent in
C to a representation of S in the field K of the d-th roots of unity, where d is the
greatest common divisor of lG’A and the exponent of G.

Proof. We may suppose that the representation of S in C is irreducible.
Let x be the character of ; since A n S

___
Z(S), x lA S is a multiple of

some linear character w of A n S. There exists a linear character wl of the
abelian group A such that 1 A S o. For a e A and s e S, set (as)
(a)(s) 1 is well defined and is an irreducible representation of the group
AS such that 11S . Now we can replace SbyAS, ?by , and 0

by w, and assume without loss of generality that A S.
Now is a linear character of A; the kernel N of is normal in G, because

N

_
Z(G). Since A/N

_
Z(G/N) (G/N)’, and since gives rise to a

representation of S/N, it is sufficient to prove the theorem with G and A
replaced by GIN and A/N. After this replacement, A is cyclic and the
order of o is A I.
By Theorem 1 for S, x c where c is an integer and is a linear

character of a nilpotent group J, A

___
J

___
S, with IA . By

Theorem 2, AI divides G’JI for each i; that is, Jl divides ]G:A I.
Therefore the exponent of J divides d, and the values of ), lie in K, so that
the representation with character is equivalent in C to a representation in K.
We can then conclude by the argument of [3, Theorem 1] or [6, p. 294] that
is equivalent in C to a representation in K.
Combining Theorem 3 with the result of [6, p. 592], we obtain the follow-

ing analogue of Theorem 3 for irreducible modular representations and finite
fields.

THEOREM 4. Let G, A, S, and K be as in Theorem 3; let K* be any residue
class field of K. Then every irreducible representation of S in the algebraic
closure of K* is equivalent in this algebraic closure to a representation of S in K*.

2. Projective representations
We begin this section by presenting some definitions of well-known con-

cepts in the precise form which we shall use. By a factor set (or 2-cocycle)
of a finite group G in a field K we mean a mapping p of G X G into the multi-
plicative group K of K such that for all x, y, z e G,

p(x, y)p(xy, z) p(x, yz)p(y, z), p(x, 1) p(1, x) 1.

The factor sets of G in K form an abelian multiplicative group, where

(p(r)(x, y) p(x, y)(r(x, y).

A 1-cochain of G in K is a mapping of G into K such that (1) 1; the
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1-cochains of G in K also form an abelian multiplicative group.
boundary of a 1-cochain is the factor set t defined by

(t) (x, y) t(x)(y)(xy)-1.

The co-

Two factor sets in K are equivalent (or cohomologous) in K if their quotient
is a coboundary; the equivalence classes p} under this relation form the
multiplier (or second cohomology group) M(G, K), which is a finite abelian
multiplicative group. Our use of normalized cochains is for convenience,
and does not affect the generality of our results (see [7, 6] or [8, p. 237]).
The restriction p S of a factor set p of G in K to a subgroup S is defined by

restricting its arguments to S. If is a factor set of a quotient group G/H
in K, the inflation of to G is the factor set inf of G in K defined by

(inf ) (x, y) e(xH, yH).

Restrictions and inflations of 1-cochains are defined similarly.
A projective representation of G in K is a mapping of G into the set of n X n

matrices over K such that for x, y e G,

(x)(y) p(x, y)(xy), (1) I,

with p(x, y) K. Here p must be a factor set of G in K. If is a 1-cochain
of G in K and if U is a non-singular n X n matrix over K, then the equations
(x) (x)U-l(x)U define a projective representation of G in K with
factor set (ti)p; we say that ) is projectively equivalent to iu K. If t 1,
we call 0 linearly equivalent to in K; observe that linearly equivalent projec-
tive representations have the same factor set.
Now we can state and prove our principal result.

THEOREM 5. Let H be a normal subgroup of a finite group G, and let
be any factor set of G/H in C. Then there exists a factor set 7 of G/H such that

(i) e is equivalent to 7 in C;
(ii) the values of 7 are G ]-th roots of unity;
(iii) if S is any subgroup of G, then every projective representation of S in C

with factor set (inf 7) S or (inf 7)-1 S is linearly equivalent in C to a projective
representation of S in the field K of the G I-th roots of unity. Furthermore if
K* is any residue class field of K, and if 7" is obtained from 7 by the residue class
mapping, then every irreducible projective representation of S in the algebraic
closure of K* with factor set (inf 7*) S or (inf 7")-11 S is linearly equivalent
in this algebraic closure to a projective representation of S in K*.

Observe that this theorem implies that every projective representation of
S in C with factor set (inf ) S is projectively equivalent in C to a projective
representation of S in K with factor set (inf 7) S; this gives us the theorem
stated in the introduction.

Proof. Let r be the order of the equivalence class {inf e} of inf e in M(G, C).
Then this class also contains at least one factor set p of G such that p itself
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has order r in the multiplicative group of factor sets of G in C (see [1, 1] or
[6, p. 360]). Here

(3) p (t)(inf e)

for some 1-cochain of G in C.
We now use an adaptation of an argument of Schur [13, 2, 3]. Let A

be the character group of the multiplicative cyclic group generated by p;
A is cyclic of order r. For any x, y G, let ax. A be the character such
that a..(pi) p(x, y). Then the ordered pairs (a, x), a A, x G, form a
group G* under the multiplication

(a, x)(b, y) (abax., xy).

If A* consists of the pairs of form (a, 1) and S* consists of all pairs (a, s)
with s S, then clearly A*

_
Z(G*), A* A, G*/A* G, and S*/A* --- S.

Furthermore A* (G*)’ by the following argument. For any linear char-
acter X of G*, X(a, 1) aJ(p) for some j and for all a A; in particula-r
X(ax., 1) o(x, y)J. Since (1, x)X(1, y) p(x, y)i},(1, xy), we have
{inf e} {p} 1, so that r divides j and ),IA* 1; since X is arbitrary,
A*

_
(G*)’.

To each projective representation of S in C with factor set p IS, there
corresponds an ordinary representation of S* defined by

:(a, s) a(o) 9(s).

We can now apply Theorem 3 to G* to see that g is equivalent to a repreSen-
tation of S* in K, since G*:A*I GI; then is linearly equivalent to a
projective representation of S in K. The same holds true for projective repre-
sentations with factor set p-l IS; and Theorem 4 gives the corresponding
modular statement.
The order r of {p} {inf e} divides the order e of the class {e} of e in

M(G/H, C). But e divides G:H by [13], [1], or [6, p. 359]; hence

(4) pla:HI 1.

This proves the theorem in the case H 1, by taking p. But in general
we must argue further, since p may not be the inflation of a factor set of G/H.

Since e(1, 1)= 1, (3) implies that ((t)IH p lH. By (4),

((t) ]H) le:’l 1;

in other words, ([H) I:ul is a linear character of H. Therefore

(5) ( H)lvl ((t [H) lV:’l)l’l 1.

For each element u G/H, choose a representative g, e g such that
g H u, with gl 1. A 1-cochain /of G/H is defined by setting /(u)
(gu). We shall show that the factor set (t,)e of G/H satisfies con-
ditions (i), (ii) and (iii). Condition (i) holds by definition.
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For the 1-cochain (inf )-1 of G, whenever h e H and u e G/H we have

(hgu) "y(u)#(hgu)-1 h -1

But by (3),
p(h, gu) ()(h, g)e(1, u) (h)(gu)(hg)-l,

so that (hg,,) (h)-lp(h, g). By (4) and (5) both factors on the right
are lG I-th roots of unity; hence

(6) 1o1= 1.

By (3) and the definitions of 7 and ,
(7) inf 7 (inf (,))(inf e) ((inf3,))((#)-ip ()p.

Then by (4) and (6), 711 1; this proves (ii).
Corresponding to each projective representation of S with factor set

(inf 7)] S, we can define a projective representation ) with factor set p S by
writing (s) (s)-l (s), s e S; ef. (7). We have shown that ) is linearly
equivalent to a projective representation over K; but for any matrix U over C
such that U-1 (s) U lies in K for all s e S, U-1(s) U also lies in K, by (6).
This proves the part of (iii) concerning (inf 7) S; the rest of (iii) follows
from similar arguments. This completes the proof of Theorem 5..

COROLLARY. If H 1 in Theorem 5, we can choose 7 so that its order is the
same as the order of its class 7} in M(G, C).

This is true since we can take 7 p in this case. It is natural to ask
whether, in the situation of Theorem 5, we can always choose 7 to be of the
same order as its class in M(G/H, C), and hence of order dividing G:H
While we cannot answer this question, the following theorem gives some in-
formation about the order of 7.

THEOREM 6. In the conclusion of Theorem 5, we can add the following state-
ment"

(iv) every prime divisor of the order of 7 divides G:H[.

Proof. Since 7 (/) e, 7} e} thus the order of 7} in M(G/H, C) is e,
so that 7 s for some 1-cochain s of G/H in C. Since e divides [G:H [,
G I/e is an integer. Then by (ii), 1 7

I1 (s) ll/e (slol/e). This
means that s lal/e is a linear character of G/H. It follows that

IHI IO:HI2/e(8) 1 (s I1/)1:’1 s

Let r be the set of all primes which divide G:H Let s and a0 denote
the r-part and r-regular part, respectively, of s; that is, the unique elements
s and s0 of the abelian multiplicative group of all 1-cochains of G/H in C such
that s s0 s while all the prime divisors of the order of s, and none of the
prime divisors of the order of s0, are in v (cf. [6, p. 284]). Since the prime
divisors of G’H I/e are all in r, (8) implies that a;"1 1.
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Similarly, let r/ and v0 be the r-part and r-regular part, respectively, of v.
Since e is relatively prime to the order of v0, r/0 is a power of y), say /0 v)].
Since r/ a, v 0, so that

ef )fno no (o ,
whereweset a0. Also# a tn

In the proof of Theorem 5, set (s) (inf #)-l(s) (s), s e S. Since
--1n- n0 n ()-n, has factor set (infn,)lS, and lies inK since

# 1. Then if we replace v by w, (iv) holds as well as (i), (ii), and (iii).

3. Applicotions
Let H be any normal subgroup of a finite group G, and E an irreducible

representation of G in an algebraically closed field of any characteristic. Ac-
cording to Clord [5], is induced from a representation ’ of a certain
"inertial" group S, H S G, while ’ is a tensor product X of two
projective representations of S, with factor sets inflated from iverse factor
sets - and e of S/H, where IH is irreducible and is inflated from a
projective representation of S/H. By applying Theorems 5 and 6 to S (in
the roles of both G and S), we can choose so that and , and hence also, lie in a subfield isomorphic to the field K of S I-th roots of unity or to a
residue class field of K while es 1 and every prime divisor of the order of e
divides S’H I.

Replacing by a projective representation of G, we can find a similar state-
ment concerning the finite-group case of Mackey’s generalization [9] of Clif-
ford’s results, taking the G and S of Theorems 5 and 6 to be the same as the
G and S of this section.
Another application of Theorems 5 and 6 appears in the Addendum to

[12], where they are used to find a field in which the constructions of [12] can
be carried out.
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